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Sphingomyelin (SM) belongs to a class of lipids termed sphingolipids. The

disruption in the sphingomyelin signaling pathway is associated with various

neurodegenerative disorders. TNF-α, a potent pro-inflammatory cytokine

generated in response to various neurological disorders like Alzheimer’s

disease (AD), Parkinson’s disease (PD), and Multiple Sclerosis (MS), is an

eminent regulator of the sphingomyelin metabolic pathway. The immune-

triggered regulation of the sphingomyelin metabolic pathway via TNF-α

constitutes the sphingomyelin signaling pathway. In this pathway,

sphingomyelin and its downstream sphingolipids activate various signaling

cascades like PI3K/AKT and MAPK/ERK pathways, thus, controlling diverse

processes coupled with neuronal viability, survival, and death. The holistic

analysis of the immune-triggered sphingomyelin signaling pathway is

imperative to make necessary predictions about its pivotal components and

for the formulation of disease-related therapeutics. The current work offers a

comprehensive in silico systems analysis of TNF-αmediated sphingomyelin and

downstream signaling cascades via a model-based quantitative approach. We

incorporated the intensity values of genes from the microarray data of control

individuals from the AD study in the input entities of the pathway model.

Computational modeling and simulation of the inflammatory pathway

enabled the comprehensive study of the system dynamics. Network and

sensitivity analysis of the model unveiled essential interaction parameters

and entities during neuroinflammation. Scanning of the key entities and

parameters allowed us to determine their ultimate impact on neuronal

apoptosis and survival. Moreover, the efficacy and potency of the FDA-

approved drugs, namely Etanercept, Nivocasan, and Scyphostatin allowed us

to study the model’s response towards inhibition of the respective proteins/

enzymes. The network analysis revealed the pivotal model entities with high

betweenness and closeness centrality values including recruit FADD,
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TNFR_TRADD, act CASP2, actCASP8, actCASP3 and 9, cytochrome C, and

RIP_RAIDD which profoundly impacted the neuronal apoptosis. Whereas some

of the entities with high betweenness and closeness centrality values like Gi-

coupled receptor, actS1PR, Sphingosine, S1P, actAKT, and actERK produced a

high influence on neuronal survival. However, the current study inferred the

dual role of ceramide, both on neuronal survival and apoptosis. Moreover, the

drug Nivocasan effectively reduces neuronal apoptosis via its inhibitory

mechanism on the caspases.

KEYWORDS

neurological disorders, neurons, microglia, TNF-α, sphingomyelin, network analysis,
quantitative analysis, drug repurposing

1 Introduction

Neurological disorders refer to the diseases of the central and

peripheral nervous systems that affect the brain, spinal cord, or

nerves connecting them. Some of the major neurological

disorders include Alzheimer’s disease (AD), Parkinson’s

disease (PD), Multiple sclerosis (MS), and various traumatic

central nervous system (CNS) injuries (Chen et al., 2016).

Patients’ conditions worsen when neurological illnesses are

neurodegenerative, resulting in excessive neuronal death and

loss. Alzheimer’s disease is an incurable, chronic, multifactorial

neurodegenerative disorder that ultimately leads to dementia.

(Kumar and Singh, 2015). It is the sixth leading cause of death in

the US with 121,499 deaths during the year 2019 (Alzheimer’s

Association 2021). Memory loss, language difficulty, depression,

lack of intellectual coordination, and agitation are all common

psychological and behavioral symptoms of AD. (Haque et al.,

2019). It occurs due to the abnormal accumulation of amyloid β-

protein in the multiple regions of the brain. Correspondingly,

Parkinson’s disease is degenerative neuropathological state

characterized by prominent neuronal death in substantia nigra

(Siciliano et al., 2018). Substantia nigra is midbrain region

responsible for modulating movement and maintaining

balance (Eriksen et al., 2009). The general symptoms of PD

include resting tremor, stiffness of limbs and trunk, bradykinesia,

sleeping disorder, speech difficulties, and postural instability (Lee

and Yankee, 2021). Current statistics show the second highest

prevalence of PD among the neurodegenerative diseases (Orozco

et al., 2020). Multiple Sclerosis is autoimmune neurodegenerative

disorder causing demyelination of CNS. The disease targets

young adults and has an increasing prevalence worldwide

(McGinley et al., 2021).

The microglial cells are the resident immune cells in the brain

parenchyma, dispersed throughout the CNS in a non-

heterogeneous manner and constitute 10% of the total glial

population. Glial cells are non-neuronal cells within the

central (CNS) and peripheral nervous system (PNS)

responsible for neuronal protection, development, immunity,

and homeostasis (Li et al., 2020; Basham, 2021). In

neurodegenerative disorders like AD, PD, and MS, the loss of

neurons owing to pathogenic insults causes activation and

aggregation of microglia around affected brain regions. (Ho,

2019). The activated microglia generate a pro-inflammatory

response by releasing several pro-inflammatory mediators

known as cytokines, including tumor necrosis factor-α (TNF-

α), Interleukin (IL)-1β, and IL-16, which aggravate neuronal

degeneration (Kwon and Koh, 2020). These cytokines further

amplify the inflammatory response by recruiting other immune

cells to the affected site (Carniglia et al., 2017). Neuronal activities

such as calcium homeostasis, membrane potential, sleep,

synapses, learning, and memory are all regulated by TNF-α in

the healthy CNS. Moreover, as discussed earlier, TNF-α is a

proinflammatory mediator involved in generating an innate

immune response associated with various neurological

disorders. To wit, under normal circumstances, the levels of

TNF-α consistently regulate the physiological processes under its

influence. TNF-α, which is released by astrocytes and microglia

during pathological conditions such as AD, PD, and MS is a

prominent component of the neuroinflammatory response

(Olmos and Lladó, 2014).

Sphingolipids are a class of lipids highly enriched in the

central nervous system (CNS), and they are essential for the

development and maintenance of its functional integrity. TNF-α

can supervise neuronal survival and apoptosis by modulating the

sphingolipid signal transduction pathway at various levels. The

process starts with the potential binding of TNF-α binds with two

of its receptors, namely, tumor necrosis factor receptor 1

(TNFR1) and tumor necrosis factor receptor 2 (TNFR2)

(Cabal-Hierro and Lazo, 2012). TNFR1 constitutively and

ubiquitously expresses across all human tissues, including the

brain, whereas TNFR2 expresses primarily in neurons and

immune cells. However, both the receptors differ in their

intracellular death domain (DD) regions. TNFR1 possesses the

death domain (DD) on its cytoplasmic tail, whereas TNFR2 lacks

this motif. The binding of TNF-α with TNFR1 triggers the

initiation of the TNF-α signaling pathway. The downstream

modulators of TNFR1 activation like TRADD and FADD

directly or indirectly mediate the number of signaling

cascades besides producing apoptotic effects (Wajant and

Siegmund, 2019). The modulation of nuclear factor-kappa B
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(NF-κ B) and sphingomyelin signal transduction pathways via

TNF-α implicates the role of TNF-α in neuronal death and

survival (Malagarie-Cazenave et al., 2002). Besides, the

sphingomyelin (SM) signaling pathway establishes a distinct

linkage between TNF-α, PI3K/AKT, and MAPK/ERK

pathways. In neuropathological conditions like AD, PD, and

MS, microglia and astrocytes release large amounts of TNF-α that

alter its usual physiological and regulatory effects

(Subhramanyam et al., 2019). Therefore, it can be assumed

that the attainment of neuronal survival and apoptotic

equilibrium depends on the TNF-α concentration in the brain.

Several disease-specific immunization strategies and vaccines

has been in clinical studies to boost immune responses against

proteins that cause pathological changes in neuroinflammatory

disorders. For instance, immunization of transgenic mouse

models with β-amyloid has given some productive results in

the attenuation of Alzheimer-like pathology (Schenk et al., 1999).

In the case of AD, Aducanumab is approved as the first FDA-

approved therapy which halts the adverse effects of Alzheimer’s

by reducing β-amyloid from the brain to treat AD patients (Esang

and Gupta, 2021). Similarly, PD medications simply alleviate

symptoms but do not prevent the condition from deteriorating.

The holistic system analysis of the model of immune-triggered

pathways presents a realistic approach for making critical

predictions regarding pathway components and disease-related

treatments. However, the system analysis of static biological

pathways is ineffective compared to the system-level dynamic

analysis of pathways. Qualitative and Quantitative Analysis are

the two standard methodologies used for dynamic system

analysis of biological pathways.

Previously, Cho et al., (2003) studied a mathematical model

of the TNF-α-mediated NF-κB pathway (Cho et al., 2003). Using

the Monte Carlo method, sensitivity analysis of model

parameters was performed to identify key proteins and

parameters. In two quite a similar studies, the mathematical

model of TNF-α initiated survival and apoptotic cascades were

designed using mass-action kinetics. The model dynamics and

results were compared with the experimental findings

(Rangamani and Lawrence, 2007; Chignola et al., 2009).

Moreover,Alvarez-Vasquez et al., (2004) constructed

integrative dynamical mathematical models for sphingolipid

metabolism in yeast using kinetic information from literature

for the first time (Alvarez-Vasquez et al., 2004). In another study

conducted for Saccharomyces cerevisiae, a mathematical model of

sphingolipid metabolism using flux-balance analysis was

designed and validated experimentally. Simulations of the

model precisely manifested the effect of various perturbations

that were in exact accordance with the post hoc experimental

findings (Alvarez-Vasquez et al., 2004). Furthermore, in another

study, the sphingolipid metabolic pathway was analyzed to study

the control aspects of the diauxic shift in yeast (Alvarez-Vasquez

et al., 2007). Likewise, various computational modeling

techniques have been employed to model pathological

signaling in several neurodegenerative disorders. A

comparatively recent and advanced study proposed a

comprehensive computational model for the sphingolipid

metabolism (Wronowska et al., 2015). The study used several

model analysis methods to detect sensitive and experimentally

non-identifiable parameters in the sphingolipid pathway. Also,

the model was employed to understand the underlying molecular

mechanisms of the sphingolipid metabolism in AD. A recent

computational study explored the role of network dynamics

towards the initiation and progression of AD (Cutsuridis and

Moustafa, 2017).

The current study employs a model-based quantitative

approach to conduct in silico systems analysis of TNF-α

induced sphingomyelin and downstream signaling cascades.

To perform quantitative systems analysis, we build a model

that depicts TNF-α effect on the sphingolipid signaling

pathway and incorporates gene intensity values from

microarray analysis. The inflammatory process may be studied

thoroughly using computational modeling and simulation. The

model’s network and sensitivity analyses reveal the importance of

key interaction parameters and entities in the advanced phases of

neuroinflammation. Furthermore, we assess the efficacy and

potency of FDA-approved medicines, namely Etanercept,

Nivocasan, and Scyphostatin, at later phases of neuronal

inflammation by analyzing the model’s response to protein/

enzyme inhibition. The study identifies new biomarkers,

essential and novel system components such as TNFR adaptor

proteins or sphingolipids as effective and potential drug targets at

inflammatory stages, and investigates drug repurposing.

