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Peripheral chemoreceptors (PChRs), because of their strategic localization at the
bifurcation of the common carotid artery and along the aortic arch, play an important
protective role against hypoxia. Stimulation of PChRs evokes hyperventilation and
hypertension to maintain adequate oxygenation of critical organs. A relationship
between increased sensitivity of PChRs (hyperreflexia) and exercise intolerance (ExIn) in
patients with heart failure (HF) has been previously reported. Moreover, some studies
employing an acute blockade of PChRs (e.g., using oxygen or opioids) demonstrated
improvement in exercise capacity, suggesting that hypertonicity is also involved in the
development of ExIn in HF. Nonetheless, the precise mechanisms linking dysfunctional
PChRs to ExIn remain unclear. From the clinical perspective, there are two main factors
limiting exercise capacity in HF patients: subjective perception of dyspnoea and muscle
fatigue. Both havemany determinants that might be influenced by abnormal signalling from
PChRs, including: exertional hyperventilation, oscillatory ventilation, ergoreceptor
oversensitivity, and augmented sympathetic tone. The latter results in reduced muscle
perfusion and altered muscle structure. In this review, we intend to present the milieu of
abnormalities tied to malfunctioning PChRs and discuss their role in the complex
relationships leading, ultimately, to ExIn.
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INTRODUCTION

Peripheral chemoreceptors (PChRs) play important roles in adapting to hypoxia, physiologically and
evolutionarily. In humans, PChRs are represented mainly by carotid bodies (CBs) located close to the
bifurcation of the common carotid artery and aortic bodies situated along the aortic arch (Paton et al.,
2013). A decrease in arterial blood oxygenation activates CBs and then, via a reflex arc involving brain
stem nuclei, leads to hyperventilation (Ponikowski and Banasiak, 2001). Similarly, stimulation of PChRs
elicits sympathetic excitation and, in turn, increases peripheral resistance (Despas et al., 2009; Despas
et al., 2012). Moreover, direct stimulation of aortic bodies and activation of Hering-Breuer reflex
(originating from pulmonary stretch receptors) secondary to hyperventilation result in tachycardia
(Niewinski et al., 2014; Tubek et al., 2016; Paleczny et al., 2019). Undoubtfully, these reactions are
protective in acute settings (e.g., high altitude). On the other hand, elevated tonic activity and exaggerated
(concerning the physiological need) acute responses from PChRs may be potentially harmful. This has
repeatedly been shown in selected patients with heart failure (HF)—possibly due to enhanced adrenergic
tone (Ponikowski et al., 2001a; Floras and Ponikowski, 2015).
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Augmented peripheral chemosensitivity characterizes
approximately 40% of patients with heart failure with reduced
ejection fraction (Chua et al., 1997a; Niewinski et al., 2013). There
is a clear relationship between hyperreflexia of PChRs (i.e.
increased peripheral chemosensitivity) and exercise intolerance
(ExIn) expressed as: 1) higher New York Heart Association
(NYHA) functional class or 2) worse cardiopulmonary
exercise test indices (Chua et al., 1996a; Chua et al., 1997a).
Hyperreflexia of PChRs has been repeatedly linked to the worse
clinical profile of HF patients, including a greater degree of
neurohormonal derangement (e.g., higher level of NTpro-
BNP) (Giannoni et al., 2008). However, in the experimental
study employing acute inhibition of PChRs (Chua et al., 1996;
Chua et al., 1997) not only oversensitivity chemoreflex but also
tonic activity of PChRs have been targeted. In those studies, PChR
were blocked with the use of oxygen or opioids, which resulted in
improved exercise capacity of HF subjects. Whether such benefit
was related to a decrease in acute reflex response to the
metabolites of exercising muscles (e.g., lactate) (Torres-Torrelo
et al., 2021) or to the dimished tonic activity of PChRs remains
unknown.

The limitation of exertional capacity in the HF population
emerges from the dyspnoea sensation and/or muscle fatigue.
These are the two most common complaints reported at the
end of the symptom-limited exercise test by HF patients (Clark
et al., 1995). Both can be influenced by a variety of factors related
primarily to low cardiac output and secondarily to: pulmonary
abnormalities (Wasserman et al., 1997; Schmid et al., 2008),
autonomic imbalance (Niewinski et al., 2017), impaired
peripheral perfusion (Piepoli et al., 1996), and altered muscle
function and structure (Wilson et al., 1993).

