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This study investigates the symmetry change in joint angle and joint moment of

knee joints following a Running-Induced Fatigue counter movement

Jump. Twelve amateur runners volunteered to participate in the study. A

prolonged running protocol was used to induce fatigue. Joint angle and

moment were recorded during the push and flexion phase of the CMJ

before and immediately after fatigue. Borg scale (RPE>17) and real-time

heart rate monitoring (HR>90%HRmax) were used to confirm running

fatigue. Symmetry function (SF) was used to assess the symmetry of the

knee Angle and moment variation parameters over the entire push-off and

landing phases based on time series analysis. Paired sample t-test was used to

examine changes in SF before and after acute fatigue. The Angle andmoment of

the knee are asymmetrical in all planes (SF > 0.05), with SF ranging from 5 to

130% in angle and 5–110% in moment. There was a significant increase in knee

joint angle asymmetry in the horizontal plane during the push-off and landing

stage following the prolonged - Running Protocol implementation. These

increases in asymmetry are mainly caused by excessive external rotation of

the dominant knee joint. These findings indicate that fatigue-induced changes

during CMJ may progress knee movement pattern asymmetry in the horizontal

plane.
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Introduction

Countermovement jumping (CMJ) is commonly used to

assess leg strength under the slow stretch shortening cycle

(SSC) and low stretch load conditions (Maulder and Cronin,

2005). The CMJ is a key component used frequently in bounding

sports. Previous studies reported that the relationship between

leg strength and functional performance (e.g., running and

sprinting) have generally used bilateral vertical jumping or its

derivatives as assessment methods (Nesser et al., 1996). CMJ

places a relatively high external load on the lower extremities

during landing compared to tasks that require less movement,

such as jogging. Vertical ground reaction forces (GRF) can reach

3 to 3.5 times individual body weight (Schmitt and Rudolph,

2007), far more than the 2 to 2.5 BW forces experienced during

jogging (Farley et al., 1998). The knee joint contributes about

49% of the total positive work during CMJ (Hubley and Wells,

1983). As a significant contributor to CMJ, the incidence of knee

joint injury should also be a concern for athletes and coaches.

During the landing phase of the CMJ, knee joint injuries often

occur in the ligaments of the knee (Collings et al., 2019). CMJ is

also commonly used by sports injury researchers as a non-

contact injury screening test for athletes (Read et al., 2018).

Furthermore, CMJ is commonly used to monitor acute

neuromuscular readiness and fatigue (Heishman et al., 2019).

The decrease in athletic performance associated with running

fatigue is partly due to inadequate central nervous system (CNS)

drive of motor neurons and poor muscle executive function

(Gandevia, 2001). In addition, previous studies have shown that

amateur runners have a higher rate of musculoskeletal injury

than properly coached runners after running fatigue (Bennell and

Crossley, 1996) and most of the injuries occurred in the lower

extremities (Araujo et al., 2015). Maclaren and others reported

that bone overuse injuries during long distance running may be

caused by central nervous fatigue resulting in a weakened ability

of muscles to absorb impact (Maclaren, et al., 1989). However,

recent research shows that the asymmetry of several gait variables

measured before the onset of fatigue change post fatigue in

healthy males (Radzak et al., 2017). Previous studies on the

symmetry changes caused by motion variability post-fatigue are

lacking, however, changes in symmetry during movement may

cause non-contact injuries.

The assessment of interlimb symmetry in functional tasks is

an important means of injury tendency screening (Kiesel et al.,

2007) and sports performance assessment (Lockie et al., 2015).

Therefore, a further factor that contributes to poor performance

and damage during CMJ tasks is the presence of asymmetry.

Posture asymmetry can be defined as the corresponding body

limb’s unevenness or mechanical imbalance (Gao et al., 2020b).

Increased asymmetry may negatively affect athletic performance

(Bishop et al., 2018), the incidence of non-contact injuries

(Izovska et al., 2019), and athletic efficiency (Beck et al.,

2018). Higher symmetry is significantly associated with better

athletic performance, as demonstrated by sprinters (Trivers et al.,

2014) and triathletes (Bini and Hume, 2015). Jumping-based

tasks are often used as one of the methods to evaluate movement

asymmetry. Bishop et al. ‘s vertical jump test study using young

female soccer players revealed that higher asymmetrical scores

were significantly associated with slower sprint times (Bishop

et al., 2018). In addition, studies have reported that 70% of ACL

tears occur in non-contact mechanisms, which are caused by the

enormous torsional rotation force caused by the rapid

deceleration of the individual foot when it hits the ground

(Griffin et al., 2006).

