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Background: Quantification of coronary blood flow is used to evaluate coronary artery
disease, but our understanding of flow through branched systems is poor. Murray’s law
defines coronary morphometric scaling, the relationship between flow (Q) and vessel
diameter (D) and is the basis for minimum lumen area targets when intervening on
bifurcation lesions. Murray’s original law (Q α DP) dictates that the exponent (P) is 3.0,
whilst constant blood velocity throughout the systemwould suggest an exponent of 2.0. In
human coronary arteries, the value of Murray’s exponent remains unknown.

Aim: To establish the exponent in Murray’s power law relationship that best reproduces
coronary blood flows (Q) and microvascular resistances (Rmicro) in a bifurcating
coronary tree.

Methods and Results: We screened 48 cases, and were able to evaluate inlet Q and
Rmicro in 27 branched coronary arteries, taken from 20 patients, using a novel
computational fluid dynamics (CFD) model which reconstructs 3D coronary anatomy
from angiography and uses pressure-wire measurements to compute Q and Rmicro
distribution in the main- and side-branches. Outputs were validated against invasive
measurements using a Rayflow™ catheter. A Murray’s power law exponent of 2.15
produced the strongest correlation and closest agreement with inlet Q (zero bias, r = 0.47,
p = 0.006) and an exponent of 2.38 produced the strongest correlation and closest
agreement with Rmicro (zero bias, r = 0.66, p = 0.0001).

Conclusions: The optimal power law exponents for Q and Rmicro were not 3.0, as
dictated by Murray’s Law, but 2.15 and 2.38 respectively. These data will be useful in
assessing patient-specific coronary physiology and tailoring revascularisation decisions.
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INTRODUCTION

First described in 1926, Murray’s law describes the physical
principles for fluid flow through branched transfer networks
across a wide range of biological systems. The diameters of
branched vessels obey a scaling relation such that total viscous
dissipation and material storage energy costs are minimised.
In human arteries, Murray’s law characterises the optimal
counterpoise between frictional and metabolic forces. Thus,
the energy required to drive blood through the coronary
circulation (overcoming vascular resistance) is balanced
against the energy required to produce and maintain the
blood volume such that overall energy costs are minimised
(Murray, 1926). Murray’s law characterises the tapering of the
arterial diameter (D) as daughter-branches (DB) arise from a
parent vessel (PV) and where k is a constant, the
proportionality of volumetric flow rate (Q) to diameter:

D3
PV � D3

DB1 + D3
DB2

and

Q � kD3

A consequence of the exponent of 3.0 in Murrays’ Law, is that
wall shear stress (the frictional force per unit area acting on the
endothelium) is constant throughout the branching tree.
Murray’s law however, assumes steady, laminar flow of a
Newtonian fluid through rigid tubes of constant volume. In
contrast, flow in human coronary arteries is pulsatile and may
be disturbed in the context of atherosclerotic stenoses. Arteries
are also distensible vessels, carrying a fluid whose mechanical
properties vary with vessel radius. Theoretical derivations of
turbulent flow suggest the exponent of proportionality that
Murray originally proposed (3.0) may range from 2.33 to 3.0,
with lower values being appropriate in more disturbed flow
(Uylings, 1977). Furthermore, a range of studies, based on
prototypical geometries in a wide range of practical networks,
applied to Newtonian and non-Newtonian fluids largely recover
the essential form of Murray’s law with varying exponent values
(Bejan et al., 2000; Revellin et al., 2009; Miguel, 2019; Soni et al.,
2020; Miguel, 2021). Morphometric analyses of coronary arterial
trees suggest that the exponent may even lie outside theoretical
limits, with reported values ranging from 2.06 to 3.20 (Hutchins
et al., 1976; Zhou et al., 1999; Kassab, 2006, 2007; van der Giessen
et al., 2011; Li et al., 2021).

In human coronary arteries, Murray’s law is central to all
analyses of anatomy, physiology, morphometric scaling, shear-
stress, wave and pressure-transmission mechanics, and predictive
modelling. It is therefore relevant in clinical cardiology, even if
many practitioners are unaware of it. In the cardiac catheter
laboratory, the appropriate size of parent and daughter branches
is deduced from a number of cues; often, pragmatically, the
diameter of “normal” segments of downstream branches, but
Murray’s law and Finet’s rule (Finet et al., 2008) (a derivation of
Murray’s law) are also used. Decisions regarding stent sizing at
bifurcation points, for example, can be made on that basis.
Furthermore, the minimum diseased lumen area (MLA)

triggering ischemia of a diseased left main coronary artery
(≥6 mm2) recommended by current guidelines for lesion
assessment (Neumann et al., 2019) was derived from Murray’s
law (de la Torre Hernández et al., 2007; de la Torre Hernandez
et al., 2011).