2 Methodology

The current study offers a computational workflow based on

the quantitative modeling of the TNF-αmediated sphingomyelin

signaling pathway and its downstream signaling pathways

(MAPK and PI3K-AKT). The model was generated in Matlab/

Simbiology, based on the data from the literature as well as the

KEGG database. The gene expression data from a microarray

dataset of AD study were taken as the initial values of the input

entities of the model. The transitions of the model were adjusted

with the kinetic rates based on the law of mass action. Network

analysis and quantitative analyses were then performed, which

allowed us to identify and analyze the key entities and

interactions of the model. Eventually, the drug-dependent

signaling in the model enabled studying the effects of different

dosages of drugs and corresponding model responses (Figure 1).

2.1 Pathway extraction

KEGG is a pathway database, which provides the

metabolic, genomic, and chemical information for
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understanding high-level functions of the biological systems

(Kanehisa and Goto, 2000). To model TNF-α mediated

sphingomyelin and downstream signaling pathways, we

extracted the pathway data from the KEGG pathway

database as well as literature (Supplementary Figure S1).

TNF-α initiates the pathway via binding with TNF receptors

(TNFR1 and TNFR2) (Figure 2). TNFR1 possesses the death

domain (DD) on its cytoplasmic tail, whereas TNFR2 lacks this

motif Ruiz et al., (2021). The binding of TNF-α trimer with

TNFR1 leads to the receptor trimerization followed by the

recruitment of cytosolic adaptor protein called TRADD. The

recruitment of TRADD causes the recruitment of three

additional adapter proteins, namely, receptor-interacting

protein (RIP), TNF receptor-associated factor 2 (TRAF2),

and Fas-associated death domain (FADD). The RIP along

with RAIDD (another death domain-containing molecule)

induces activation of caspase 2, which plays a central role in

apoptosis Wajant and Siegmund (2019). FADD allows the

activation of caspase 8 by interacting with its DED domain

(death effector domain) Siegmund et al. (2001). TRAF2 is

capable of interacting with NIK (NF-κB Inducing Kinase)

which belongs to the MEKK family. NIK phosphorylates its

target IKK (Inhibitor of κB Kinase) which ultimately leads to

the activation of NF-κB. NF-κB produces an anti-apoptotic

effect by promoting transcription of cellular inhibitor of

apoptosis protein 2 (c-IAP2), which blocks the caspase

8 activation and hence apoptosis (Olmos and Lladó, 2014;

Chadwick et al., 2008).

The second messenger functions of sphingolipids allow

them to modulate a variety of signaling events in the central

nervous system (CNS). In the sphingolipid metabolic

pathway, sphingomyelinases (SMase) are of great

importance as they catalyze the conversion of

sphingomyelin to ceramide. Three types of

sphingomyelinases have yet been identified that are

categorized based on their optimal pH, i.e., alkaline, acidic,

and neutral. In neurons, ceramide is produced by the

hydrolysis of sphingomyelin via acidic (A-SMase) or

neutral (N-SMase) as both of these forms have been

identified in the neurons. (Haughey et al., 2010). The

activation of both SMases is mediated by the TNF-α

signaling cascade. The adaptor proteins TRADD and

FADD induce the activity of acid SMase (Wiegmann et al.,

1999), whereas FAN is found to be associated with the

activation of neutral SMase (Ségui et al., 2001). It

implicates the role of TNF-α mediated cytotoxic effects in

the regulation of sphingolipid signaling cascade and hence on

neuronal survival.

Ceramide, generated in response to acid sphingomyelinase,

activates aspartyl protease cathepsin D responsible for the

cleavage and activation of pro-apoptotic Bid (family member

Bcl-2). The elevated levels of ceramide cause increased

permeability of mitochondria which induces the release of

cytochrome C from the mitochondria. It causes the activation

of caspases 3 and 9, ultimately leading to apoptosis via an

intrinsic pathway. On the other hand, ceramide produced via

FIGURE 1
Work-Flow of the study- The analysis starts with the extraction of TNF-αmediated sphingomyelin signaling pathway information from literature
and KEGG. The step is followed by the construction of the model of extracted pathways in Simbiology. The model is subjected to two forms of
analysis: Network Analysis and Quantitative Analysis. The network analysis includes twomeasures: Betweenness Centrality and Closeness Centrality
which help to identify the essential proteins in the model. For the quantitative analysis, the initial concentrations of entities are incorporated in
the model from the microarray gene expression data of normal individuals. The measures of quantitative analysis include Simulation of the model’s
entities, Scanning of entities and parameters, Sensitivity Analysis of entities vs. entities and parameters vs. entities, and the effect of different Drugs’
Dosages (Etanercept, Nivocasan, and Scyphostatin) over the model. Moreover, the results from Network Analysis and Quantitative Analysis are
compared.
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neutral sphingomyelinase (nSMase) directly activates two target

enzymes, namely, CAPK (ceramide activated protein kinase) and

CAPP (ceramide activated protein phosphatase) (Haughey et al.,

2010). Both of them are capable of evoking signaling that leads to

apoptosis. CAPK phosphorylates raf-1, which enhances its

activity towards MEK (MAPK kinase). The MAPK signaling

cascade induces activation of ERK cascade, which either results in

cell cycle arrest and cell death or contributes to neuronal cell

survival depending upon the form of ERK activated. On the other

hand, CAPP (comprising of serine-threonine phosphatases

PP1 and PP2A) moves the system towards apoptosis by

inactivating Akt (Haughey et al., 2010).

2.2 Quantitative modeling

2.2.1 Entities concentrations from the
microarray analysis

In the current study, we utilized the gene expression values

from the microarray data as the initial concentrations for the

input entities of the TNF-α mediated sphingomyelin pathway

model for the purpose of its quantitative analysis. The dataset

taken was from the study entitled “Expression data from post

mortem Alzheimer’s disease brains” (GEO accession:

GSE36980). This data set was selected based on the two

selection criteria: it was of Homo sapiens origin and was free

FIGURE 2
TNF-α mediated Sphingomyelin Signaling Pathway- The pathway starts from the binding of TNF-α with TNF receptor 1. The binding of TNF-α
trimer with TNFR1 leads to receptor trimerization. It is followed by the recruitment of three cytosolic adaptor proteins, namely, TRADD, RAIDD, and
FAN. TRADD and RAIDD bind with the DD of TNFR1 while FAN binds with its NSD. The recruitment of TRADD causes the recruitment of three
additional adapter proteins, namely, RIP, TRAF2, and FADD. The RIP along with RAIDD (another death domain-containing molecule) induces
activation of caspase 2, which leads to apoptosis. FADD allows the activation of caspase 8 via interacting with its DED domain (death effector
domain). TRAF2 is capable of interacting with NIK (NF-κB Inducing Kinase) which belongs to the MEKK family. NIK phosphorylates its target IKK
(Inhibitor of κB Kinase) which ultimately leads to the activation of NF-κB. NF-κB produces an anti-apoptotic effect by promoting transcription of
cellular inhibitor of apoptosis protein 2 (c-IAP2), which blocks the caspase 8 activation and consequently apoptosis. In the sphingolipid metabolic
pathway, sphingomyelinases (SMase) catalyze the conversion of sphingomyelin to ceramide. In neurons, ceramide is produced by the hydrolysis of
sphingomyelin via acidic (A-SMase) or neutral (N-SMase). The activation of both forms of SMases is mediated by the TNF-α signaling cascade. The
adaptor proteins TRADD and FADD induce the activity of acid SMase, whereas FAN is associated with the activation of neutral SMase. Ceramide,
generated in response to acid sphingomyelinase, activates aspartyl protease cathepsin D responsible for the cleavage and activation of pro-
apoptotic Bid (family member Bcl-2). The elevated levels of ceramide cause increased permeability of mitochondria which induces the release of
cytochrome C from the mitochondria. It causes the activation of caspases 3 and 9, ultimately leading to apoptosis via an intrinsic pathway. On the
other hand, ceramide produced via neutral sphingomyelinase (nSMase) directly activates two target enzymes, namely, CAPK (ceramide activated
protein kinase) and CAPP (ceramide activated protein phosphatase) (Haughey et al., 2010). Both of them are capable of evoking signaling that leads to
apoptosis. CAPK phosphorylates raf-1, which enhances its activity towardsMEK (MAPK kinase). TheMAPK signaling cascade induces activation of ERK
cascade, which either results in cell cycle arrest and cell death or contributes to neuronal cell survival depending upon the form of ERK activated. On
the other hand, CAPP (comprising of serine-threonine phosphatases PP1 and PP2A) moves the system towards apoptosis by inactivating Akt.
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from any therapy or drug. The data comprised 79 samples from

different regions of the brain, out of which 32 samples were from

AD patients and 47 from normal individuals. The platform of

data was Affymetrix Human Gene 1.0 ST Array[HuGene-1_0-

st]. The “maEndToEnd” (http://bioconductor.org/packages/

devel/workflows/html/maEndToEnd.html) Bioconductor R

package was used for step by step analysis of data (Klaus and

Reisenauer, 2016). First, the quality assessment of data was

performed by visualizing data using box plot, PCA plot, and

Heatmap (Bioconductor R packages (Klaus and Reisenauer,

2016; Gu et al., 2016)). Then linear regression model was fit

using the limma R package for obtaining the differentially

expressed genes (DEGs). Hence, the use of average gene

expressions as the initial values formed a basis for analyzing

the effects of variations in normal entities’ concentrations over

the whole model.

2.2.2 Quantitative model building
The model of TNF-α mediated sphingomyelin signaling

pathway is generated in Simbiology (Figure 3). Simbiology is a

MATLAB package provided with programmatic tools to simplify

modeling, simulation, and analysis of dynamic biological

systems. It uses ordinary differential equations and stochastic

solvers to simulate and analyse time-course profiles of the

FIGURE 3
TNF-αmediated sphingomyelin signaling pathway model- The whole model is depicted as a network of species (oval) and interactions (circle)
connected by lines/edges. Species represent biological entities (receptors, ligands, proteins, enzymes) of the pathway: green color shows receptors,
grape color shows caspases, mauve color shows enzymes related to sphingomyelin pathway, light seagreen color shows sphingolipid molecules,
bright green color shows cell survival and red color shows cell death. Interactions 1–51 represent processes like transformation, transport,
binding/unbinding, activation/inhibition: wine color represents inhibitions. Lines connect species with interactions: red lines show inhibition and
dotted lines show read arcs representing reversible effect of enzymes specific to the sphingomyelin pathway. Species with red boundaries have
multiple trajectories.
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model’s entities and parameters (Liu et al., 2010). It provides

three building blocks to model dynamic biological systems,

i.e., species, compartments, and reactions. Species represent

the dynamic states or the concentrations of biological entities

like proteins, enzymes, receptors, ligands, or metabolites.