DETERMINANTS OF EXERTIONAL
DYSPNOEA IN HEART FAILURE

Excessive Hyperventilation During Exercise
Historical studies from the 1960s and 1970s reported a
reduction of dyspnoea sensation in patients with severe
bronchial asthma and chronic obstructive pulmonary
disease following unilateral or bilateral CB resection
(Nakayama, 1962; Winter 1973; Stulbarg and Winn, 1989).
This supports a relationship between the PChRs’ function and
the perception of breathing difficulty. Hyperventilation
(expressed as an increase in tidal volume and/or respiratory
rate) as the primary response to the activation of PChRs may
be subjectively identified as shortness of breath (Chua et al.,
1997a; Wasserman et al., 1997; Motiejunaite et al., 2021).
Inhibition of the tonic PChRs activity (with oxygen,
dopamine or dihydrocodeine) (Chua et al., 1996a; Chua
et al., 1997b; van de Borne et al., 1998) or CB denervation
(Niewinski et al., 2017) decreased the regression slope relating
ventilation to carbon dioxide output (VE/VCO2 slope) in HF
patients subjected to cardiopulmonary exercise test indicating
diminished ventilatory effort for a given carbon dioxide
production. This might translate into a reduced sensation of
dyspnoea and thus explain the benefits seen in the former

studies on CB resection (Nakayama, 1962; Winter 1973;
Stulbarg and Winn, 1989).

A growing body of evidence points to the connection between
the functionalities of central and peripheral chemoreceptors. A
significant reduction of central chemosensitivity occurring
acutely after bilateral CB resection is a piece of obvious
evidence for the hyperadditive character of this interaction
(Del Rio et al., 2013; Marcus et al., 2014). Thus, in HF,
hypertonicity of PChRs enhances exertional hyperventilation
not only directly but also indirectly through the augmentation
of central respiratory drive.

Due to relatively stable arterial partial pressures of oxygen and
carbon dioxide during incremental exercise (Sun et al., 2001;
Forster et al., 2012), acute activation of PChRs is debatable in this
context. On the other hand, it could be hypothesized that the
rising on-exercise concentration of other (than oxygen and
carbon dioxide) known CBs stimulants, such as lactate
(Torres-Torrelo et al., 2021), potassium (McLoughlin et al.,
1995), adenosine (McQueen and Ribeiro, 1981), and
catecholamines (Lahiri et al., 1981), could contribute to
excessive ventilation due to hyperreflexia of PChRs in HF.
According to that notion, not only “tonic” but also “acute”
reactivity of CBs would be involved in ExIn in HF patients
(Scott et al., 2003). This is supported by the fact that the
increase in lactate production during exercise is significantly
faster in HF subjects than in healthy controls. Indeed, Scott
et. (Scott et al., 2003) demonstrated that local lactate
concentrations in the exercising muscles of HF patients were
significantly higher than in subjects with normal left ventricular
function (2.55 ± 0.2 vs. 1.78 ± 0.2 mmol/L).

Restriction of the inspiratory effort (“unsatisfied inspiration”)
may be perceived as breathlessness limiting exercise capacity
(O’Donnell et al., 1999; O’Donnell and Laveneziana, 2006).
One of its main reasons is the phenomenon called dynamic
lung hyperinflation (DLH), which has been described in HF
patients (O’Donnell et al., 1999). DLH is characterized by a
progressive rise in end-expiratory lung volume with
concomitant fall in dynamic inspiratory capacity relative to the
degree of air trapping. The dynamic inspiratory capacity is
continuously diminished due to increasing elastic forces
affecting respiratory muscles when tidal volumes are operating
closer to total lung capacity.

O`Donnell et al. elegantly documented that at a peak work rate
of only 41% of predicted value, end-expiratory lung volume was
equal to 92% of total lung capacity in a group of stable patients
with congestive HF (O’Donnell et al., 1999). DLH emerges from
the expiratory flow limitation caused by several factors connected
with HF state: mucosal oedema (Duguet et al., 2000),
hyperresponsiveness of bronchi (Cabanes et al., 1989), and
age-related airways abnormalities (Light, 1983).