Recently, we developed a novel computational fluid dynamics
(CFD)-based method for simulating human coronary artery
physiology called virtuQ™, capable of quantifying absolute
coronary blood flow (QCFD) and microvascular resistance
(RmicroCFD) (Morris et al., 2020). In this study, we adapted
the 3D CFD method to simulate side branch (SB) flow, the
magnitude of which was dependent upon the exponent used
in Murray’s law (Gosling et al., 2020).

The aim of this study was to apply our novel CFD-based
physiological method to determine the most accurate exponent of
Murray’s law in human epicardial coronary arteries and validate
this against invasive clinical measurements.

MATERIALS AND METHODS

This was a retrospective analysis of clinical data collected at the
Catharina Hospital, Eindhoven, NL. Computational analysis was
performed at the University of Sheffield, United Kingdom.
Patients provided informed consent and the study was
approved by the research and ethics boards. All supporting
data are provided in this manuscript or in the Supplementary
Material.

Clinical Data Collection
Adult patients undergoing clinically-indicated invasive angiography
for the assessment of chest pain were included. During angiography,
fractional flow reserve (FFR) and absolute coronary blood flow
(QCIT) and microvascular resistance (RmicroCIT) were assessed in
the artery of interest, with the PressureWire™ X (Abbott, MN,
United States) and the continuous infusion thermodilution (CIT)
method using the Rayflow™ infusion catheter (Hexacath, Paris, Fr)
and the Coroventis™ (Abbott, Plymouth, MN) system (Aarnoudse
et al., 2007; van ‘t Veer et al., 2016). Pseudonymised clinical imaging
(DICOM) and physiological data were exported to the University of
Sheffield for analysis. Cases were excluded if the physiological data
were incomplete, the angiogram quality was insufficient for arterial
reconstruction, or if there weremajor arterial SBs within 3.0 cm of the
Rayflow™ infusion port. The latter exclusion is recommended by the
manufacturer because significant SBs can affect the QCIT result
(Aarnoudse et al., 2007). A recommended correction for the
haemodynamic effect of the infusion catheter is detailed in the
Supplementary Material S1. The angiographic requirements for
reconstruction have been published (Ghobrial et al., 2021).
Percentage stenosis was graded visually by a panel of
interventional-cardiologists and additionally, with 2D- and 3D-
quantitative coronary angiography (QCA).

Simulating Coronary Blood Flow
The virtuQ method for reconstructing 3D coronary anatomy and
simulating QCFD and RmicroCFD has been validated and
published (Morris et al., 2020; Ghobrial et al., 2021; Solanki
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et al., 2021). In brief, 3D arterial anatomy of a single vessel is
reconstructed from two angiographic planes, acquired ≥30° apart,
using an epipolar line transection method. The relatively gentle
taper of vessels means that recirculation regions are not
encountered and the proximal and distal outlet manifolds to
accommodate profile development are deemed unnecessary.
Simulations applied standard blood parameters (density
1,056 kg/m3; viscosity 0.0035 Pa s). A 3D CFD simulation was
then performed with the invasively measured pressures as inlet
and outlet boundary conditions, which corresponded to the
locations of proximal and distal pressure and temperature
measurements. Simulations modelled incompressible, laminar,
steady Newtonian flow in the reconstructed artery. The suitability
of the steady flow approximation has previously been
demonstrated in Morris’ 2015 examination (Morris, 2015) and
was confirmed via analysis of Reynolds number at each model
inlet, outlet and point of maximal stenosis. Furthermore, the
epicardial arteries are of sufficiently large diameter to reliably
model blood as a Newtonian fluid (Huckabe and Hahn, 1968).
Principal model outputs were inlet and outlet QCFD and
RmicroCFD.