Compartments refer to physically isolated environments

having a particular set of species, for instance, any particular

cell. However, the reactions describe the type of association/

interaction among different species. The type of association may

represent several biological processes, such as the transformation

of molecules, transport of proteins, the binding process of ligands

and receptors, or the binding of substrates with enzymes.

According to the principle of kinetic law, all interactions are

guided by certain kinetics. (All necessary Simbiology model files

are publically available at https://github.com/SanamBanaras/

Sphingolipid_Signaling_Pathway.git).

Based on mass-balance principle, Simbiology automatically

translates the network representation of the model into a set of

ordinary differential equations (ODEs), thus, mathematically

describing the dynamics of biological systems. If we consider

two entities “A” and “B” acting as the reactants that interact to

form a product “C,” it can be represented by the reaction:

mA + nB →k C (1)
d C[ ]
dt

� k A[ ] B[ ] (2)
d A[ ]
dt

� −k A[ ] B[ ] (3)
d B[ ]
dt

� −k A[ ] B[ ] (4)

The corresponding system of differential equations for the

type of interaction between the entities A and B, represented in

reaction 1 and model in Supplementary Figure S2A, is given by

Eqs 2–4. In the above set of differential equations, “k” represents

the rate constant. The rate of reaction can be defined as the speed

of a chemical reaction that is proportional to the change in the

concentration of reactant or product per unit time. In terms of

product, it is the increase in the concentration of a product per

unit time and is represented as d[C]/d[t] for the Eq. 1. In terms of

reactant, it is the decrease in the concentration of a reactant per

unit time and is represented as d[A]/d[t] or d[B]/d[t] for this

equation.

According to the law of mass action, the rate of any chemical

reaction is directly proportional to the product of concentrations

of the reacting entities (concentrations are represented as “[]”),

and each concentration is raised to a power equal to its respective

coefficient in the chemical reaction. The coefficients in the

chemical equation (reaction), like “m” and “n” (in Eqs 2–4),

indicate the number of molecules of the reactants “A” and “B,”

respectively. Therefore, for reaction 1, we obtain a corresponding

system of differential equations (given by Eqs 2–4) representing

the rate of chemical reaction according to the law of mass action.

We modeled reaction 1 in Simbiology as shown in the

Supplementary Figure S2A. For this model, we set the

concentration/amount of the reactant “A” as 20, “B” as 10,

and the value of mass action rate constant “k” as 1. The

simulation run of the model with given settings, as given in

Supplementary Figure S2B, over 5-time units shows the decrease

in the concentration of reactants “A” and “B,” while an increase

in the concentration of product “C”. The concentration of

reactant “A” decreases from 20 to 10, whereas the

concentration of reactant B reduces from 10 to 0. However,

the amount of product increases from 0 to 10.

The model of TNF-α mediated sphingomyelin signaling

pathway was constructed as a network of species representing

receptors, ligands, enzymes, adaptor proteins or molecules, and

interactions representing processes like transformation,

transport, activation, inhibition, binding or unbinding;

connected by lines (or edges). Each input entity of the model

was set to a specific initial value based on its expression profile

obtained in the microarray analysis (discussed in Section 3.1).

Moreover, all the interactions of model were made to follow

mass-action kinetics. Accordingly, the kinetic parameter values

for interactions were incorporated in the form of mass action

kinetics (kf). These values of mass action kinetics were adjusted

between 0 and 0.1 (any suitable value between 0 and 0.1) to attain

the homeostatic balanced state of the model. The kinetic values

were manipulated due to the lack of kinetic data of the model’s

interactions (Koch et al., 2010). The model along with its full

description is shown in Figure 3. All interactions are given in the

Supplementary Material Section 1. The ordinary differential

equations (ODEs) representing rates of model interactions are

given in Supplementary Material Section 2 and the adjusted

kinetic parameter values for all interactions are given in the

Supplementary Material Section 3.

2.2.3 Network analysis
A network refers to a set of connected elements, in a formal

process, it can be modeled as mathematical units called graphs.

Definition 1. A directed graph G = (V, E) consists of a finite

set of vertices “V” and a finite set of directed edges “E” (Eq. 5). An

edge E = (U, V) connects two vertices U and V and is directed

from U to V.

E ⊆ V × V (5)

Different types of biological entities and interactions of the

model possess a high significance in systems biology. Network

analysis approaches having non-biological bases can be

effectively implemented on large and complex biological

networks to search pivotal components. One such measure is

the centrality analysis of pathway elements, which allows the

ranking and identification of significant entities of the model

based on their position. For instance, the functional importance

of highly connected vertices in protein networks is evident as
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their removal or deletion can cause lethality (Valente et al., 2008).

The two centrality measures, i.e., betweenness centrality and

closeness centrality were applied to the model, which quantified

the significance of certain entities among others. Betweenness

centrality determines a node’s centrality by measuring shortest

paths from all vertices to all other vertices of the graph that pass

through that node. On the other hand, closeness centrality

applied to strongly connected graphs utilizes information

about length of the shortest paths within a network. The

closeness centrality can be found by taking the reciprocal of

the sum of minimal distances of a vertex to all other

vertices.Definition 2. Formally, if we denote by σ x′x′′ the

number of shortest paths from x’ to x” and by σ x′x′′ (x) the

number of these shortest paths that go through node x, then the

betweenness centrality CB(x) for given node x is defined as

CB x( ) � ∑
x′,x″∈V
x′≠x≠x″

σx′x″ x( )
σx′x″ (6)

Definition 3. The closeness centrality CC(x) of a node x in a graph

G = (V, E, W) is defined as the inverse of the sum of the shortest

path lengths from this node to every other node in the graph.

CC x( ) � ∑
x′ ∈ V

sG x, x′( )⎛⎝ ⎞⎠−1

(7)

2.2.4 Simulation of the model
Simbiology can simulate the dynamic behavior of the model

via converting interactions and rate parameters into a set of

ordinary differential equations. Different ODE solvers (ODE 15s,

ODE 23t) are utilized to compute solutions for ODEs at different

times during the simulation. An exemplar simulation run for the

model shown in Supplementary Figure S2A is given in the

Supplementary Figure S2B. The simulation results show the

gradual decrease in reactants A and B concentrations while an

increase in product C concentration with mass action kinetic

equal to 1. We performed simulation of the generated model of

TNF-α mediated sphingomyelin signaling pathway to track

precisely the minor details of changes in entities’

concentrations over time (from 0 to 100) till the attainment of

the homeostatic state. The relative time unit (RTU) was

considered as the unit of time during simulation. The

simulation plots mimicked the gradual process of change in

the concentrations (quantities) of the entities with respect

to time.

2.2.5 Scanning of the model components
The scanning allows determining the trend or changing

behavior of the system entities (in the form of varying

concentrations) over an alternating range of a particular

component of the model (entity or a parameter). In the

current study, we conducted two scanning procedures on the

model, i.e., Parameter scanning and Entity scanning. The

parameter scanning determined the trend or behavior of a

model entity (trend of varying concentration) in response to

an increase in parameter (kinetic) value of a particular

interaction within a specified range. On the other hand, entity

scanning depicted an entity’s response (trend of changing

concentration) towards alternating concentration of a

particular model entity over a specified range. In the current

study, parameter scanning was performed to observe and

determine the effect of alternating kinetics on neuronal

homeostasis. Moreover, the adjusted kinetic values were

compared with the known kinetic parameter values for some

of the interactions (represented by Eqs 8–16 of TNF-α signaling

cascade (Table 1) to determine and quantify the difference in

their impact on neuronal homeostasis. Table 1 shows the known

kinetic rates for some interactions of TNF-α signaling cascade

along with their tolerable ranges of variations. Moreover, the

comparison between the adjusted and literature kinetic values

enabled to determine the likelihood of occurrence of adjusted

values for the interactions with known kinetic parameter values

within tolerable ranges of variation according to Table 1.

TNF − α + TNFR →k�0.185
TNF − α_TNFR (8)

TNF − α_TNFR + RAIDD →
k�0.1 adjusted( )

recruitRAIDD (9)
TNF − α_TNFR + TRADD →k�0.185

TNFR_TRADD (10)
TNFR_TRADD + FADD →k�0.185

recruitFADD (11)
NFkB + phIKK →k�0.185

actNFkB (12)
TNFR_TRADD + TRAF2 →k�0.185

TRADD_TRAF2 (13)

TNFR + FAN →
k�0.1 adjusted( )

TNFR_FAN (14)

S1P + S1PR →
k�0.1 adjusted( )

actS1PR (15)

AKT + PIP3 →
k�0.1 adjusted( )

recruitAKT (16)

2.2.6 Sensitivity analysis
Sensitivity analysis determines the sensitivity or susceptibility

of species (entities) or parameters (kinetics) in a model to a

specific condition defined by a species or parameter. In

Simbiology, the sensitivity analysis is supported by ODE

solvers and is categorized into two classes, i.e., local sensitivity

analysis and global sensitivity analysis. Local sensitivity is a one at

time (OAT) technique that analyzes the effect of a single

parameter while keeping all the others fixed. On the other

hand, global sensitivity calculation involves the manipulation

of collective parameters to explore the design space.

Furthermore, the sensitivity analysis can be conducted in two

ways, i.e., species (entities) versus parameters (kinetics) or species

(entities) versus species (entities). We performed both forms of

sensitivity analysis on the TNF-α mediated sphingomyelin
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pathway model. We took all the reaction (interaction)

parameters as inputs and entities as outputs to determine the

sensitivities of entities in response to reaction (interaction)

parameters. Likewise, we determined the influence of the

model entities on other entities by selecting all entities as both

the input and output.

2.2.7 Intervention of drugs in themodel and their
response

Different neuropathologies including immune disease,

trauma, and inflammation may lead to rapid and irreversible

neurological damage. However, various pharmacological

treatments have been formulated and applied for the

aforementioned neurological disorders and many other

diseases. Etanercept, a TNF-α antagonist is used as a TNF-α

blocker to minimize the neurological damage mediated by TNF-

dependent processes (Kondziella and Waldemar, 2017).

Nivocasan is an irreversible inhibitor of caspase 1, caspase 8,

and caspase 9 (Kudelova et al., 2015), and is recommended for

the apoptosis-mediated liver injury (Adriaenssens, 2017).

Scyphostatin inhibits the neutral SMase (Pitsinos et al., 2003)

and is implicated in lowering the apoptotic effects by decreasing

ceramide production.

Pharmacokinetic modeling in Simbiology offers a

mathematical approach for predicting the effectiveness and

efficacy of drug dosage on the model over time. Using this

approach, we assessed the efficacy of three drugs, namely,

Etanercept, Nivocasan, and Scyphostatin on TNF-α mediated

sphingomyelin signaling pathway model. These drugs were

assimilated as species in our model, and each drug was

analyzed individually. The combined analysis of each drug

involving simulation (described in Section 2.2.4), scanning

(described in Section 2.2.5), and dosing schedule enabled to

study a comprehensive model’s response towards it. The

“dosing” allows to assimilate the quantity of a specific species

(taken as a drug) in model during simulation. In the current

study, we adapted the repeat dose strategy to analyze the

influence of three mentioned drugs on neuronal apoptosis and

survival.