Radzak et al. reported that running fatigue weakened the

symmetry of joint stiffness at the knee (Radzak et al., 2017).

However, the study observed that the symmetry of joint

stiffness showed a trend towards asymmetry, though statistical

significance was not observed. Symmetry changes caused by

running fatigue in healthy individuals have not been adequately

studied. Previous studies have reported on the symmetry

evaluation of CMJ. Likewise, most of the studies focused on

discrete data checks based on extreme values and ignored the

symmetry changes in time series data during the propulsion and

landing phases. The commonly used inspection methods include

symmetry index (SI) (Gao et al., 2020b) and symmetry Angle (SA)

(Gao et al., 2020a). The limitations of these assessment methods

are that they do not consider the time shift between the left and

right legs and do not divide variables into different planes of

symmetry. Symmetry Function is a new method for evaluating the

symmetry of continuous parameters and was initially proposed by

Nigg et al. (2013). The methodology outlined has since been

applied in many biomechanical studies (Nigg et al., 2013).

The aim of the current study was to compare the knee

symmetry changes during CMJ before and after fatigue

induced exercise. The objective was to explore the potential

mechanism of knee joint injury caused by symmetry changes

induced by acute fatigue during a CMJ task. Thus, providing

implications for injury prevention and motor skill assessment.

Therefore, the current study makes the following three

assumptions: 1) Before acute fatigue, the asymmetry of

kinematic and dynamic parameters of the knee joint only

exists in partial push-off and landing stages, and the degree

of asymmetry is not apparent. 2) After acute fatigue, asymmetry

of kinematic and dynamic parameters of the knee exists

throughout the push-off and landing phases. 3) After fatigue,

the joint Angle and joint moment symmetry will deteriorate in

all three anatomical planes compared with prior fatigue.

Methods

Participants

Twelve male amateur runners with a dominant right leg

were recruited in this study. Specific anthropometric
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information is shown in Table 1. Dominant limbs were

defined as kicking a ball leg preference, and amateur runners

were defined as running at least two to three times a week

for less than 45 min or less than 10 km (Koblbauer et al., 2014).

Subjects were injury-free or pain-free for at least 6 months

prior to testing and were screened for previous injuries

that might affect their lower limbs symmetry. All

subjects completed informed consent forms prior to data

collection, explaining experimental procedures. The ethics

Committee of Ningbo University Research Institute for

research using human subjects approved the study (code:

RAGH20200529).

Date collection

Three-dimensional kinematic and kinetic data were

collected using the Vicon motion capture system (Vicon

Metrics Ltd, Oxford, United Kingdom) based on eight

high-speed cameras at 200 Hz and an embedded force plate

(Kistler, Winterthur, Switzerland) at 1000 Hz. Twenty-six

retroreflective markers with a diameter of 14 mm and four

marker clusters were attached to the corresponding

anatomical positions of the participants’ bilateral lower

limbs and pelvis to generate a trajectory that could be

captured by the device (Figure 1). The exact markers were

bilaterally placed on the distal interphalangeal joint of the

second toe, the first and fifth metatarsal heads, medial

malleolus and lateral malleolus, medial femoral epicondyles

and lateral femoral epicondyles, greater trochanters, anterior

superior iliac spines, iliac crests and the joint space between

the fifth lumbar and the first sacral spinous, respectively.

Furthermore, the six marker clusters were placed on the

heel counter of the shoes, mid-thigh and mid-shank of

both limbs. A computerized Polar heart rate band (Polar

RS100, Polar Electro Oy, Woodbury, NY, United States)

and 15-point Borg self-induced fatigue Scale (Rating of

Perceived Exertion, RPE, 6–20 Borg’s scale) (Borg, 1998)

were used to monitor heart rate and fatigue levels during

the prolonged-running protocol.

Test protocol

The experiment was divided into three stages: 1) Data

collection for the CMJ test before acute running fatigue. 2)

Acute fatigue experiment induced by running (conducted on a

motorized treadmill in the laboratory) and 3) Collection of CMJ

test data following acute running fatigue. Data was collected at

the same time of day (morning testing) to minimize the data

contamination effects of diurnal variation. Participants were

instructed to warm up with a 10-min jog after familiarizing

themselves with the lab environment and procedures. The CMJ

test was then performed until three complete data sets of bilateral

lower limbs were collected successfully. Participants were told to

jump as high as they could use standard procedures. As outlined

by Koblbauer et al., a prolonged-running protocol was applied to

induce acute running fatigue (Koblbauer et al., 2014).