Simulating Side Branch Flow
In this study, the virtuQ™ method was adapted to additionally
simulate SB blood flow across the wall of arterial reconstructions,
so that Qinlet >Qoutlet and QSB =Qinlet-Qoutlet. In a CFD analysis of
a tube of varying cross section, conservation of mass dictates that
the flow at every cross section is the same. If a vessel is tapered, the
velocity and the wall shear stress increase as the vessel diameter
reduces. A consequence of Murray’s Law is constant wall shear
stress. At an arterial bifurcation the proximal flowmust be shared
between the two distal vessels depending on their diameters. A

simple analysis protocol to compensate for branches that are
clearly visible, but not included in the 3D arterial model, is to
remove flow through the vessel wall at the bifurcation according
to a power law representation (a generalisation of Murray’s Law)
of the flow at the bifurcation. The same approach can readily be
extended to smaller vessel branches that are not visible on the
angiogram if it is assumed that the tapering of the primary vessel
under analysis has developed, in the healthy state, according to a
power law relationship between flow and diameter. Thus, it is
assumed that flowmust be leaking from the vessel wall to feed the
myocardium through the small vessels that are not visible on the
angiogram, with the remaining flow in the vessel under analysis
reducing consistently as the vessel tapers. This can be handled in
the CFD analysis in exactly the same way as the visible
bifurcations, by prescribing a wall leak that is a function of
the taper. Our model of vessel leakage therefore represented
some average of the bifurcations and is intended to describe
effects in real coronary arteries. The collection of unresolved SBs
was therefore, characterised by a distribution of radii and
geometry, ranging from the small calibre vasa vasorum (Gössl
et al., 2003) to the largest, named arterial branches, and no single
homothety relationship applies. The mathematical derivation of
the porous wall method is described in the Supplementary
Material S2.

Reconstructions with a total taper (Doutlet-Dinlet) less than one
pixel (0.265 mm) were excluded because such small diameter
changes cannot be accurately discerned, and so SB flow cannot be
modelled reliably. Simulations were performed applying
Murray’s exponents of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5. The
magnitude of SB flow was then plotted against the relevant
exponent and an exponential function was used to fit the
relationship. The optimal exponent was then interpolated from

FIGURE 1 | Flow diagram showing case exclusions. Cx, Left circumflex artery; LAD, Left anterior descending artery; RCA, Right coronary artery.
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this function as the value associated with the best agreement
between the CFD method and the invasive CIT measurements.
All processing was performed blind to the invasive clinical results.

Statistical Analysis
Categorical variables are presented as frequency (percentage).
Continuous variables with a normal distribution are presented as
mean (standard deviation) and those with a non-normal distribution
as median (interquartile range). The Shapiro-Wilk test was used to
assess the normality of data distribution. Between-variable correlation
was assessed with Pearson’s correlation coefficient (r) and agreement
with Bland Altman plots, calculating the 95% limits of agreement.
The optimal value forMurray’s exponent was considered as the value
with the smallest bias (mean delta) and narrowest 95% limits of
agreement when comparing CFD-derived and invasive
measurements of Q and Rmicro. Log transformation was used for
skewed datasets.

RESULTS

Case Exclusions
Forty-eight separate patient cases were assessed. Two had
insufficient angiographic data and one case had incomplete
pressure data. Of the remaining 45 cases, 16 were excluded due
to: insufficient angiographic views (n = 11), percutaneous
coronary intervention had been performed before QCIT

measurement (n = 2), major arterial SBs being present
within ≤3.0 cm of the CIT infusion port (n = 2), and
arterial anatomy precluding reconstruction (n = 1). Twenty-
nine arterial cases were successfully processed, and two of
these were excluded due to insufficient arterial taper. Twenty-
seven cases were therefore included in the final analysis
(Figure 1).

Patient Characteristics
Mean age was 62 (±10) years, 35% were male, mean body mass
index (BMI) was 25.2 (±3.6) kg/m2 and four (20%) were current
or ex-smokers. Full details, including demographics, comorbid
conditions, and medical therapy are summarised in Table 1.

Baseline Arterial, Lesion and Physiological
Characteristics
The 27 arterial cases comprised 18 left anterior descending (LAD)
arteries, seven left circumflex (LCX) arteries and two right
coronary arteries (RCA). Mean QCIT was 219 ml/min (±61 ml/
min) and median RmicroCIT was 360 mmHg min/L (IQR
290–450 mmHg min/L). Characteristics of individual vessels
reported in Supplementary Table S1.