The information of relevant drugs or bioactive molecules

having drug-like properties can be obtained using the CHEMBL

database (https://www.ebi.ac.uk/chembl/). For the current

model, the targets were selected based on two factors,

i.e., availability of FDA-approved drugs and the potency of

both drugs and targets to lower neuronal apoptosis. The

details of drugs against which the model’s response was

studied is given in Table 2, indicating the name of the drugs

along with their targets and mode of mechanism. The model

showing drugs with their corresponding site of action is given in

Supplementary Figure S3.

3 Results

We have studied the dynamics of the TNF-α mediated

sphingomyelin signaling pathway in neurons not only under

normal circumstances but in a diseased scenario as well.

Microglia and astrocytes release a large amount of TNF-α

to recompense various pathological afflictions like AD and PD

(Smith et al., 2012). The difference in the levels of TNF-α

causes an imbalance of TNF-α regulated signaling cascades

having direct or indirect linkage. It eventually alters the

equilibrium ratio of neuronal survival and apoptosis. The

quantitative modeling of TNF-α modulated mechanisms

using the Systems Biology approach rendered a distinctive

merging of quantitative experimental data with dynamic

mathematical modeling, thus providing deeper insights to

the model. The quantitative analysis of the model helps to

determine the behavior of TNFR-associated adaptor proteins,

along with their impact on sphingolipids and enzymes.

Moreover, it enables to determine the efficacy and potency

of a range of drugs therapeutically active for specific targets in

the model by scrutinizing the model response towards

different drugs’ dosages.

TABLE 1 Interactions with their Kinetic Parameters (concentration in μM and time in seconds) from Literature along with corresponding range of
variation.

interactions Kinetics (μM−1s−1) Range of variation References

TNFR + TNF-α → TNF-α_TNFR 0.185 0.00925–2.775 Cho et al. (2003)

TRADD + TNFR_TNF-α → TNFR_TRADD 0.185 0.00925–2.775 Cho et al. (2003)

TRAF2+TNFR_TRADD → TRADD_TRAF2 0.185 0.00925–2.775 Cho et al. (2003)

RIP1+TNFR_TRADD → TRADD_RIP1 0.185 - Cho et al. (2003)

FADD + TRADD → TRADD_FADD 0.185 0.00925–2.775 Cho et al. (2003)

FADD + CASP8 → CASP8* 0.185 - Cho et al. (2003)

IKK + NFκB → IKK_NFκB 0.185 - Cho et al. (2003)

RIP1+ CASP8 → RIP1_CASP8 0.0925 0.0462–0.1387 Cho et al. (2003)
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3.1 Quantitative model building and
microarray analysis

The model of TNF-α mediated sphingomyelin and

downstream signaling pathways was built in Simbiology

(Figure 3) previously described in Section 2.2.2. An estimation

of initial concentrations for input entities of the model from

microarray gene expression data was imperative for envisioning

their normal profile in the brain. The names of input model

receptors, adaptor proteins and enzymes along with their gene

ID’s and average gene expression are given in Table 3. Moreover,

the values of three entities, i.e., SM, CAPK, and mitochondria

were assumed due to the lack of availability of their expression

data. Therefore, we calculated the values of these entities by

taking an average of the gene expression values of remaining

model entities having known gene expression values.

3.2 Network analysis

Model of the TNF-αmediated sphingomyelin and associated

downstream signaling pathways presented a viable medium for

the network analysis (Figure 4). The values for betweenness

centrality and closeness centrality of all the entities of model

are given in the Supplementary Material Section 4 and 5,

respectively. The betweenness centrality results show that the

ceramide has the highest value (0.078) among all other entities of

the model (Figure 4A). The ranking of the entities betweenness

centralities values can be explained by the number and type of

interactions with other entities. The ceramide has a total of

13 interactions with other entities, among them, six

interactions are incoming while seven are outgoing ones.

Likewise, Buccoliero and Futerman (2003) presented number

of evidences indicating the central role of ceramide in the

regulation of neuronal survival and apoptosis (Buccoliero and

Futerman, 2003). The rate of dendritic growth is reduced (due to

lack of ceramide) in cell line of hippocampal neurons via the

application of fumonisin B which causes an inhibition of

ceramide synthesis (Schwarz and Futerman, 1998). Moreover,

Teitsdottir et al. (2021) reported high levels of ceramide as a

measure of increased AD pathology and their direct impact on

neuronal apoptosis during AD pathogenesis via cerebrospinal

fluid (CSF) lipidomic analysis (Teitsdottir et al., 2021). The

second highest betweenness value is of actSMase (0.051) and

TABLE 2 Drugs for TNF-α mediated sphingomyelin signaling pathway from CHEMBL (https://www.ebi.ac.uk/chembl/).

Drug Name Chembl ID Target Mechanism IC50 References

Etanercept Chembl1201572 TNF-α TNF-α inhibition 10–12 Tobinick (2016)

Nivocasan Chembl2105721 CASP 8, CASP 9 CASP 8,9 inhibition - -

Scyphostatin Chembl418376 NSMase Inhibitory activity against NSMase 10–6 Pitsinos et al. (2003)

TABLE 3 Average gene expression values of Model Input Entities
obtained from the analysis of Microarray Dataset (GSE36980).

Gene ID Description Average gene expression

7897877 TNFR 8.243984468

8177983 TNF-α 6.536676383

7957560 RAIDD 7.788116383

7941927 RIP 8.26486

8136869 CASP 2 8.382271277

8001938 TRADD 8.054042766

7942168 FADD 8.231118085

8047419 CASP 8 (pro CASP 8) 6.960822128

8159476 TRAF2 7.739208936

8016194 NIK 7.416519362

7935707 IKK 8.132140851

8096635 NFkB 8.291935532

7943424 cIAP2 8.945781277

8150928 FAN 9.14069

7938100 acid_SMase 8.81918234

8121418 neutral_SMase 8.046917021

8034762 PKC 11.0

SM* 8.0

CAPK* 8.0

8114158 CAPP 10.96888511

7945666 Cathepsin D 11.5453383

8074261 BID 8.937911064

8103922 CASP3 7.36558

7912646 CASP9 8.748945106

8033151 CDase 6.900429787

8030078 SPHK 8.642491915

7903393 S1PR1 8.332580213

8133860 Gi 9.610689149

7945436 RasGDP 9.31107383

7947681 GAP 10.40175149

8084016 PI3K 9.115858298

8164328 PIP2 7.307359

7925531 AKT 11.38724894

8046408 PDK1 8.90167

8085164 RAF 9.895470426

7984319 MEK 10.74989787

8074791 ERK 12.18609574

Mitochondria 8.0

8166402 SMS 9.51
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has a total of seven interactions (five incoming, two outgoing).

The third-largest value is of GiCoupledReceptor (0.031), with a

total of 4 interactions (two incoming, two outgoing). The forth is

actS1PR (0.03), with a total of three interactions (two incoming,

one outgoing). The next value is for Sphingosine (0.029), with a

total of six interactions (two incoming, four outgoing). The sixth

value is of recruitFADD (0.029), with a total of 4 interactions

(two incoming, two outgoing). The seventh value is S1P (0.028),

with a total of 3 interactions (two incoming, one outgoing). The

eighth value is of TNFR/TRADD (0.022), with a total of five

interactions (two incoming, three outgoing). The betweenness

values of entities decrease with the number of incoming

interactions irrespective of the number of outgoing

interactions. Later in the Section 3.3.3.2, the effects of the

scanning of these entities on neuronal survival and apoptosis.

On the other hand, entities like actCASP2, actCaspase 8,

cIAP2, actCAPP, actCaspase 3 and 9, act, and showed the highest

closeness centralities with value 1. The highest values suggest

FIGURE 4
(A) Betweenness Centrality of TNF-αmediated sphingomyelin signaling pathway- Betweenness Centrality of a node represents the number of
shortest paths between other pair of nodes that pass through that node. In this figure, the betweenness centralities of the pathway entities are
represented by the color and size of the nodes, varying from dark wine to amber yellow and large to small, respectively. Nodes with dark wine color
and large size have high betweenness centrality, whereas nodeswith light golden color and small size have low betweenness centrality. Color of
intermediate nodes vary from punch pink to amber. (B) Closeness Centrality of TNF-α mediated sphingomyelin signaling pathway- Closeness
Centrality of nodes determines their average distance to all other nodes. The closeness centralities of the pathway entities are represented by the
color and size of the nodes, varying from dark blue to yellow and large to small respectively. Dark blue nodes with large sizes have high closeness
centrality, whereas yellow color nodes having small sizes have low betweenness centrality. Color of intermediate nodes vary from pine green to light
green.
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their significance because of having a minimum distance from all

other entities in the model. Due to this reason, they can serve as

the hub entities of the model. Cytochrome C and Caspase 3 and

9 have the second-highest values of 0.75. The high closeness

values of caspases signify their involvement in non-apoptotic

processes during neuronal development or diseased state

(Mukherjee and Williams, 2017). The closeness centralities of

all entities is given in Figure 4B. The effects of scanning of these

entities on the neuronal survival and apoptosis later in the

Section 3.3.3.3.

3.3 Quantitative analysis of TNF-α
mediated sphingomyelin signaling
pathway model

The comprehensive set of quantitative data in the form of

initial concentrations as determined from microarray

technique and adjusted reaction (interaction) rates

rendered quantitative study and analysis of TNF-α

mediated sphingomyelin pathway model. The values (or

concentrations) for input entities of model were the

average gene expressions of normal/healthy conditions. The

kinetics parameters of the model’s interactions were adjusted

between the values 0 to 0.1 with an aim to attain the balanced

state of the model in normal/healthy condition. This balanced

state of model showed the uniformity in neuronal survival and

apoptotic mechanisms, thus, depicting the normal and healthy

neuronal conditions. The depiction of a stable neuronal

condition was necessary to analyze the effect of any

variation (in entity concentration or kinetic parameter) in

the diseased state later in our study. The kinetic parameter

values of all interactions of the model are provided in the

Supplementary Material Section 3.

3.3.1 Simulation of the model
The simulation run of a model in Simbiology enabled us to

track precisely the minor details of even minute changes in

entities concentrations over time. Figure 5 shows the

hypothesized stable (balanced) state of TNF-α mediated

sphingomyelin and related signaling pathways exhibited by

fully developed post-mitotic neurons under normal

circumstances. It can be noticed that both survival and

apoptotic mechanisms (in terms of relative concentration

(RC)) function in harmony to keep the system in balance.

This is the neuronal physiological state with no influence on

the neuronal cell count. The y-axis in Figure 5 indicates the

extent of neuronal survival and apoptotic curves till the

attainment of an equilibrium state.

As evident from Supplementary Figure S4A, TNFR receptor

takes approximately 7-8 time units to be occupied by TNF-α

(having amount 3.4) and FAN (4.74). Also, the activation of

caspase 2 (actCASP 2) is at its maximum (0.071) at 12–14 time

units, and it gradually drops to a minimum of 0.015 in

approximately 37-time units.