Participants walked on the treadmill at their initial speed

(6 km/h). Then the speed was then increased by 1 km/h every

2 min and the RPE index and heart rate were recorded and stop

increasing speed until the RPE index was asked to reach 13

(somewhat hard). The subjects were then asked to run at this

speed until fatigued. Fatigue points were defined as running with

a real-time heart rate greater than 90% of maximum heart rate or

RPE index greater than 17 (very hard) that remained elevated for

2 minutes. Specific implementation details have been reported in

previous study (Gao et al., 2020a). We then performed the CMJ

test again within 5 min of completion of the fatigue protocol (step

3) (Mei et al., 2019).

Data processing

The markers trajectory and Vertical ground reaction force

data were processed using a two-order Butterworth low-pass

filter with cutoff frequencies of 16 and 50 Hz, respectively (Gao

et al., 2020a). The determination of the pushing and landing

phases has been described in a previous study (Yu et al., 2020).

Visual 3D human motion analysis software (v6; C-Motion, Inc,

Germantown, MD, United States) was used to perform inverse

kinematics and inverse kinetics algorithms to calculate joint

angles and joint moment in the sagittal coronal and

horizontal planes of the knee joints. The knee joint moment

was standardized by individual weight to reduce the error caused

by individual characteristics. Formula 1 shows the method of

calculating jump height by time of flight (Bosco et al., 1983).

jump height(m) � 9.80m · s−2 × flight time(s)2
8

(1)

In order to compare the symmetry of the entire push-off and

landing stages of bilateral knee joints, symmetry function was

applied to this study (Nigg et al., 2013).

TABLE 1 Descriptive characteristics of 12 participants.

Information Mean Sd

Age (year) 24.92 1.16

Height (cm) 175.67 3.42

Weight (kg) 71.58 4.01

BMI (kg/m2) 23.19 0.96

BMI, body mass index.
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SF � ∫
t2

t�t1
A|xr(t) − xl(t)|dt (2)

A � 2
range(xr(t)) + range(xl(t)) (3)

Where xr(t) was defined as the value of the parameter recorded

for the right knee at the time t. xl(t) was defined as the value of

the parameter recorded for the left knee at the time t SF is the

symmetry function. In addition, t1 and t2 stand for the time at

heel strike and time at take-off, respectively. Formula 2 is an

integrand and is referred to as the SF. The time-dependent

information of symmetry at 101-time points in the action

stage is reflected in the SF. The closer SF is to 0, the more

symmetric the bilateral variables are defined (Formula 3). This

study set a ± 5% symmetry threshold to discriminate asymmetry

areas (Winiarski et al., 2021).

FIGURE 1
(A) Marker-set Placement. (B) Over-ground CMJ Test and Biomechanical variable collection.

Frontiers in Physiology frontiersin.org04

Gao et al. 10.3389/fphys.2022.877394

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.877394


Statistical analysis

The data of time series attributes were standardized to

101 data points using a linear interpolation method to

facilitate statistical comparisons (Holden et al., 1997). SF

was used to compare the joint angles and shutdown moment

of bilateral knees throughout the push-off and landing

phases. This check was performed pre-fatigue and post-

fatigue, respectively. The Shapiro-Wilks test was used to

verify the normality of the data using SPSS (Version 19;

SPSS, Inc, Chicago, IL, United States). A paired sample t-test

algorithm package within the open-source data analyst

Statistical Parametric Mapping (SPM) was used to

compare SF changes before and after fatigue in MATLAB

(Version: R2019a, The MathWorks, Natick, MA,

United States). Paired sample t-test was used to check the

difference of jump height before and after running-induced

fatigue protocol in SPSS software (version 26, SPSS,

Chicago, IL, United States). The significance level was set

to 0.05.

Results

Pre-fatigue biomechanical variables

In the push-off phase before fatigue, SF of knee joint Angle

and moment were both more significant than the symmetry

threshold (SF > 0.05), as shown in Figure 2. More specifically, in

the knee angle’s sagittal view, 18–25% and 45–60% of the support

period showed larger SF. Moreover, 70–90% and 20–30% of the

support period of SF reached the highest in the coronal and

horizontal planes, respectively. The trend of knee joint moment.