Optimal Murray’s Exponent Based on
Absolute Coronary Blood Flow
Murray’s exponent was first optimised for Q between the CIT and
CFD methods. The exponent associated with the lowest mean delta,
strongest correlation and best agreement (narrowest 95% limits of
agreement) between QCFD and QCIT was 2.15. Differences between
QCFD and QCIT were normally distributed (p = 0.966). When an
exponent of 2.15 was applied to the CFD method, the mean delta
(bias) between the methods were -168 to +168ml/min (Figure 2)
(Reconstruction measurements, flow rates and Reynolds numbers
reported in Supplementary Table S2).

Optimal Murray’s Exponent Based on
Absolute Microvascular Resistance
Murray’s exponent was then optimised for Rmicro. The exponent
associated with the lowest mean delta, strongest correlation and best
agreement between log-transformed RmicroCFD and RmicroCIT was
2.38. Differences between log-transformed RmicroCFD and
RmicroCIT were normally distributed (p = 0.662). When an
exponent of 2.38 was applied to the CFD method, the mean delta
(bias) between RmicroCFD and RmicroCIT was +30mmHgmin/L,
there was a statistically significant correlation between themethods (r

TABLE 1 | Recruited patient characteristics.

Demographics

Number of patients - 20
Age (years) - 62 ± 10
Male gender - 7 (35%)
Body mass index (kg/m2) - 25.2 ± 3.6
Current smoker - 2 (10%)
Previous smoker - 2 (10%)
Comorbidities
Hypertension - 8 (40%)
Dyslipidaemia - 8 (40%)
Type 2 diabetes mellitus - 1 (5%)
Previous myocardial infarction - 4 (20%)
Previous stroke - 1 (5%)
Left ventricular ejection fraction Good 17 (85%)

Moderate 1 (5%)
Poor 0

Unknown 2 (10%)
CCS gradea 0 5 (25%)

I 10 (50%)
II 5 (25%)
III 0
IV 0

NYHA grade 0 19 (95%)
1 1 (5%)
2 0
3 0
4 0

Medication
Statin - 15 (75%)
Aspirin - 10 (50%)
Non-aspirin anti-platelet - 5 (25%)
ACEi or ARB - 8 (40%)
Anti-coagulant - 3 (15%)
Beta-blocker - 9 (45%)
Calcium channel-blocker - 9 (45%)
Nitrate - 9 (45%)
Oral hypoglycaemic agent - 1 (5%)

Data presented as absolute number (%) or mean ± standard deviation.
aCanadian Cardiovascular Society CCS grade.
CCS, chronic coronary syndrome; NYHA, New York Heart Association functional
classification of heart failure; ACEi, angiotensin-converting enzyme inhibitor; ARB,
angiotensin II receptor blocker. Comorbidities and medications with a frequency of zero
not presented.
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= 0.65, p < 0.001) and the 95% Bland Altman limits of agreement
were -210 to +480mmHgmin/L (Figure 2).

DISCUSSION

In this study, we have derived the value for Murray’s exponent
that best fits human epicardial coronary anatomical and
physiological data. The optimum value was 2.15 based
upon Q data, and 2.38 based upon Rmicro data. This is the
first study to derive Murray’s exponent using a physiological
approach, based upon optimised CFD analysis of absolute Q
and Rmicro.

Deviation From Theoretical Estimates
The optimum exponent of 2.15 deviates from Murray’s original
law (Murray, 1926) and other analyses of geometries,
homotheties and flow as related to bifurcations (Uylings, 1977;

Sherman, 1981; Bejan et al., 2000; Revellin et al., 2009; Miguel,
2018; Soni et al., 2020). However, the clinical data used in this
physiological-based approach captures the combined effects of
numerous known and unknown factors that influence the
exponent. The coronary circulation is a network of vessels that
continually adapts to a multitude of factors on both the macro
and microscopic level. Therefore, it is currently unclear what
factor(s) contribute to this lower exponent. It is hypothesised the
cyclical variation in shear forces exerted on endothelium,
generated by the pulsatility of flow, may play a role, but
further research is required on this area.

