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Computational models of the electrical potential across a cell membrane are longstanding
and vital tools in electrophysiology research and applications. These models describe how
ionic currents, internal fluxes, and buffering interact to determine membrane voltage and
form action potentials (APs). Although this relationship is usually expressed as a differential
equation, previous studies have shown it can be rewritten in an algebraic form, allowing
direct calculation of membrane voltage. Rewriting in this form requires the introduction of a
new parameter, called Γ0 in this manuscript, which represents the net concentration of all
charges that influence membrane voltage but are not considered in the model. Although
several studies have examined the impact of Γ0 on long-term stability and drift in model
predictions, there has been little examination of its effects onmodel predictions, particularly
when a model is refit to new data. In this study, we illustrate how Γ0 affects important
physiological properties such as action potential duration restitution, and examine the
effects of (in)correctly specifying Γ0 during model calibration. We show that, although
physiologically plausible, the range of concentrations used in popular models leads to
orders of magnitude differences in Γ0, which can lead to very different model predictions. In
model calibration, we find that using an incorrect value of Γ0 can lead to biased estimates of
the inferred parameters, but that the predictive power of these models can be restored by
fitting Γ0 as a separate parameter. These results show the value of making Γ0 explicit in
model formulations, as it forces modellers and experimenters to consider the effects of
uncertainty and potential discrepancy in initial concentrations upon model predictions.

Keywords: action potential, electrophysiology, mathematical model, conservation of charge, parameter fitting,
calibration

1 INTRODUCTION

Since the seminal work by Hodgkin and Huxley (1952), mathematical models of electrophysiology
have been developed for many different cell types, including neurons, cardiomyocytes, gastric
smooth muscle cells, and many more (Noble, 1962; Dodge and Cooley, 1973; Corrias and Buist,
2007). Differences in ionic concentrations across cell membranes lead to a transmembrane voltage
(Vm). Its evolution over time is usually calculated in mathematical models by numerically integrating
the effects of the ionic currents passing through the membrane. Since the late 90s, several authors
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have showed that Vm can also be computed directly from intra-
and extracellular concentrations of charges, due to a conservation
principle in the models (Guan et al., 1997; Varghese and Sell,
1997; Endresen et al., 2000; Hund et al., 2001; Jacquemet, 2007;
Livshitz and Rudy, 2009; Pan et al., 2018). In this work, we
investigate further the implications of using this second
expression for Vm in terms of numerical stability, we highlight
its impact on electrophysiological predictions, and we discuss the
benefits to using this approach in model calibration.

First, in this section we present a brief overview of relevant
work that leads to different ways of computing the voltage in
AP models, based on a conservation of charge principle
hidden in the equations, as well as how this conservation
of charge relates to the steady state of the AP models. Section
2 then highlights how the accuracy of solutions is improved
by the algebraic expression for voltage. In Section 3, we show
that model outputs are sensitive to the net concentration of
charge across the cell membrane, which varies because of
high variability and/or uncertainty in initial concentrations.
We finally show in Section 4 that Γ0, a parameter
characterising the relationship between Vm and the intra-
and extracellular concentrations of charges, can be inferred
from experimental data to produce the desired steady-state
behaviour of the AP model, despite being challenging to
estimate experimentally.

In this study, we explore the consequences of writing Vm

algebraically using the Ten Tusscher-Panfilov model of human
ventricular cells (TTP06) (Ten Tusscher and Panfilov, 2006) and
the CiPA version of the O’Hara-Rudy model by Dutta et al.
(2017) (ORd-CiPA). Beyond these two models, our findings
apply to any model tracking the intracellular concentrations of
all charge-carriers, which make up the majority of modern
electrophysiology models.

1.1 Membrane Voltage and Ionic
Concentrations in AP Models
Major variables in AP models include Vm, channel and pump/
transporter state variables and, in later models, concentrations of
ions, buffers, and signalling molecules. The relationship between
these variables, grouped together in a vector X, is expressed as a
system of ordinary differential equations (ODEs) of the form

dX
dt

� f X( ),
X � Vm,C, g{ },

where the vector function f(X) describes the rate of change of X,
which can be subdivided into Vm, the ionic concentrations C and
all other variables g. The first equation in f is usually the one that
defines the rate of change in Vm, using an ideal capacitor equation:

dVm

dt
� − 1

Cm
∑N
j�1

Ij X( ), (1)

where Cm is the membrane capacitance (usually in pF), and Ij are
the N different ionic currents flowing across the cell membrane
(in pA). Note that the currents depend non-linearly on voltage,

concentration, and time, so that all the state variables are coupled
together in a non-linear system.