Kawachi et al. show that DLH can be experimentally produced
by hyperventilation (Kawachi and Fujimoto, 2020). Because
hyperventilation during exercise is closely linked to PChRs’
overactivity (Chua et al., 1996a), one could expect that such
patients are also prone to the development of DLH. Moreover,
patients with the augmented activity of PChRs present with
increased sympathetic drive (Floras and Ponikowski, 2015),
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which generates water and sodium retention (Martin and Schrier,
1997; Schrier, 2006). Thus, it may be speculated that interstitial
oedema and inflammation within the airways produced by
sympathetically-mediated [including mobilization of the
venous reservoir via venoconstriction (Bruno et al., 2012)]
increase in fluid volume (Miller, 2016) -could participate in
the development of the obstructive pattern and consequently
further predispose to DLH. However, such a notion would need
to be confirmed in experimental studies.

Apart from the phenomena described above resulting in
airway obstruction, the role of reduced lung compliance
should also be emphasized (Faggiano, 1994). The restrictive
pattern in HF patients may be secondary to heart
enlargement, pleural effusion, and pulmonary vascular
congestion with ensuing interstitial and alveolar edema
(Apostolo et al., 2012). The latter results in an impairment of
alveolar-capillary gas diffusion (DLCO), reflecting poor gas
exchange efficiency (Agostoni et al., 2006).

Metaboreflex Oversensitivity
Overactivity of the muscle ergoreceptors plays an important role
in ExIn in HF patients (Piepoli et al., 1996; Piepoli et al., 1999;
Ponikowski et al., 2001b). The ergoreceptors conduct neural
traffic from the exercising muscles to the ventrolateral medulla
and lateral reticular nucleus through the lateral spinothalamic
tract of the spinal cord (Nauli et al., 2001). The stimulation of the
ventrolateral medulla in an animal model causes a rise in arterial
blood pressure, heart rate, and minute ventilation (Bauer et al.,
1990). Thus, ergoreceptors are responsible for appropriate
ventilation together with adequate blood supply to the
working muscles (Perez-Gonzalez, 1981), which ought to be
adjusted according to the local demands (Piepoli et al., 1995).
Due to many biochemical and structural abnormalities in the
skeletal muscles (presented below), ergoreflexes in HF patients
are exaggerated, provoking an increase in ventilatory drive, overt
peripheral vasoconstriction, and sympathetic excitation.

Ergoreceptors can be divided into metaboreceptors (activated
by metabolites of contracting muscles) (Sinoway et al., 1993) and
mechanoreceptors (sensitive to mechanical contraction)
(Kaufman et al., 1983). As shown by Scott et al., the role of
metaboreceptors in the development of ExIn in HF is more
evident than the contribution of mechanoreceptors (Scott
et al., 2000).

Interestingly, the functionality of metaboreceptors and PChRs
is interrelated. Edgell et al. (Edgell and Stickland, 2014)
demonstrated that the concurrent activation of
metaboreceptors and CBs under hypoxic conditions leads to
the augmentation of both ventilation and muscle sympathetic
nerve activity (MSNA), which was not higher than the sum of
each response separately. It indicates that chemoreflex activation
does not increase the sensitivity of metaboreflex and vice versa.
On the other hand, inhibition of the CBs with hyperoxia
diminished sympathetic response (measured with MSNA)
when concurrent metaboreflex activation was applied but did
not change MSNA when metaboreflex co-activation was absent.
This outcome may be explained by the change in central
integration of carotid chemoreceptor feedback with

metaboreflex activation. This is consistent with the notion of
CBs excitation during exercise in the absence of CBs stimuli.

Contrasting results have been provided by Wan et al. (Wan
et al., 2020), who presented a case for hyper-additive interaction
between metabo- and chemoreflexes under normocapnic hypoxic
conditions during exercise. Interestingly, a hypo-additive
interaction was reported for leg blood flow and vascular
conductance. Consequently, it could be hypothesized that
aroused metaboreceptors may contribute to ExIn in HF due to
tonic activation and possibly by augmentation of acute reflex
response from PChRs. Regardless of somehow discordant results,
it should be emphasized that both cited studies were carried out in
healthy participants. Therefore, how these might interact in the
HF population is unknown.

Exertional Oscillatory Ventilation
Exertional oscillatory ventilation (EOV), according to the
American Heart Association, is defined as an oscillatory
ventilatory pattern lasting for at least 60% of the exercise
duration at amplitude ≥15% of the average resting minute
ventilation (Balady et al., 2010). Schmid et al. (Schmid et al.,
2008) demonstrated that EOV was related to worse exercise
capacity in HF. Patients with heart failure with reduced
ejection fraction and EOV were characterized by poor
ventilatory efficiency on exertion (higher VE/VCO2 slope:
38.0 ± 8.3 vs. 32.8 ± 6.3) and lower workload at peak exercise
(ΔWatts = 5.8 ± 23.0) (Schmid et al., 2008). The potential
mechanisms by which EOV attenuates exercise tolerance in
HF comprise oscillatory changes of dead space ventilation and
unequal lung and muscle perfusion. These disturbances generate
a mismatch between ventilation and perfusion and lead to greater
respiratory muscles work and higher oxygen consumption
(Yajima et al., 1994; Schmid et al., 2008).