The formation of TNFR_TRADD reaches the peak value of

0.56 in 3 time units and takes further 6 time units to drop. The

recruitment of FADD (recruitFADD) is at the highest with the

value 0.0215 in 2 time units and drops to a minimum in 6 time

units. Maximum activation of caspase 8 (actCASP 8) takes place

in approximately 6 time units (0.038) and then drops to the

minimum (0.006) in about 25 time units. The formation of

cIAP2 takes place after 3 time units with a rate of 0.1. After

that, it reaches its maximum value of 1.4 in nearly 60 time units

and then becomes constant. The rate of cIAP2 formation is very

high till the attainment of value 1 in the first 20 time units.

(Supplementary Figure S4B) The activation of Ceramide

activated protein phosphatase (actCAPP) reaches the

maximum value of 2.2 in 8–10 time units. The constant

amount of actCAPP shows its minimum utility in the

subsequent interaction possibly because of the small rate. The

ceramide production immediately reaches the maximum of

0.52 after 2 units and drops to a minimum of 0.05 right after

10 time units. Similarly, activation of SMase (actSMase) takes

place immediately and reaches the maximum 1.48 at 2.5 time

units for the adjusted rate and drops to a minimum of 0.03 in

approximately 10 time units as given in Supplementary

Figure S4C.

FIGURE 5
Balanced State of neuronal survival and neuronal apoptosis in
mature neurons- Balanced State of neuronal survival and neuronal
apoptosis in TNF-α mediated sphingomyelin signaling pathway
model under normal circumstances. The y-axis represents
the extent or level (in relative concentration) of neuronal survival
and apoptosis. The x-axis represents relative time. The two curves,
i.e., green and red, are the outcomes of the physiological
processes in neurons leading to neuronal survival and death,
respectively. The interactive network of signaling pathways keeps
neuronal survival and apoptosis in balance (Kole et al., 2013). A shift
in one or more of these signaling pathways can alter the fate of a
neuron resulting in neuronal death or continued survival (Morrison
et al., 2003).
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The release of cytochrome C from mitochondria reaches the

maximum (0.235) with 0.1 kinetics in nearly 6 time units. The

amount of caspases 3 and 9 starts to decline after 2 time units,

and gradually drops to a constant value of 12.7 in 18 time units.

The full activation of caspases 3 and 9 takes 9 time units to reach

the maximum value of 1.35 with a rate of 0.1 and then drops to

the minimum in 65–70 time units. (Supplementary Figure S4D).

Formation of sphingosine reaches the maximum value of 0.34 in

3 time units and drops to a minimum in 10–15 time units. The

production of sphingosine-1 phosphate (S1P) attains the peak

value of 0.32 at 4.5 time units with a rate of 0.1 and takes

15–20 time units to drop. The activation of S1PR reaches the

peak value of 0.245 in approximately 6.5 time units with a

reaction rate of 0.1 and then drops to minimum in

15–20 time units. The triggering of the Gi Coupled receptor

takes place after 1 time unit and reaches a maximum value of

0.12 in nearly seven time units with the reaction rate of 0.1.

Moreover, it takes 18–20 time units to reach the minimum

(Supplementary Figure S4E) As indicated in Supplementary

Figure S4F, the activation of AKT (actAKT) takes place after

FIGURE 6
Paramater Scanning of TNF-αmediated Sphingolipid Signaling Pathwaymodel interactions with known kinetic parameters from the literature to
determine their tolerable range of variations and to study their effect on neuronal survival and death- (A) Paramater scanning for interaction 1 (Eq. 8)
representing TNFR_TNFα formation. (B) Paramater scanning for interaction 2 (Eq. 9) representing recruitment of RAIDD. (C) Paramater scanning for
interaction 8 (Eq. 10) representing formation of TNF_TRADD. (D) Paramater scanning for interaction 7 (Eq. 11) representing recruitment of
FADD. (E) Paramater scanning for interaction 9 (Eq. 12) representing NFκB activation. (F) Paramater scanning for interaction 12 (Eq. 13) representing
TRADD_TRAF2 comlex formation. (G) Paramater scanning for interaction 15 (Eq. 14) representing TNFR_FAN complex formation.(H) Paramater
scanning for interaction 31 (Eq. 15) representing activation of S1PR. (I) Paramater scanning for interaction 38 (Eq. 16) representing recruitment of AKT.
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3 time units and reaches to the maximum value of 0.33 with the

reaction rate of 0.1. However, the activation of ERK (actERK)

takes place after 1 time unit and reaches the maximum value of

1.2 in 11–12 time units.

3.3.2 Parameter scanning
The interaction 1 of the model is given by Eq. 8 which

indicates the binding of TNF-α with TNFR receptor. Parameter

scanning graph for interaction 1 (Eq. 8) given in Figure 6A shows

a balance between cell survival (green) and cell death (red) at the

point of their overlap; where the rate is approximately close to

0.1. It can be traced out that the kinetic parameter value of 0.185

(as give in Table 1) shows only a slight (about 0.04) relative

increase in cell apoptosis. Besides, the adjusted rate value 0.1 for

the current interaction is within the bounds of the range provided

in Table 1. Figure 6A shows the effect of increasing kinetic

parameter on TNFR_TNF-α formation. The interaction 2 in the

model represented by Eq. 9 represents the recruitment of RAIDD

after TNFR activation. We adjusted the kinetic parameter value

for this interaction as 0.1. Figure 6B shows the intersecting point

of two curves representing neuronal survival and apoptosis at a

kinetic parameter value of 0.11, which implies the balanced state

of the system.

The interaction 8 in model representing the formation of the

TNFR_TRADD complex is depicted in Eq. 10. In the current

model, we adjusted the kinetic parameter value for this

interaction as 0.1. The corresponding parameter scanning

results are given in Figure 6C. The junction point of neuronal

survival and apoptotic plots at the value 0.1 shows the balanced

state of the model. This adjusted parameter value has difference

of 0.08 units from the value 0.185 as given in Table 1, and it lies

within the range of variation provided by Cho et al., (2003),

causing a very slight relative difference of 0.05 units among

neuronal apoptosis and survival. The interaction 7 in the model

represents the recruitment of FADD which follows the

TNFR_TRADD complex formation and is represented by Eq.

11.We adjusted the kinetic parameter value for this interaction as

0.01. Parameter scanning results for this interaction are given by

Figure 6D which shows the coinciding point of the neuronal

survival and apoptotic curves almost at the adjusted value 0.01.

This adjusted value lies within the tolerable range of parameter

variation given in Table 1, the curves in Figure 6D shows the

relative difference of approximately 0.2 units between neuronal

apoptosis and survival at a kinetic parameter value of 0.185 from

literature.

As discussed earlier, the activation signal for NFκB leads to

the phosphorylation of IKK, which sequentially triggers the

activation of NFκB. The interaction 9 in the model represents

the NFκB activation via phIKK and is given by Eq. 12. The

adjusted rate value for this interaction is 0.1. The parameter

scanning results for this interaction, as given in Figure 6E, show

exceptional behaviour as both survival and apoptotic curves

move in parallel without coinciding at or near to the

adjusted value of 0.1 or the literature value of 0.185 as

provided in Table 1.

The TRADD_TRAF2 complex formation (interaction 12 in

the model), as represented by Eq. 13, takes place right after the

recruitment of adaptor protein TRADD. The adjusted parameter

value used for this interaction in the current model is 0.1, whereas

the kinetic parameter value obtained from literature is 0.185

(Table 1). The corresponding parameter scanning results are

given in Figure 6F. Both the survival and death curves coincide at

the adjusted value, which is within the bounds of the range

provided by Table 1. Additionally, we can observe a very slight

relative difference between survival and apoptotic curves at the

kinetic value of 0.185 Cho et al. (2003). Eq. 14 represents the

association of FAN with TNFR (which is the interaction 15 in the

model). The value of kinetic parameter for the current interaction

is adjusted as 0.1. Parameter scanning results in Figure 6G show

that the intersecting point of the survival and death curve is

nearly around the adjusted value of 0.1. Moreover, the parameter

range from 0.02 to 0.2 has no obvious impact on the relative

difference between the survival and apoptotic curves.

The binding of S1P with S1PR is represented by Eq. 15 (the

interaction 31 in the model). The value of kinetic parameter for

this ligand-receptor binding was taken as 0.1. The parameter

scanning results in Figure 6H indicate that the parameter range

0.02–0.2 does not even slightly affect the cell homeostatic state,

and the system remains in balance. The recruitment of AKT via

PIP3 (the interaction 38 in the model) is represented by Eq. 16

with the adjusted kinetic parameter value of 0.1 in model. It is

evident from the parameter scanning results given in Figure 6I

that the parameter range 0.02–0.2 has zero influence on neuronal

survival and apoptosis. It can be inferred from parameter

scanning results for interactions 1 (Eq. 8), 2 (Eq. 9), 7

(Eq.11), 8 (Eq. 10), 12 (Eq. 13), 15 (Eq. 14), 31 (Eq. 15), and

38 (Eq. 16) that the intersection points of all curves almost

coincides with the adjusted parameter kinetics depicting the

homeostatic state of the model. Furthermore, except for

interaction 9 (Eq. 12), scanning graphs of kinetic parameters

over the range 0–0.2 for interactions 1 (Eq. 8), 7 (Eq. 11), 8 (Eq.

10), and 12 (Eq. 13) show that certain values of kinetic

parameters above and below the formulated kinetics are

bearable, and do not produce profound effects on neuronal

survival and neuronal apoptosis. Their comparison with

literature kinetic parameter values (Cho et al., 2003) shows

that they are in accordance and within the bounds of tolerable

ranges presented in literature and causes no drastic shift on the

homeostatic state of model.

3.3.3 Scanning of entities
TNF-α mediated sphingomyelin signaling model possess

various traverses or crosstalks indicating their pivotal role in

cell signaling. The presence of multiple trajectories as indicated in

Figure 3 signifies the importance of TNFR_TNF,

TNFR_TRADD, recruited FADD, ceramide, Gi-coupled
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receptor, actAKT and actERK in the whole model. The

quantitative scanning of the various proteins/enzymes serving

as the crosstalks and having high centrality measures provides

more insights in understanding their behavior towards different

perturbations.

3.3.3.1 Scanning of the input entities

It is evident from the scanning results in Supplementary

Figure S5A that cell survival remains unaffected with an increase

in TNF-α concentration, whereas we observe a gradual increase

in neuronal death. The adjusted kinetics incorporated in the

model shows the exact balance between cell death and cell

survival at a concentration of 6.5. The system moves towards

apoptosis with a maximum relative difference of 0.2 units in

response to a continuous increase in TNF-α concentration, as in

the case of the diseased scenario. The elevated TNF-α levels are

reportedly associated with the secondary neuronal damage in

traumatic brain injury (TBI) (Baratz et al., 2015). Baratz et al.,

(2015) studied the effect of TNF-α synthesis inhibitor 3,6′-
dithiothalidomide on mice subjected to mild TBI. 3,6′-
dithiothalidomide ameliorated the neuronal loss, cognitive

impairments and elevations in astrocyte number due in

response to mild TBI via preventing mTBI-induced TNF-α

elevation Baratz et al., (2015).