The earliest AP models (e.g. Hodgkin and Huxley, 1952;
Noble, 1962; McAllister et al., 1975) approximated
intracellular concentrations as constants, arguing that the
relatively small ionic currents would not alter concentrations
significantly. This assumption holds well for the K+ and Na+

currents included in these models, which have relatively large
internal concentrations which do not show significant variations
during a single AP. In addition, simulating longer time spans
during which these small changes could build up, was
computationally infeasible at the time. But after the discovery
of Ca2+ currents in the 60s, it was quickly realised that [Ca2+]i
could vary by orders of magnitude during a single AP,
necessitating the inclusion of a time-varying [Ca2+]i in models
as early as the Beeler and Reuter (1977) model.

Later, DiFrancesco and Noble (1985) proposed a model where
the current-induced changes in [Ca2+]i, [K+]i, and [Na+]i are
tracked over time, along with the extracellular concentration of
K+ close to the cell membrane. This revolutionised the
understanding of major features of cardiac electrophysiology,
as reviewed by Dibb et al. (2015). Most subsequent AP models
have retained the dynamic description for intracellular
concentrations (although [K+]i is sometimes held constant)
and extended it with concentrations in intracellular
compartments such as the sarcoplasmic reticulum (SR, e.g.,
Noble et al., 1991; Wilders et al., 1991; Luo and Rudy, 1994)
and other species (e.g. chloride in Tomek et al., 2020). Variations
in extracellular concentrations over the course of the action
potential proved less popular but are still present e.g., in some
models of atrial (Hilgemann and Noble, 1987; Lindblad et al.,
1996; Nygren et al., 1998) and sino-atrial (Demir et al., 1994;
Dokos et al., 1996; Lovell et al., 2004; Pohl et al., 2016) action
potentials. Even though extracellular concentrations do vary in
practice (e.g., under ischemic conditions), their variations due to
ionic currents are often neglected in AP models because ions are
constantly exchanged with the vascular buffer which limits their
temporal variation in the extracellular space (Dokos et al., 1996)
and reduces accumulation of ions in the extracellular space.

1.2 Algebraic Expressions for Vm
A study by Varghese and Sell (1997) showed that models in which
all membrane currents are assigned to a charge-carrying species,
and in which the intracellular ionic concentrations vary
accordingly, will implicitly satisfy a conservation of charge
principle. As a result, Vm can be computed algebraically as a
function of the concentrations, so that the ODE for Vm Eq. 1 is
redundant. Applying the approach of Varghese & Sell to the Luo
and Rudy (1994) model as an example, we obtain

Vm � V iF

Cm
Na+[ ]i + K+[ ]i +2 Ca2+[ ]i +2V JSR

V i
Ca2+[ ]JSR +2VNSR

V i
Ca2+[ ]NSR( )

+ V0,

(2)
where V0 is an integration constant (called C0 in the original
publication), F is the Faraday constant, V i is the volume of the
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cytosol compartment of the cell, VJSR and VNSR are the volumes of
the junctional (JSR) and network (NSR) sarcoplasmic reticulum
compartments of the cell, respectively, and [Ca2+]JSR and
[Ca2+]NSR are the concentrations of Ca2+ in these
compartments. Hund et al. (2001) used a similar expression
for Vm but moved the integration constant within the
brackets, thereby turning it into a concentration instead of a
voltage. Using C0 to represent the concentration, the two
representations are related by V0 � −ViF

Cm
C0.

Endresen et al. (2000) proposed an expression very similar to
that of Varghese and Sell but with a strong assumption: that all
charges contributing to Vm are carried by K+, Na+, and Ca2+. This
assumption leads to

V0 � −V iF

Cm
K+[ ]o + Na+[ ]o + 2 Ca2+[ ]o( ), (3)

where [X]o is the extracellular concentration of species X. In other
words, Vm is simply proportional to the difference between total
intracellular and extracellular concentrations of these three
species. Endresen et al. acknowledged that their approach
omitted anions, but justified this with the observation that the
total concentrations of anions are approximately the same inside
and outside the cell and that most currents are carried by cations.
However, this framework needs to be extended for models which
include Cl−, e.g., Hund and Rudy (2004); Grandi et al. (2010);
Tomek et al. (2020): Eqs 2, 3 can be combined and generalised to
any number of modelled species and compartments as follows