0–35%, 0–30%, and 0–38% of SF in the stance period were lower

than the symmetry threshold (SF < 0.05), respectively. In

addition, SF increased sharply from 70% in the support

period until 90% and reached a peak of 0.5 in the sagittal

plane. 50–60% and 90–95% showed larger SF in the coronal

plane. SF increased sharply from 38% until 95% reached a peak of

0.8 in the horizontal plane.

According to the results in Figure 3, SF of knee joint Angle

and moment were both greater than the symmetry threshold on

FIGURE 2
Illustration of SF degree in bilateral knee joint angle and moment during push-off stage before prolonged-running protocol for the CMJ test.
Note: The red fill represents the degree of asymmetry, and the darker the color, the more asymmetry. The green fill represents full symmetry.
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three anatomical planes (SF > 0.05). 35–45% and 65–70% of SF

in the knee angle of the support period showed larger SF in the

sagittal plane. SF peaked at 120% at 5% at the coronal level and

gradually decreased to 0.5. SF increased sharply from 30% in

the support period until 65% reached a peak of 0.85 in the

horizontal plane. In addition, the trend of the knee joint

moment. 42–100%, 72–100%, and 53–100% of SF during

the stance period were lower than the symmetry threshold

(SF < 0.05), respectively. The SF of knee moment in 5%

reached peak values at 0.6 and 0.9, and then followed a

downward trend in the sagittal and coronal planes. In the

horizontal plane, 3% arrived a peak at 0.9 and then it also

followed a downward trend.

Post-fatigued biomechanical variables

In the push-off phase after fatigue, SF of the knee joint

Angle and moment were both greater than the symmetry

threshold (SF > 0.05), as shown in Figure 4. More

specifically, in the knee angle’s sagittal plane, 10–20% of the

support period showed larger SF. In addition, 85–95%, was the

largest SF in the coronal plane. SF exhibits great asymmetry in

the horizontal plane throughout the stance phase (SF > 0.5).

Moreover, 0–33%, 0–30%, and 0–34% of SF recorded for the

knee joint moment of the support period were lower than the

symmetry threshold (SF < 0.05), respectively. In addition,

85–95% and 90–95% of the support period of SF reached the

highest values in the sagittal and coronal planes, respectively.

The horizontal plane, which is 95%, recorded a peak of 0.7, then

followed a downward trend.

According to the results in Figure 5, SF for knee joint

angle and moment both were greater than the symmetry

threshold in three anatomical planes (SF > 0.05).30–50%

and 10–30% of SF of knee angle during the support period

showed larger SF in the sagittal plane and coronal plane. SF

exhibits great asymmetry throughout the stance phase (SF >
0.9). In addition, from the trend of knee joint moment.

50–100%, 70–100%, and 62–100% of SF of the stance

period were lower than the symmetry threshold (SF <
0.05), respectively. The SF of the knee moment at 5%

arrived at peak values at 0.8, 0.9, and 0.9, then it observed

a downward trend in the sagittal plane, coronal plane, and

horizontal plane, respectively.

FIGURE 3
Illustration of SF degree in bilateral knee joint angle andmoment during the landing phase before prolonged-running protocol for the CMJ test.
Note: The red fill represents the degree of asymmetry, and the darker the color, the more asymmetry. The green fill represents full symmetry.
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Jump performance

The jumping heights before and after the running-

induced Fatigue protocol were 275.2 (42.1) mm and

268.5 (28.3) mm, respectively. No significant difference in

jump height was observed between these two states

(p = 0.39).

Symmetry function

As shown in Figure 6, no significant differences in knee Angle

SF were observed in the push-off phase between pre-fatigue

and post-fatigue in the sagittal plane and coronal plane (p >
0.05). However, the SF of post-fatigue was significantly higher

than pre-fatigue during the push-off stage (52–60%, 75–85%,

and 92–100%). Moreover, after fatigue, a significant increase

in SF occurred in the landing phase of 0–35% (p < 0.05). The

knee moment did not change significantly in all stages and

planes.

Discussion

This study aimed to examine the symmetry changes of

continuous biomechanical parameters of bilateral knee joints

during the CMJ task before and after fatigue. Considering the

time shift between the left limb and right limb, SF was used to

evaluate symmetry in this study (Nigg et al., 2013). The results of

this study are consistent with hypothesis 2), but, interestingly, not

wholly consistent with the hypothesis 1) and hypothesis 3).