The pathophysiology of EOV and periodic breathing in HF is
congruous and related to the disturbances within the “control
loop” system, which regulates ventilation proportionally to the
metabolic demand. These disturbances include increased
controller gain (Ponikowski et al., 2001a), increased plant gain
(Agostoni et al., 2002), and prolonged loop delay (Leite et al.,
2003). Enhanced plant gain emerges from greater carbon dioxide
damping due to diminished lung volume (Agostoni et al., 2002).
Increased loop delay results from the low cardiac output-
hallmark of HF (Yajima et al., 1994). Finally, augmented
controller gain results from oversensitive central and
peripheral chemoreceptors (Chua et al., 1996b). PChRs, as
elegantly presented by Dempsey et al. (Dempsey et al., 2010;
Dempsey, 2012; Dempsey et al., 2012), are essential for producing
apneas following transient ventilatory overshoot and thus for
periodic breathing initiation (Nakayama et al., 2003). Their
hyperadditive interplay with central chemoreceptive areas in
the brainstem (sensitive to carbon dioxide fluctuations) further
perpetuates the oscillatory ventilation pattern.

Apart from the factors mentioned above, an augmented
sensitivity of ergoreceptors (to metabolic changes occurring
locally in exercising muscles), may play an additional role in
generating EOV in the HF population (Dhakal and Lewis, 2016).
By exaggerating the ventilatory response to exertion, sensitized
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metaboreceptors promote hypocapnia which, in turn, may
initiate the periodic pattern of respiration in individuals
characterized by abnormal components of the “control loop”
(Ponikowski et al., 2001b; Scott et al., 2002).

DETERMINANTS OF MUSCLE FATIGUE
IN HF

Limited Muscle Perfusion
According to the Fick principle, oxygen consumption depends
on cardiac output (CO) and peripheral oxygen utilization
(VO2 = CO · ΔAVO2 [arteriovenous oxygen difference]).
Consequently, individuals characterized by higher CO
present with greater peakVO2 on exercise. Interestingly, an
acute increase in CO (e.g., with catecholamines) does not
influence peakVO2 and exercise capacity (Maskin et al.,
1983). This so-called “hemodynamic paradox” can be
explained only by the concurrent decline in oxygen
consumption in the periphery. This brings the notion of
dysfunctional peripheral tissues as the major limiting factor
of exercise tolerance in HF. The oxygen consumption
decreases peripherally because of: 1) restricted blood
perfusion in the skeletal muscles; and 2) functional and
structural abnormalities within the skeletal muscles. In
healthy subjects, metabolic changes occurring in exercising
muscle lead to dilatation of the local vasculature. In HF, this
mechanism is limited, which could be seen as a protective
mechanism aiming to preserve a minimal degree of perfusion
levels for the brain, heart, and respiratory muscles (Poole et al.,
2012). It is likely mediated by overactivation of the
sympathetic system (a typical feature of advanced HF)
(Joyner et al., 1992) combined with diminished capacity for
metabolic vasodilatation (due to oxidative stress and
endothelial dysfunction) (Landmesser et al., 2002; Sharma
and Davidoff, 2002) leading to elevated peripheral vascular
resistance (PVR). The link between PVR and tonic activation
of PChRs in HF was evaluated by Tubek et al. (Tubek et al.,
2021). Under hyperoxic conditions (transient administration
of 100% O2 to inhibit PChRs), PVR decreased in the HF group
(1239 ± 380 dyn s cm−5 vs. 1174 ± 299 dyn s cm−5, p < 0.05),
whereas in controls there was no significant change (1180 ±
317 dyn s cm−5 vs. 1242 ± 332 dyn s cm−5, p = NS) reflecting the
influence of tonic activation of PChRs over PVR in HF patients
but not in healthy controls. An additional piece of evidence
linking PChRs and PVR comes from the study by Niewinski
et al. (Niewinski et al., 2017), in which CB resection decreased
sympathetic tone measured directly with microneurography.
While numerically, the decline in muscle sympathetic nerve
activity (MSNA) was modest (10 bursts/100 beats at 2 months
following surgery); it should be noted that it equated to ~45%
of the excess sympathetic activity related to the heart failure
state (when compared with healthy volunteers of similar age)
(Hart et al., 2009). Furthermore, there are some premises
indicating that PChRs contribute to restriction in peripheral
(not muscle) blood flow. Marcus et al. (Marcus et al., 2015)
demonstrated that in rabbits with congestive heart failure,