Vm � V iF

Cm
∑
A

∑
k

zA A[ ]total,kVk

V i
−∑

A

zA A[ ]o⎛⎝ ⎞⎠, (4)

where A represents each charged species in the model, zA its
valence, Vk is the volume of the compartment k and the index k is
over all intracellular compartments (e.g. compartment k = i
corresponds to the cytosol). Equation 4 therefore
accommodates further electrically charged species such as
chloride, provided that the model keeps track of changes in
their intracellular concentrations.

Note that the total concentration of any ion A is denoted here
as [A]total,k. Some models include buffering of ions which alters
free ionic concentrations, but as binding to buffers does not cause
current flow over the membrane it should not change membrane
voltage. So the [A]total notation in Eq. 4 serves as a reminder that
the total concentration carried by A is given by the sum of any
buffered and free concentrations. For example, in many models
[Ca2+]total, i is not equal to [Ca2+]i. This can make derivation of an
algebraic-Vm formmore complicated than in the examples above.

However, various other charge-carriers—ions, compounds
and charged proteins—are known to be present at different
concentrations on either side of the membrane, but are
omitted from models. If these omitted charge carriers lead to a
net transmembrane voltage, then an extra parameter is needed to
account for the contribution of their charge imbalance to Vm. For
example, the Hund and Rudy (2004) dog action potential model
includes Cl− ions and an extra offset parameter would be needed
to compensate the strong imbalance between intracellular

(~ 20mM) and extracellular (~ 100mM) concentrations of
Cl−, or there would be huge voltages using Eq. 4. In this
model, chloride co-transporters change intracellular K+, Na+

and Cl− concentrations but do not induce any ionic current or
change voltage as they transport pairs of oppositely charged ions.
The balanced effect of these co-transporters does not need special
treatment in the equations above as long as both co-transported
ionic species are accounted for.

We can modify Eq. 4 to explicitly allow for transmembrane
imbalance of species that are not included in the model:

Vm � V iF

Cm
∑
A

∑
k

zA A[ ]total,kVk

V i
−∑

A

zA A[ ]o⎛⎝ ⎞⎠ + ΔV. (5)

Here, ΔV corresponds to the transmembrane potential due to
the difference in charge of all un-modelled species on either side
of the membrane. As the contribution of these species toVm is not
modelled as varying, ΔV remains constant through the
simulations. Equivalently, we can express the offset constant as
a concentration that we denote Γ0:

Vm � V iF

Cm
∑
A

∑
k

zA A[ ]tot,kVk

V i
−∑

A

zA A[ ]o + Γ0⎛⎝ ⎞⎠, (6)

where Γ0 � V iFΔV/Cm.
Expressing the offset as a concentration rather than voltage

may help in assessing whether the values implicitly attributed to
Γ0 by ODE models could be realistic. If positive, Γ0 could be
interpreted as the net concentration of 1 + charged intracellular
ions carried by species omitted in the model (or equivalently the
net extracellular concentration of 1 − charged ions), and if
negative it could be interpreted as a net intracellular
concentration of 1 − charged omitted ions—but in reality it
will reflect the sum of concentrations of a wide range of intra
and extracellular un-modelled charged species. The smaller the
magnitude of Γ0, the smaller the transmembrane imbalance of
charge carried by un-modelled species. As a consequence, a value
of Γ0 = 0 mM does not necessarily imply that no charge is missing
in the model; but it does imply that any external missing charge is
balanced exactly by an internal missing charge. Thus, the value of
Γ0 must be interpreted in the light of which charged species are
included in each model. Throughout this manuscript, we will use
the Γ0 symbol to represent these missing charges, but the results
hold equally well for its mathematically equivalent representation
as voltage (Endresen et al., 2000), concentration of charge (Hund
et al., 2001), or electrical charge (Jacquemet, 2007). Further detail
on these expressions and their interpretation is provided in
Supplementary Material Section S1-2.

A value for Γ0 can be found by substituting in the initial
conditions for the concentrations and the initial value of Vm from
the ODE formulation. This highlights an important point: models
that express Vm in ODE form “hide” the value of this model
parameter within their initial conditions. So when a set of initial
conditions is chosen, perhaps arbitrarily from within the bounds
of physiological realism, a hidden assumption is being made
about the (im)balance of un-modelled charges in the cell. As we
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will show in this study, this net imbalance in un-modelled charge,
captured by Γ0, is a key parameter in determining the behaviour
of AP models.