TRADD shows the exact balance between cell survival and

cell death at an adjusted kinetic parameter of 0.1 with an initial

concentration of 8 as given by scanning results in Supplementary

Figure S5B. The increased stimulation of TRADD in response to

TNFR activation slightly moves the system towards apoptosis,

whereas the survival mechanisms remain unaffected. The

experimental studies show an upregulation of TRADD

associated with the cell death machinery in AD patients (Zhao

et al., 2003). The scanning result for the FAN is given by Figure

Supplementary Figure S5C. Intersecting point of the graph shows

balance in survival and apoptotic mechanisms of the neuron at

the normal levels of FAN incorporated in the model. Also, it can

be observed that increased concentrations of FAN slightly shifts

the equilibrium state of the model by decreasing neuronal

apoptosis.

3.3.3.2 Scanning of entities with high betweenness

centrality

The scanning results of ceramide over the range of values

from 0 to 50 are given in Supplementary Figure S5C. The

elevation in ceramide levels increases both neuronal survival

and apoptosis up to the specified value with the 3-fold relative

difference. Toman et al. (2000) examined the dual role of

ceramide in promoting neuronal cell death and apoptosis

(Toman et al., 2000). However, the curve for neuronal

survival is slightly higher when compared to the apoptotic

curve. It can be justified by the fact that increased levels of

ceramide result in an increased activity of CAPK and CDase

enzymes, which compels the system towards survival

mechanisms. The scanning results of Gi-coupled Receptor

over range 0–50 are given in Figure Supplementary Figure

S6B. Neuronal apoptosis is not affected by increased

activation of Gi-Coupled Receptors. On the other hand, the

neuronal survival rate increases with a maximum relative

difference of about 12 folds among survival and death curves.

The scanning results for recruited FADD are given by

Supplementary Figure S6C. An increase in recruitFADD

concentration leads to increased neuronal apoptosis up to the

specified value of 25 with the relative difference of about 6-folds

between survival and apoptotic curves. However, the neuronal

survival remains unaffected by the recruitFADD concentration.

Supplementary Figure S6D shows the scanning results of

TNFR_TRADD. It can be observed that the neuronal survival

remains unaffected by an increase in TNFR_TRADD

concentration from 0 to 50. However, the neuronal apoptosis

increases to the maximum with the relative difference of about 3-

folds among survival and death curves. Scanning results for

actSMase, actS1PR, Sphingosine, and S1P are given in

Supplementary Figure S6E–H respectively. The increased

levels of actSMase cause a very slight increase in neuronal

survival and apoptotic mechanisms with a negligible relative

difference of about 0.02 folds. On the other hand, increased levels

of actS1PR, sphingosine, and S1P result increase survival

mechanism, without affecting neuronal apoptosis, with the

relative difference of about 5-6 folds.

3.3.3.3 Scanning of entities with high closeness centrality

The scanning of actAKT over range 0–50 was performed

(Supplementary Figure S7A shows). Neuronal apoptosis remains

unaffected from increased levels of actAKT. However, an

increase in neuronal survival can be observed with a large

relative difference of about 50-folds at actAKT value 50. Endo

et al. (2006) reported an upregulation in Akt signaling during

ishemia and other neurodegenerative disorders to mediate

neuronal survival (Endo et al., 2006). The scanning results of

actERK as indicated in Supplementary Figure S7B shows no

influence of actERK concentration on neuronal apoptosis.

However, the impact of actERK on neuronal survival is nearly

similar to that caused by actAKT. The increase in actERK value

up to 50 leads to increased neuronal survival with the relative

difference of about 50-folds.

The scanning results of actCASP2, actCASP8, cIAP2, and

actCAPP are given in Figure Supplementary Figure S7C–F

respectively. The increased levels of actCASP2 and

actCASP8 result in increased apoptosis with a large relative

difference; without influencing survival rate. The increased

levels of cIAP2 cause a slight lowering of neuronal apoptosis

with the negligible relative difference of about 0.02 folds. The

increased concentration of actCAPP only lowers the survival

curve due to its inhibitory effect with a very slight relative

difference of about 0.4 folds. The scanning results for

actCASP 3and9, Cytochrome C, RIP_RAIDD and actNFκB
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are given in Supplementary Figure S7G–J respectively. Increased

levels of actCASP 3and9 profoundly affect neuronal apoptosis

with a relative difference of about 60-folds. The increased levels

of cytochrome C and RIP_RAIDD raise neuronal apoptosis with

the relative difference of 15 and 10 folds, respectively. The

increased activation of NFkB lowers neuronal apoptosis with a

negligible relative difference.

Supplementary Figure S6B, Supplementary Figure S7A, and

Supplementary Figure S7B show increasing trends in cell growth

with increased activation of Gi-Coupled Receptor, AKT, and

ERK respectively. On the other hand, the high levels of recruited

FADD (Supplementary Figure S6C) and TNFR_TRADD

(Supplementary Figure S6D) having betweenness centrality of

0.02 enhance neuronal apoptosis as evident from the literature.

However, despite its suggested role in apoptosis, the increasing

levels of ceramide intensify both cell growth and cell death

(Supplementary Figure S6A). This contradiction can be

explained by the increased activity of CAPK and ceramidase

FIGURE 7
(A) Sensitivity Analysis of Entities vs. Parameters- The sensitivity analysis graph shows the sensitivities of the entities’ concentrations over the
scale of 0–1800 in response to the interaction parameters of the TNF-αmediated sphingomyelin signaling pathway model. (B) Sensitivity Analysis of
Entities vs. Entities- The sensitivity analysis graph shows the sensitivities of the entities’ concentrations over the scale of 0–100 towards other entities
of the TNF-α mediated sphingomyelin signaling pathway model.
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due to elevated ceramide levels, which are capable of potentiating

neuronal survival mechanisms. The ERK signaling pathway has a

dual role in cell death and survival.

3.3.4 Sensitivity analysis
For the acquisition of empirical importance of model

parameters and entities upon each other, the whole TNF-α

mediated sphingomyelin model was subjected to the

sensitivity analysis as discussed earlier in the methodology

(Section 2).

3.3.4.1 Entities vs. parameters

To study the effect of interaction parameters over entities

concentrations, all the interaction parameters (kinetics) were

taken as inputs, whereas all model entities were selected as

outputs. The results of sensitivity analysis (Figure 7A)

unveiled the importance of interaction 1 (Eq. (8) showing

TNFR_TNF-α binding), interaction 15 (Eq. 14 showing

TNFR_FAN formation) and interaction 27 (Eq. 17 showing

Cathepsin D activation); as most of the model entities like

SMase, PKC, BID, CASP 3 and 9 were found highly sensitive

towards them having sensitivity values greater than 600.

Moreover, high influence of interaction 27 (Eq. 17 showing

Cathepsin D activation), interaction 49 (Eq. 18 showing RIP

recruitment and interaction 51 (Eq. 19 showing ERK-mediated

cell death) was observed on neuronal death. The sensitivity values

of model entities against interactions parameters are given in the

Supplementary Material Section 6. TNF-α, FAN, and SMase

enzyme showed high sensitivity against interaction 1 (Eq. 8).

FAN, SMase, TNF-α, PKC, and SMase_translocated were highly

sensitive to interaction 15 (Eq. 14). Protease Cathepsin D, BID,

CASP 3and9 were highly responsive to interaction 27 (Eq. (17)).

3.3.4.2 Parameter scanning of the interactions having

huge impact on neuronal apoptosis and survival

Ceramide is responsible for the activation of protease

cathepsin D, which is given by the interaction 27 in the

model and Eq. 17. The neuronal apoptosis was found highly

sensitive to this interaction as determined in the Section 3.3.4.1.

The adjusted kinetic value for this interaction was taken as 0.1.

The parameter scanning results in Figure 8A show the perfect

conjunction of survival and apoptotic curves at the value 0.1.

However, the change in parameter value profoundly affects the

homeostatic state of the model and causes a profound increase in

FIGURE 8
Paramater scanning of Interactions having huge impact on
the Neuronal Survival and Apoptosis- (A) Paramater scanning of
Interaction 27 (Eq. 17) representing Cathepsin D activation. (B)
Paramater scanning for Interaction 49 (Eq. 18) representing
RIP recruitment. (C) Paramater scanning for Interaction 51 (Eq. 19)
representing ERK-mediated Cell Death. The increasing parameter

(Continued )

FIGURE 8
value of the interactions representing Cathepsin D activation
and ERK-mediated Cell Death over the range of 0–0.2 enhances
neuronal apoptosis and decreases neuronal survival. However, the
increasing parameter value of the interactions representing
recruitment of RIP only enhances neuronal apoptosis without
impacting neuronal survival.
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the relative difference with increasing or decreasing kinetic

values.

ProteaseCathepsinD

+ Ceramide →
kf�0.1 adjusted( )

actCathepsinD (17)

RIP + TNFRTRADD →
kf�0.01 adjusted( )

recruitRIP (18)

actERK + →
kf�0.01 adjusted( )

CellDeath (19)

The sensitivity analysis results in Section 3.3.4.1 determined

the high influence of RIP recruitment on neuronal apoptosis. The

recruitment of RIP via TRADD is given by interaction 49 (Eq. 18)

with adjusted kinetics of 0.01. The parameter scanning results for

this interaction, as given by Figure 8B, clearly show that an

increase in parameter value causes an increase in neuronal

apoptosis. Moreover, the higher kinetic values also inflate the

relative difference between survival and apoptotic curves. ERK

signaling cascade contributes both to neuronal survival as well as

in apoptosis. The ERK-mediated neuronal apoptosis is indicated

by interaction 51 (Eq. 19) with the adjusted kinetic value of 0.01.

The parameter scanning results for this interaction as given by

Figure 8C are following the sensitivity results as described in

Section 3.3.4.1. The increasing parameter value increases

apoptosis and decreases neuronal survival, thus, leading to a

large relative difference among them with a rate increase. Figures

8A–C show parameter scanning for interactions 17, 18 and

19 respectively. The sensitivity analysis results as discussed in

Section 3.3.4.1 revealed their high influence on neuronal death

and survival. The parameter scanning curves for these

interactions further conform to their significance as the

change in their values causes drastic effects on neuronal

survival and death.