Previous Estimates of Murray’s Exponent
Previous investigations of Murray’s exponent within human
epicardial arteries have relied almost exclusively upon
morphometric analysis of parent and daughter vessel
diameters. Porcine and murine studies derived values for
Murray’s exponent ranging from 2.06 to 2.72 (Zhou et al.,

FIGURE 2 | (A) Correlation between QCFD and QCIT (Line of best fit is Passing and Bablok). (B) Bland Altman plot showing mean bias and 95% limits of agreement
between QCFD and QCIT. (C) Scatter plot showing correlation between RmicroCFD and RmicroCIT. (D)Bland Altman plot of reverse-transformed data, showing mean bias
and 95% limits of agreement.

Frontiers in Physiology | www.frontiersin.org April 2022 | Volume 13 | Article 8719125

Taylor et al. Murray’s Law in Coronary Arteries

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


1999; Kassab, 2006, 2007; Li et al., 2021). However, this value
may overestimate the true value in epicardial arteries, which
tends to be lower than that derived from the penetrating and
arteriolar branches (Zamir et al., 2015). Four studies have
attempted to validate a Murray’s exponent of three in human
epicardial arteries with limited success (Hahn et al., 2008; van
der Waal et al., 2009; Schoenenberger et al., 2012; Chen et al.,
2020). These studies suffer from large uncertainties,
introduced through comparison of cubed values. Two
studies have specifically aimed to quantify Murray’s
exponent in human epicardial coronary arteries. The first
used post-mortem angiographic imaging of 110 left main
coronary artery bifurcations (Hutchins et al., 1976). Results
were stratified by coronary artery stenosis grades 0–4, but the
grading criteria was not reported. Exponent values for
bifurcations graded 0, 1.0, 2.0, 3.0 and 4.0 were 3.2 ± 1.6,
2.8 ± 1.3, 2.6 ± 1.5 and 2.2 ± 2.1 respectively. The second and
more recent study analysed Doppler ultrasound velocity and
angiographic data in 18 un-diseased epicardial bifurcations,
associated with an exponent of 2.27 (van der Giessen et al.,
2011). The exponent derived from the most normally
distributed data is considered the most reliable result.
Applied to the current study, the Shapiro Wilk test as test
of normality would support that the optimal exponent in
human epicardial coronary arteries was 2.15. This is
consistent with the findings of similar studies in the
literature, derived from morphometric analysis, differing by
only 0.12 compared with the most similar study (van der
Giessen et al., 2011).

Implications for Clinical Practice
In the context of human coronary arteries, Murray’s law (and
exponent) is clinically relevant around bifurcations, with current
treatment guidelines (Neumann et al., 2019) grounded in research
underpinned byMurray’s law (de la Torre Hernández et al., 2007; de
la Torre Hernandez et al., 2011). It is, therefore, important to

understand and apply the appropriate value of Murray’s
exponent for human epicardial coronary arteries. As an example,
Murray’s original law (DPV

3 = DDB1
3 + DDB2

3) dictates that, for a
typical 3.5 mm downstream LAD artery and a 3.0 mm circumflex
artery, the (parent) left main stem (LMS) should be 4.1 mm in
diameter (MLA 13.3 mm2). Applying an exponent of 2.15 instead of
3.0 means that the LMSwould need to be 4.5 mm in diameter (MLA
15.9 mm2) (Figure 3) (comment on homothety ratios detailed in
Supplementary Material S3).

Limitations
The sample size in this study was modest, but is larger than most
studies in this area. More importantly, the arteries in this study were
minimally diseased (INOCA cases), as assessed by FFR and percentage
diameter stenosis. This has implications for the accuracy of the CFD
method, which requires a pressure drop for accuracy and this may
explain poorer correlation in these cases. A disproportionately high
number of LAD arteries were included. The results may, therefore, not
reflect the best value ofMurray’s exponent in other arteries. Cases with
significant SBs within 3.0 cm of the Rayflow™ infusion port were
excluded as per themanufacturer’s instructions for use. These cases are
likely to have had more significant taper and may have been valuable
for Murray’s exponent determination. Finally, this was a retrospective
analysis and so angiograms were not acquired according to the
optimised protocols for 3D reconstruction; this is reflected in the
percentage of case exclusions.

CONCLUSION

Using a novel CFD model and invasive physiological data, we
have identified the optimal exponent for Murray’s law was 2.15
for Q and 2.38 for Rmicro. This is lower than that proposed in
Murray’s original law, is consistent with recent derivations based
on theoretical and morphometric analyses and has clinically
relevant implications.

FIGURE 3 | Implications of Murray’s exponent when interpreting left main bifurcation anatomy and parent daughter branch scaling.
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