renal blood flow decreased under hypoxic conditions. This
response was abolished after CB resection, confirming the
maladaptive role of PChRs hyperreflexia in adequate tissue
perfusion.

Intrinsic Muscle Abnormalities
It has been suggested that intrinsic muscle dysfunction might
constitute a better determinant of ExIn in the HF population
than limited muscle perfusion (Wilson et al., 1993). Intrinsic
muscle dysfunction ensues from structural (Wilson et al.,
1993) and functional (enzymatic) alterations (Drexler et al.,
1992). Among various structural changes observed in HF, a
decline in the proportion of energy-efficient slow-twitch fibres
(type 1) to fast-twitch fibres (type IIb; relying mostly on
glycolytic metabolism) has been commonly reported
(Sullivan et al., 1990).

Enzymatic changes in skeletal muscles are characterized by
reduced activity of enzymes involved in aerobic metabolism
without significant changes in enzymes participating in the
glycolytic pathway (Sullivan et al., 1991). The function of
enzymes contributing to aerobic processes is dependent on
iron supply (Dziegala et al., 2018). Thus, iron deficiency evokes
disturbances in the function of mitochondria in myocytes
(Cartier et al., 1986), reduction of myoglobin concentration
(Hagler et al., 1981), and elevation of lactate production due to
impaired mitochondrial oxidative phosphorylation (Finch
et al., 1979). Moreover, iron deficiency augments lipid
peroxidation, which contributes to myocyte damage
(Knutson et al., 2000).

Therefore, iron deficiency/anaemia (which is a common
comorbidity in HF) (von Haehling et al., 2017) deteriorates
skeletal muscles’ function directly (as explained above), but
also indirectly–through PChRs, which become tonically
activated possibly due to reduced oxygen-carrying
capabilities of blood cells. In support of that notion,
Franchitto et al. (Franchitto et al., 2010) demonstrated that
patients with HF and anaemia are characterized by
augmented baseline MSNA when compared to those with
HF alone (56.0 ± 3.2 vs. 45.5 ± 3.1 bursts per min; p < 0.02).
Furthermore, inhibition of PChR by breathing 100% oxygen
for 15 min attenuated MSNA in HF patients
with anaemia (from 56.0 ± 3.4 to 50.9 ± 3.2 bursts per
min; p < 0.002) but did not alter MSNA in patients
without anaemia.

An excessive sympathetic tone might translate into intrinsic
muscle dysfunction by restraining muscular blood flow,
increasing inflammatory cytokines production, and
deterioration of energy metabolism (Nilsson Jr. et al., 2008).
Activation of the β-adrenergic system increases glycogenolysis
and lactate production in contracting muscle and enhances the
uptake of oxygen and glucose (Richter et al., 1982). These
effects tilt the balance between glycogenolysis and
gluconeogenesis towards the unfavourable catabolic state
(Richter et al., 1982). Furthermore, sympathetic
overactivation promotes a surge of inflammatory
cytokines–among them: tumour necrosis factor-α, which has
known proapoptotic properties (Dalla Libera et al., 2001) and
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interleukin-6, whose level is inversely related to muscle fibre
diameter (Larsen et al., 2002).

Deranged Central Hemodynamics
Central hemodynamics, expressed as a cardiac index or
pulmonary artery wedge pressure, do not correlate with
exercise tolerance characterized by peakVO2 in patients
with advanced HF (Wilson et al., 1995). On the other hand,
there is no doubt that low cardiac output by itself is the
primary reason for most of the disturbances (mentioned in
the above paragraphs) that finally culminate in the
development of ExIn. Interestingly, studies with
biventricular cardiac resynchronization therapy, where an
acute augmentation of cardiac output improves exercise
tolerance, support this concept (Laveneziana et al., 2009;
Schlosshan et al., 2009). This beneficial effect of cardiac
resynchronization is multifactorial and likely related to
several pathways of action: ergoreceptors modulation
(Jaussaud et al., 2012), improvement in respiratory muscles’
function (improved dynamic inspiratory capacity)
(Papazachou et al., 2007), and attenuation of the
sympathetic drive (Hamdan et al., 2002).