3.3.4.3 Entities vs. entities

Similarly, to study the influence of model entities

concentrations over the other entities, the sensitivity values

of model entities towards other entities are calculated (given

in the Supplementary Material Section 7). The results (as

evident from Figure 7B), revealed the significant sensitivity

of neuronal death towards recruitRIP, RIP_RAIDD,

actCASP8, actCASP2, actCASP3and9, cytochrome C,

actBID and actCathepsinD. Moreover, neuronal survival

was found more sensitive to actCAPK, RasGTP, actAKT,

actERK, actMEK, actRAF. Apart from observing the

sensitivities of neuronal death and survival against model

parameters and entities, we also noticed a significant

impact of model entities over the other entities. NFκB,

IKK, and NIK were found highly sensitive to

TRADD_TRAF2 complex with the sensitivity values of

45.39, 46.84, and 48.33, respectively. Moreover, SMase

enzyme and PKC showed high sensitivities against

TNFR_FAN with the values of 49.04 and 47.4, respectively.

3.4 Dose estimation of drug and its
response

3.4.1 Effect of etanercept
The simulation result shows that Etanercept doesn’t produce

a fierce effect on neuronal apoptosis for the current model

(Figure 9A). The scanning result of Etanercept over a

concentration range of 0–100 shown in Figure 9B further

fortifies the fact of little efficacy of Etanercept for the current

model. Moreover, neuronal survival remains completely

unaffected by the application of Etanercept. Curves in Figures

9C–E show the repeated dosage effects of Etanercept with

different start times and amounts as mentioned in Table 4.

The outcomes clearly indicate the accumulation of Etanercept

with increasing concentrations without prominently disturbing

the balanced state of neurons.

3.4.2 Effect of nivocasan
As reported earlier in Section 3.3.4.3, the sensitivity analysis

showed the high significance of caspase 8 and caspase 9 towards

neuronal apoptosis. We repositioned the Nivocasan to the TNF-α

mediated sphingomyelin signaling pathway model to analyze the

model’s response towards caspase inhibitor. The simple

simulation of model treated with Nivocasan with the initial

amount 3 is given by Figure 10A. The caspase 8 and caspase

9 inhibition due to the application of Nivocasan results in

lowering neuronal apoptosis with the difference of more than

two folds.

Scanning was also performed for Nivocasan over the

concentration range of 0–100. The corresponding results in

Figure 10B show that increasing the amount of Nivocasan

reduced the apoptotic mechanism up to a minimum point.

The highest effect of Nivocasan is achieved for concentration

10 where apoptosis is minimum with the relative difference of

about 2.5 folds. The application of repeated dosage of Nivocasan

as according to the Table 4 produces graphs as given by Figures

10C–G. It is evident from the results that the effective dosage of

Nivocasan can reduce neuronal apoptosis by creating a relative

difference of about 2.5 folds between neuronal survival and

neuronal death.

3.4.3 Effect of scyphostatin
Figure 11A indicates that Scyphostatin fails to disturb the

hypothesized equilibrium state of the model. The curves in

Figure 11B show the scanning effect of Scyphostatin from

concentration 0–100 for TNF-α mediated sphingomyelin

signaling pathway model. It is evident from the results that

increasing the concentration of drugs lowers both cell survival

and cell death without affecting the overall homeostasis. The

results of repeated dosages of Scyphostatin according to Table 4

four are given by Figures 11C–G. The results follow the

speculations derived from Scyphostatin’s simulation and

scanning. The model remains unaffected from repeat dosages
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FIGURE 9
(A) Simulation showing effect of Etanercept on Neuronal Survival and Death. (B) Scanning of Etanercept performed over range 0–100 shows
only minor decrease in cell death. (C–G) Figures c to g represent the dosage graphs for Etanercept according to Table 4. Dosages (C–G) have no
obvious effect on neuronal death and survival.
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with different starting times and amounts and retains its

balanced state.

4 Discussion

The growing number of individuals affected by

neurodegenerative disorders worldwide was a reason to focus

and study diversified aspects of neurological diseases using a

modeling approach. The severity of nearly all neuropathological

diseases in AD, PD, and MS eventually leads to raised levels of

TNF-α owing to enhanced glial cell production (Sharma et al.,

2012; Sawada et al., 2006; Xu et al., 2015). The modeling of the

sphingolipid metabolic pathway in association with TNF-α

signaling provides a novel viewpoint on the behavior of

various proteins, enzymes, and sphingolipids under

homeostatic and pathological circumstances of neurons. Like

sphingolipids, an up-regulated TNF-α expression has also been

associated with the causation as well as the progression of several

neurodegenerative diseases of the central nervous system (CNS)

(Chitnis andWeiner, 2017). TNF-α, in alliance with its receptors,

instigates the number of signaling pathways, including the

sphingomyelin pathway (Olmos and Lladó, 2014). The

literature studies in the subsequent part of discussion show

the implication of cytokines and sphingolipid metabolites in

numerous neuro-pathologies, making them robust targets for

system-level studies.

In this study, the representational model of the TNF-α

mediated sphingomyelin signaling system is modeled in

Simbiology, which includes 73 entities and 51 interactions, to

examine the linkage and interactions holistically. We built the

model integrating data from the literature and KEGG, and the

input concentrations of model entities were calculated using

microarray data analysis. The kinetic rates of the interactions

were set between the range 0.01–0.1 such that the system could

depict the homeostatic balanced state of neuronal survival and

apoptotic mechanisms. The values of kinetic parameters for

model’s interactions were adjusted due to lack of kinetic

values from literature. Therefore, relative time unit “RTU”

was employed as a unit of time rather than the specific units.

The simulation run of the model explicitly manifested the time

and concentration of model entities during their recruitment or

activation. Moreover, the simulation enabled us to track the

minor details of even minute changes in entities concentrations

over time. Figure 5 showed the hypothesized stable (balanced)

state of TNF-α mediated sphingomyelin and related signaling

pathways exhibited by neurons during normal circumstances.

The network analysis of the model using Cytoscape tool

reveals the system’s essential components (adaptor proteins,

enzymes, and chemicals) based on their betweenness and

closeness centralities. The betweenness centralities of model

entities were found in the following descending order:

ceramide (0.078) < actSMase (0.051) < GiCoupled Receptor

(0.031) < actS1PR (0.03) < sphingosine (0.0298) <
recruitFADD (0.0292) < S1P(0.028) < TNFR_TRADD

(0.023); evincing the high importance of ceramide among all

other entities. It can be associated with the elevated levels of

ceramide in the brain samples from patients affected by AD and

TABLE 4 Application of Drugs using Repeat Dose.

Drugs Doses Start Time Amount Rate (k) Interval Repeat Count

Etanercept (10–12) (Chembl1201572) Dose 1 0 0.1 1 5 3

Dose 2 0.1 0.2 1 5 3

Dose 3 0.2 0.4 1 5 3

Dose 4 0.3 0.6 1 5 3

Dose 5 0.4 0.8 1 5 3

Nivocasan (Chembl2105721) Dose 1 0 0.1 1 5 3

Dose 2 0.1 0.2 1 5 3

Dose 3 0.2 0.4 1 5 3

Dose 4 0.3 0.6 1 5 3

Dose 5 0.4 0.8 1 5 3

Scyphostatin (10–6) (Chembl418376) Dose 1 0 0.1 1 5 3

Dose 2 0.1 0.2 1 5 3

Dose 3 0.2 0.4 1 5 3

Dose 4 0.3 0.6 1 5 3

Dose 5 0.4 0.8 1 5 3
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FIGURE 10
(A) Simulation showing effect of Nivocasan on Neuronal Survival and Death. (B) Scanning of Nivocasan. (C–G) Figures c to g represent the
dosage graphs for the Nivocasan as according to Table 4. Dosages (C–G) show obvious effect on neuronal death.
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other neurodegenerative disorders contributing to their

pathophysiology (Filippov et al., 2012; Alessenko and Albi,

2020). The sphingolipids including ceramide,

sphingomyelinase, and sphingosine with high betweeness

centralities serve as prognostic biomarkers of

neurodegeneration because of their increased levels in the AD

brain (van Kruining et al., 2020). Moreover, the closeness

centrality measure manifested the high closeness of actCASP2,

actCASP8, cIAP2, actCAPP, actCASP 3and9, actAKT, actERK,

cytochrome C, RIP_RAIDD, actNFkB, CAPP, recruitAKT, and

PDK1 among all other entities of the model with closeness

centrality values ranging from 1 to 0.63. Matsui et al. (2006)

provided evidences of literature studies showing an increased

activation of caspases 3, 8, and 9 in AD brain samples (Matsui

et al., 2006).

The scanning results of elements with high betweenness

centrality values further signified them being the most crucial

components in the TNF-α-mediated sphingomyelin signaling

pathway. The high impact of recruitFADD and TNFR_TRADD

was observed on the neuronal apoptosis, whereas Gi-coupled

receptor, actS1PR, Sphingosine, and S1P were found to produce a

high influence on neuronal survival. Zhao et al. (2003) reported

the elevated levels of both TNF-α and TRADD (being

proapototic elements) in AD patients (Zhao et al., 2003).

However, the current study inferred the dual role of ceramide,

both on neuronal survival and apoptosis (Posse de Chaves, 2006),

which suggests the multipotential function of ceramide both in

neuronal survival and apoptosis (Toman et al., 2000). Neuronal

apoptosis was more affected by the recruitFADD with a

betweenness value of 0.0292 when compared to

TNFR_TRADD (betweenness value 0.023). It suggests the

increased levels of FADD protein that occur in the midbrain

of PD patients. (Gorman, 2008). Moreover, Ferguson et al. (2020)

found the high levels of FADD in the post-mortem brain tissue

from the BA21 region of African Americans affected by AD

(Ferguson et al., 2020). Also, Wu et al. (2005) presented the first

demonstration of enhanced FADD expression in the AD brain

(Wu et al., 2005). It can also be observed that among the Gi-

coupled receptor, actS1PR, sphingosine, and S1P, the increased

activation of the Gi-coupled receptor highly influenced neuronal

survival. The increasing concentrations of actCASP2, actCASP8,

actCASP 3and9, cytochrome C, and RIP_RAIDD with the high

closeness centrality values appeared as entities chiefly affecting

the neuronal apoptosis. The scanning of actCASP2, actCASP8,

and actCASP3and9 showed their profound influence on

neuronal apoptosis due to the high centrality value.

The parameter scanning allowed comparison of kinetic

parameters used in the current study with some of kinetic

values according to the literature (Cho et al., 2003). The

variations among these kinetics were marked bearable as they

lied within tolerable ranges of variations and showed no drastic

effects on the model. Scanning was done for the kinetic

parameter values for interactions 1 (Eq. 8), 2 (Eq. 9), 7 (Eq.

11), 8 (Eq. 10), 9 (Eq. 12), 12 (Eq. 13), 15 (Eq. 14), 31 (Eq. 15) and

38 (Eq. 16) and compared with some known parameter kinetics

to determine their effect on the homeostatic state of the model.

Parameter scanning over the range 0–0.2 of the mentioned

interactions showed that kinetic rate parameters governing

TNF_TNFR formation, recruitment of RAIDD, TNFR-

TRADD formation, recruitment of FADD,

TRADD_TRAF2 formation, TNFR_FAN association, S1PR

activation, and recruitment of AKT only cause minor

alterations in the balanced state of the system over the given

range. The exceprional behavior of NFκB can be attributed to its

contribution in promoting cell survival via its inhibitory action

on caspase 8.