Specifically, the angles and moment of bilateral knee joints

were asymmetrical in all three anatomical planes before

fatigue. The RPE>17 and the HR>90%HRmax during the

prolonged-running protocol were observed in this study,

suggesting that fatigue exists in participants even there was no

significant difference in CMJ performance, the results may be

inconsistent with previous studies due to different intervention

methods (Gandevia, 2001). Therefore, in future studies, we

should add more objective indicators to monitor and

quantitative neuromuscular fatigue (e.g., neuromuscular

electrical stimulation and IMVC (isometric maximal voluntary

FIGURE 4
Illustration of SF degree in bilateral knee joint angle and moment during push-off phase after prolonged-running protocol for the CMJ test.
Note: The red fill represents the degree of asymmetry, and the darker the color, the more asymmetry. The green fill represents full symmetry.
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contraction). In addition, acute neuromuscular fatigue only

caused deterioration of external rotation symmetry of the

knee at push-off and landing stage but did not significantly

affect other parameters. A previous study reports that the

acceleration of body mass needs to be as high as possible

during a bilateral leg stretch and is an essential factor in CMJ

performance (Cormie et al., 2007). Reverse movement vertical

jump task requires high mechanical output and coordination

modes of the individual performing the task, and the individual

needs to push the body upward at the highest possible speed

(Bobbert and van Ingen Schenau, 1988). Therefore, the difference

in the explosive force of bilateral lower limb muscles may cause

the asymmetry of bilateral knee joints during the push-off stage.

Previous studies have shown that the left limb usually plays a

stabilizing role in the performance of motor tasks on both sides

(Sadeghi et al., 2000). The left knee showed greater angle of

motion during periods of high asymmetry (18–25% and 45–60%

in sagittal, 79–90% in coronal, and 20–30% in horizontal).

Probably to create more stability for the push-off phase.

Propulsive force is mainly related to leg muscle power

generation, while support and control function is mainly

related to limb power absorption behaviour (Sadeghi et al.,

1997). Similarly, the right knee joint showed more joint

moment in the coronal plane and horizontal plane, which

may be a potential mechanism by which the dominant limb

mainly performs propulsive functions (Sadeghi et al., 2000).

Likewise, the larger adduction moment of the left knee joint

may result in greater load on the medial side of the knee joint of

the non-dominant limb. (Kastelein et al., 2008). The complete

symmetry of the knee moment only appeared during reverse pre-

stretching of the CMJ task, suggesting that the movement is most

balanced at this stage. The skeletal muscles of the lower limbs in

the landing phase need the force to be generated rapidly during

eccentric braking to cushion the joint load (Laffaye and Wagner,

2013). The higher flexion angle of the right knee observed in the

sagittal plane during the landing stage means that the right knee

bears more buffering work during the CMJ task. Previous studies

have shown that dominant limbs have more muscle strength and

task attributes, which is consistent with the results of this study

(Sadeghi et al., 2000).

Reverse pre-stretching prior to muscle contraction puts the

muscle at a higher level of activity, resulting in a greater joint

FIGURE 5
Illustration of SF degree in bilateral knee joint angle andmoment during landing phase after prolonged-running protocol for the CMJ test. Note:
The red fill represents the degree of asymmetry, and the darker the color, the more asymmetry. The green fill represents full symmetry.
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moment during the push-up phase of the CMJ task (Bobbert

et al., 1996; Schenau et al., 1997). This phenomenon may be

related to reverse motion allowing elastic potential energy to be

stored and reused in skeletal muscles and tendons for better

performance (Anderson and Pandy, 1993). The right knee

showed a greater flexion angle and extension moment in the

FIGURE 6
Comparing themean values of SF of knee angle andmoment from all participants between fatigues (pre-fatigue; post fatigue). Note: the dotted
boxes indicate a statistically significant difference, p < 0.05. Pre means Pre-fatigue, and Post means post-fatigue.
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push-off phase after the fatigue protocol was implemented,

which was consistent with the performance before fatigue,

suggesting that fatigue did not affect the contribution of the

sagittal plane of both knees during propulsion (Echeverria

et al., 2010). However, the left knee joint was observed to

have a large external rotation angle throughout the stage,

which may be caused by reduced neuromuscular control due

to loss of muscle activation capacity (Gandevia, 2001), but

further research is needed to verify if kinematics measures

could be used to infer neuromuscular control. Meanwhile,

the right knee joint’s greater abduction rotation moment may

be associated with arch collapse after fatigue, which is a

potential factor for excessive contact force on the medial tibia

(Mei et al., 2019). The knee of the right leg showed more

flexion angles after fatigue than the opposite leg, suggesting

that the right lower limb made a greater contribution to

buffering during the landing phase. Meanwhile, the higher

extension moment of the right knee suggested a greater

sagittal load on the knee of the dominant limb after

fatigue. Noticeably, more knee external rotation occurred

in the left limb, and the SF degree of the bilateral limb

exceeded 100%, which may be due to the movement

variability caused by the weak fatigue tolerance threshold

in the non-dominant limb. Whether this variability causes

excessive meniscus load in the left knee joint should be

considered in future studies (William Abraham, 2020).