To date, we are not aware of any published data
documenting that cardiac resynchronization therapy or
other intervention acutely enhancing cardiac output
influences the activity of PChRs. On the other hand, as
showed in the rabbit model by Ding et al. (Ding et al.,
2011), experimental reduction of CB perfusion (using
carotid artery occluders mimicking diminished blood flow
as seen in HF state) augments peripheral chemosensitivity.
Similarly, Del Rio et al. (Del Rio et al., 2017) demonstrated
that in rats with ischaemic HF, augmentation of chemoreflex
was related to reduced cardiac output. Interestingly, animals
with low cardiac output exhibited a trend towards reduction
of Krüppel-like Factor 2 (KLF2) expression in CBs (Del Rio
et al., 2017). The downregulation of KLF2 (a shear stress-

sensitive transcription factor) leads to oversensitivity of
PChRs, increase in renal sympathetic nerve activity,
development of oscillatory breathing, and propensity for
arrhythmias in rabbits with congestive HF (Marcus et al.,
2018). Interestingly, increasing KLF2 expression with
simvastatin treatment in rodent model limited the
augmentation of peripheral chemosensitivity and improved
respiratory variability, periodic breathing and
arrhythmia index following coronary ligation (Haack et al.,
2014).

The Impact of Exercise Training on
Peripheral Chemoreflex Function
Some premises suggest that exercise training (ExT) may
normalize the oversensitivity of peripheral chemoreflexes
(Schultz et al., 2015). Calegari et al. (Calegari et al., 2016)
presented that regular treadmill for 8 weeks (60 min/day,
5 days/week) improved baroreflex sensitivity and the
attenuated acute pressor response elicited by potassium
cyanide in HF rats. In another study, Li et al. (Li et al.,
2008) investigated the impact of ExT on peripheral
chemoreflex in rabbits with congestive HF. They found
that 4–5 weeks of treadmill training (30–40 min/day,
6 days/week) decreased tonic single-fiber discharge within
the CB nerve and reduced the acute response to hypoxia.
Furthermore, ExT attenuated elevated angiotensin II levels
and increased nitric oxide concentration. Downing and
Balady (Downing and Balady, 2011) suggested that
restoration of sympatho-vagal balance contributes to
improved exercise tolerance seen after regular ExT in HF
patients. This beneficial change might be mediated by
increased blood flow through CBs occurring during
repetitive exercise, which desensitizes PChRs (through
upregulation of KLF2) and, in turn, decreases adrenergic
tone (Marcus et al., 2018).

FIGURE 1 | Involvement of abnormal peripheral chemoreception in exercise intolerance in heart failure.
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SUMMARY

The pathophysiology of ExIn in HF is neither simple nor
intuitive. Numerous factors evoking ExIn exceed beyond low
cardiac output and are closely interrelated. The impaired function
of PChRs–both an augmented tonic activity (hypertonicity) and
increased acute sensitivity (hyperreflexia)—presents as an
important link in the complex pathophysiology of poor
exercise capacity in HF (Figure 1). As discussed above, the
detrimental role of PChRs is related to both dyspnea sensation
and muscle fatigue, with sympathetic overactivation and
hyperventilation as the major mediators leading to ExIn.

Therefore, PChRs seem to be an attractive goal for novel
therapies aiming to improve exercise tolerance in the HF
population. Importantly, such interventions due to the
protective role of PChRs against hypoxemia ought to be
performed with great caution (Niewinski et al., 2021). Bilateral
CB resection might result in profound blood oxygen desaturation
and marked variability in saturation levels even during mild
hypoxia (Niewinski et al., 2021). One way forward might be to
use a pharmacological modulation (e.g., using specific P2X3
inhibitors) instead of an irreversible surgical approach (Pijacka
et al., 2016). Recently proposed denervation of the sympathetic
ganglioglomerular nerve, which is involved in the tonic activation

and sensitization of CB, would also maintain the physiological
function of PChRs, thereby minimizing hypoxia-related side
effects (Niewinski et al., 2021). Those methods of selective
modulation of PChRs, while attractive from a conceptual point
of view, have not yet been transferred into human clinical trials.
Only by performing randomized and placebo (or sham)
controlled studies one could unravel the true role of PChRs
in ExIn.
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