Sensitivity analysis allowed us to determine the effects of all

the interaction parameters (kinetics) on the model entities, and

also among the entities themselves. Sensitivity analysis of entities

versus parameters indicated the high impact of interaction

1 representing TNF-α binding with TNFR and interaction 15

(Eq. 14) representing TNFR_FAN association over SMase

enzyme with the sensitivity values of 613.7 and 657.6 (over

the scale ranging from 0 to 700), respectively. The Jurkat T

lymphocytes showed a significant increase in the activity of acidic

SMase and a minor increase in the activity of neutral SMase

(NSMase) when exposed to TNF-α (for 5 min and 7 h,

respectively) due to enhanced TNF-α/TNFR1 binding (Church

et al., 2005). Moreover, the FAN constitutively binds with neutral

sphingomyelinase activation domain (NSD) of TNFR1 and

triggers activation of NSMase (Montfort et al., 2010). We also

witnessed the high impact of interaction 15 (Eq. 14) on PKC with

a sensitivity value of 636.3. BID and CASP 3and9 were found

highly sensitive to interaction 27 (Eq. 17) (representing ceramide

triggered activation of cathepsin D) with values 682 and 641.6,

respectively. This infers the role of ceramide induced activation

of cathepsin D to form truncated BID (tBID, referred as actBID

in model) from BID Poulaki and Giannouli (2022). Neuronal

survival was found sensitive to interaction 51 (Eq. 19), interaction

40, interaction 18, interaction 43 and interaction 34 of the model

(shown in the Figure 7A and Supplementary Material Section 6)

with the sensitivity values 483.3, 302.1, 295.7, 234.7, and 209.6,

respectively. These interactions represent ERK-mediated

neuronal apoptosis, the CAPP-mediated inhibition of AKT,

CAPK activation, ERK-mediated neuronal survival, and

conversion of RasGTP to RasGDP, respectively. Finegan et al.

(2009) provided the genetic evidence for the involvement of

ERK5 in regulating neuronal survival (Finegan et al., 2009).

However, neuronal death was most affected by interaction 51

(Eq. 19), interaction 27 (17), interaction 49 (18) and interaction

28 representing ERK-mediated neuronal apoptosis, ceramide

triggered activation of cathepsin D, recruitment of RIP via

TNFR_TRADD and caspase 3,9 activated cell death with

sensitivity values 669.7, 471.4, 418.9 and 220.5 respectively.

Sensitivity analysis of parameters versus entities showed

highly influence of interactions governing cathepsin D
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FIGURE 11
(A) Simulation showing effect of Scyphostatin on Neuronal Survival and Death. (B) Scanning of Scyphostatin. (C–G) Figures c to g represent the
dosage graphs for Scyphostatin according to Table 4. Dosage (C–G) have no obvious effect on neuronal death and survival.
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activation (Eq. 17), recruitment of RIP (Eq. 18) and ERK-

mediated neuronal death (Eq. 19) on neuronal apoptosis. In

the literature, we have evidence of the dual role of ERK signaling

pathway in neuronal survival and apoptosis (Li et al., 2014). The

parameter scanning results of interactions 27 (Eq. 17), 49 (Eq. 18)

and 51 (Eq. 19) were perfectly in accordance with their sensitivity

effect on apoptosis and survival.

Finally, the efficacy of different FDA-approved drugs was

determined by analyzing the response of the sphingomyelin

signaling pathway model towards different drugs’ dosages.

The appropriate drugs were selected based on their

applicability and effectiveness for the relevant targets in the

current model. Etanercept, Nivocasan, and Scyphostatin were

among the drugs whose dosages were examined. Each drug’s

results and effects were tracked by scanning and repeated dosing.

It was found that Etanercept and Scyphostatin had no effect on

the model’s equilibrium, and led to their accumulation. However,

Nivocasan’s irreversible inhibitory actions on caspase 8 and

caspase 9 significantly reduced neuronal apoptosis to a large

degree (Xie et al., 2020). Caspase 8 is an important mediator of

neuronal apoptosis during neurodegenerative diseases (Zhang

et al., 2020), whereas Blandini et al., (2006) reported enhanced

activity of caspase 9 in PD patients (Blandini et al., 2006). It is

worth mentioning that caspases 8 and 9 showed high closeness

centrality via network analysis, manifesting their importance in

TNF-α mediated sphingomyelin signaling pathway. Avrutsky

and Troy (2021) examined the role of caspase 9 as a

multimodal therapeutic target for a range of diseases

including AD (Avrutsky and Troy, 2021). Hence, the

significance of Nivocasan was pronounced due to its

applicability on caspase 8 and caspase 9.

As mentioned earlier, different neuropathologies including

immune disease, trauma, and inflammation may lead to rapid

and irreversible neurological damage. Different pharmacological

treatments have been formulated and applied for the

aforementioned neurological disorders. Etanercept, a TNF

antagonist is used as a TNF blocker in order to minimize the

neurological damage mediated by TNF-dependent processes

(Kondziella and Waldemar, 2017). Figure 9 and Figure 11

show the response of the model towards the drugs Etanercept

and Scyphostatin. The simulation result shows that Etanercept

doesn’t produce any apparent reduction in neuronal apoptosis

for the current model. Likewise, the drug Scyphostatin fails to

show any prominent effect on neuronal apoptosis or survival. On

the other hand, a precise concentration of Nivocasan produces a

magnificent curtailment in neuronal apoptosis.

5 Conclusion and future perspectives

Neurological disorders are the leading cause of disabilities

and deaths worldwide. Most of them are neurodegenerative and

are responsible for initiating neuroinflammatory responses.

The prevailing conditions of neurological injuries induce

sustained neuroinflammation, which ultimately leads to

neuronal loss and death. The formulation of common

therapeutic strategies for all neurodegenerative disorders at

the later inflammatory stages can prevent the most damaging

state of neuronal loss. The integration of common

neuroinflammatory responses with the sphingolipid signaling

pathway, and their quantitative analysis via computational

modeling approach, provided a broad spectrum of devising

therapeutic targets. The findings identified the number of

caspases (CASP2, CASP8, and CASP9) and sphingolipids

(S1P) as potent proteins having therapeutic significance at

subsequent stages of the disease. Moreover, the drug dosage

analysis evaluated the efficacy of three drugs, i.e., Etanercept,

Nivocasan, and Scyphostatin, at the level of neuroinflammatory

responses.

The application of Etanercept and Scyphostatin with varying

dosages failed to suppress neuronal apoptosis, or in other words,

did not disturb the homeostatic balanced state of neurons. These

results manifested that repurposing of the two drugs was

impracticable at later stages of neuroinflammation. However,

the drug dosage analysis indicated Nivocasan’s exertion of the

inhibitory mechanism at caspase 8 and caspase 9, which

significantly altered the system homeostasis. It shows that the

neuronal homeostatic state is prone to transmute at the later

stages of inflammation when encountered with caspase 8 and

caspase 9 inhibitors. The current study (model generated and

analyzed using AD data) can be extended to other

neurodegenerative diseases like PD and MS to analyze the

effects of various entities and interaction parameters and

formulate effective therapeutics at their furthest levels.
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Nomenclature

actAKT Protein kinase B (activated)

actBID BH3 Interacting-domain Death agonist (activated)

actCAPK Ceramide Activated Protein Kinase (activated)

actCAPP Ceramide Activated Protein Phosphatase (activated)

actCASP2 Caspase 2 (activated)

actCASP3and9 Caspases 3 and 9 (activated)

actCASP8 Caspase 8 (activated)

actCathepsinD Cathepsin D (activated)

actMEK Mitogen-activated Protein Kinase (activated)

actNFκB Nuclear Factor kappa B (activated)

actNIK NF-κB-Inducing Kinase (activated)

actPI3K phosphoinositide 3-kinase (activated)

actRAF Rapidly Accelerated Fibrosarcoma kinase (activated)

actS1PR Sphingosine-1-Phosphate Receptor (activated)

actSMase Sphingomyelinase (activated)

AD Alzheimer’s Disease

AKT Protein Kinase B

ASD Autism Spectrum Disorder

BID BH3 Interacting-Domain Death Agonist

CAPK Ceramide Activated Protein Kinase

CAPP Ceramide Activated Protein Phosphatase

CASP 2 Caspase 2

CASP 3 and 9 Caspase 3 and 9

CDase Ceramidase

cIAP2 Inhibitor of Apoptosis Protein

DD Death Domain

ERK Extracellular Signal-Regulated Kinase

FADD Fas-Associated Protein with Death Domain

FAN Factor Associated with Neutral Sphingomyelinase

Activation

GAP GTPase-Activating Protein

GDP Guanosine Diphosphate

GTP Guanosine Triphosphate

Gi G-protein Alpha Subunit

Gi Coupled Receptor G-protein Coupled Receptor

IKK Inhibitor of Nuclear Factor kappa-B Kinase

MEK Mitogen-activated Protein Kinase

MS Multiple sclerosis

NFκB Nuclear Factor Kappa B

NIK NF-κB Inducing Kinase

PD Parkinson’s Disease

PDK1 Phosphoinositide-Dependent Kinase-1

PhIKK Inhibitor of Nuclear Factor Kappa-B Kinase

(phosphorylated)

PI3K phosphoinositide 3-kinase

PIP2 Phosphatidylinositol 4,5-Bisphosphate

PIP3 Phosphatidylinositol (3,4,5)-Trisphosphate

PKC Protein kinase C

proCASP 8 Procaspase-8

ProtCathepD Protease Cathepsin D

RAF Rapidly Accelerated Fibrosarcoma

RAIDD RIP-Associated Protein with a Death Domain

RasGDP GDP-bound state of Ras

RasGTP GTP-bound state of Ras

recruitRAIDD recruited RIP-Associated Protein with a Death

Domain

recruit AKT recruited Protein Kinase B

recruit FADD recruited Fas-Associated Protein with Death

Domain

recruit RIP recruited Receptor-Interacting Protein Kinase

RIP Receptor-Interacting Protein Kinase

RIP_RAIDD RIP RAIDD complex

S1P Sphingosine 1 Phosphate

S1PR Sphingosine-1-Phosphate Receptor

SM Sphingomyelin

SMase Sphingomyelinase

SMase(translocated) Sphingomyelinase (translocated)

SMS Sphingomyelin Synthase

SPHK Sphingosine Kinase

TNF-α Tumor Necrosis Factor-α

TNFR Tumor Necrosis Factor Receptor

TNFR_FAN Complex of TNFR and FAN

TNFR_TNF Complex of TNFR and TNF

TNFR_TRADD Complex of TNFR and TRADD

TRADD Tumor Necrosis Factor Receptor type 1-Associated

Death Domain Protein

TRADD_TRAF2 Complex of TRADD

TRAF2_TRAF2 TNF Receptor-Associated Factor 2

RTU Relative Time Unit

RC Relative Concentration
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