Additionally, the large internal rotation moment observed

in the right knee joint may be a protective mechanism for

improving joint stiffness (Brughelli and Cronin, 2008).

Fatigue may deteriorate the symmetry of both limbs, with

one limb at greater risk of non-contact injury. The symmetry of

bilateral knee joints after fatigue is significantly less than before

(Smeets et al., 2019; Xiang et al., 2022). Although our study has

not evaluated injury individuals or injury risk, the current study

results suggest that asymmetry magnitude in parameters

previously associated with non-contact knee joint injury may

be fatigue susceptible (Smeets et al., 2019). In the current study,

the asymmetry changes of the knee angle in the horizontal plane

after fatigue can support this view. In the push-off stage, more

significant asymmetry appears after fatigue. This asymmetry may

be caused by the body changing the distribution of tasks in both

lower limbs. Therefore, the whole body is more stable after

fatigue while maintaining performance. However, the knee

joint moment did not change in any of the three anatomical

planes during the push-off stage. This finding can potentially

explain that the change in kinematic symmetry is benign and

does not cause excessive load on the knee joint. Interestingly, this

finding contradicts previous research suggesting that fatigue

causes lower limb kinematics to become more symmetrical

(Gao et al., 2020a). Different motion patterns and the

examination of the symmetry of the whole time series may be

the main reasons for the different conclusions. The same

phenomenon is observed in the landing stage when the

forefoot contacts the ground, which is caused by excessive

external rotation of the knee joint of the non-dominant limb.

Previous studies have reported that the hemimembrane muscle

plays a limiting role in external rotation during knee flexion

(Robinson et al., 2004). Future studies should consider the signal

measurements of hemimembrane muscle of non-dominant limb

to better explain this phenomenon. In addition, forced external

rotation during knee flexion has been previously linked to an

avulsion fracture at the tibial straight arm insertion of the

tendon (Chan et al., 1999; Tao et al., 2021; Xu et al., 2022).

Kinematics changes of asymmetry after fatigue found within

the healthy individuals of this study warrant further prospective

evaluations exploring fatigue and knee asymmetry development

in the CMJ.

There are some limitations in this study. Firstly, all the

subjects recruited in this study were amateur male runners,

and future studies should also consider the differences that

may occur in different levels, such as elite runners. Secondly,

the current study only focused on the biomechanical symmetry

changes of the knee joint, and future studies should analyze

overall lower limb symmetry. Single angle and moment

parameters cannot fully explain the load and work done by

the knee joint. Future studies should conduct more detailed

analyses based on more relevant parameters such as joint

power, mechanics, muscular activity and contact forces. In

addition, only male amateur runners were included in this

study, and gender-induced symmetry differences will be

considered in future studies. In the end, the validity of the

findings may be compromised by potential errors of the

subjective quantification of neuromuscular fatigue (e.g.,

RPE>17). Thus, these comparisons are preliminary. Further

studies using objective neuromuscular fatigue indicators such

as neuromuscular electrical stimulation and IMVC may provide

a different assessment of the quantitation of running fatigue.

Conclusion

This study investigated the changes in knee joint symmetry of

angle and moment during a CMJ task before and after running-

induced fatigue in 12 male recreational runners. SF was used to

check the symmetry of the time series parameters of the whole

motion cycle. The findings from the study were that there were

different degrees of asymmetry in the push-off and landing stages

of both knee joints before and after fatigue. The symmetry of the

external rotation angle of the knee joint deteriorated after fatigue

during the propulsive period during the push-off stage and the

forefoot landing period in the landing stage. The change was

mainly caused by excessive external rotation of the dominant

knee joint. This finding may provide evidence for the asymmetry

of knee joints caused by fatigue during jumping tasks. Future

studies are needed to confirem the potential relationships

between knee joints asymmetry and fatigue and to investigate
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the possible relationship to jump-related injuries and knee

asymmetry.
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