1.3 Γ0 and Stable Behaviour
In Figure 1 we show the stable behaviour of the O’Hara-Rudy
CiPA model when paced for a long time at 1 Hz. The solution
converges to a pattern under which all variables in the system take
the same trajectory (to within numerical simulation tolerances)
every time a stimulus is applied. The resulting periodic orbit in
the state variable space (as shown in Figure 1E) is called a “stable
limit cycle” in the study of dynamical systems, but is often
referred to as a “steady state” for shorthand in
electrophysiology modelling. Figure 1 also shows how a
change in pacing to 2 Hz results in a transient shift to a new

limit cycle. Similar transients to different limit cycles will also
occur when other parameters in the model are changed (e.g.,
those representing maximal ion channel conductances being
altered by drug block, or a change in extracellular
concentrations). A model at a limit cycle has settled to a stable
behaviour where each ionic concentration is in a dynamic
equilibrium—any depletion/accumulation due to ions flowing
down concentration gradients is restored before the next pace by
pumps and exchangers (see Figure 1C).

Convergence to a stable limit cycle of the same period as the
pacing (a “period-1” orbit) is not guaranteed: some models’
variables/concentrations may simply keep drifting (perhaps
reaching unrealistic levels); exhibit more complex behaviour
such as alternans (a stable “period-2” limit cycle in which we
arrive back at the same state after two stimuli periods rather than

FIGURE 1 | Example of a limit cycle in the O’Hara-Rudy CiPA 2017 model (Dutta et al., 2017), using the initial conditions from the published CellML model. The
simulation methods are detailed in “Simulation”. (A): Comparison of paced steady-state APs with 1 and 2 Hz pacing. (B): Adaptation of the voltage profile when the
pacing rate is suddenly changed from 1 to 2 Hz. The dots plotted on the traces correspond to the end of the diastolic phase in each AP. (C): Comparison of periodic
steady-state [K+]i variations during the AP with 1 and 2 Hz pacing. The values are normalised for easier comparison. (D): Adaptation of [K+]i after the sudden
change to 2 Hz shown in panel (B). (E): Vm and [K+]i during the transient adaptation phase where the model converges towards its periodic steady state. Data is shown
from the 500th pace onward. After a slow drift of [K+]i over time, a limit cycle (in blue) is reached where the patterns from consecutive APs overlap. (F): Evolution of
diastolic intracellular potassium (measured at the time points denoted with dots in B and D) after a change in pacing rate. A limit cycle is reached after approximately
700 2 Hz paces.
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one); or even chaotic behaviour (Qu, 2011). If pacing is stopped
altogether, model variables may converge to stable values—a
“stable steady state”. In models that exhibit automaticity, a
limit cycle can be reached without any periodic forcing
applied by a stimulus current. In this manuscript, we will use
either “limit cycle” or “periodic steady state” when referring to
stable limit cycles, and “quiescent steady state” when referring to
stable steady states without any periodic forcing by a stimulus
current.

Many published models do not exhibit a periodic steady state.
Hund et al. (2001); Jacquemet (2007) showed that models where
variables drift can often be ‘fixed’ to produce periodic steady
states by ensuring that all currents through the membrane,
including the stimulus current, are taken into account in the
concentration updates, i.e. by ensuring that charge is conserved
(as well as other conservation laws, see Pan et al., 2018).

Even when a model does have a periodic steady state, for any
models where Vm is written as a redundant ODE, the charge
represented by Γ0 is defined by the initial conditions. As a result,
arbitrarily varying initial conditions in the presence of this
redundant ODE alters the parameterisation of the model
(changes the amount of charge in the system), and any
quiescent steady states or limit cycles can alter accordingly. Or
in other words, when a redundant ODE is included there can be
no unique periodic steady state, it will vary depending on the
initial conditions. Conversely, when the redundant ODE is
removed there is often a unique stable limit cycle or quiescent
steady state; that is, the same quiescent steady state or limit cycle
is reached for any initial conditions.

Some authors such as Livshitz and Rudy (2009) have gone a
step further, and suggested that uniqueness of limit cycles/
quiescent steady states is guaranteed once conservation of
charge is met. An analysis by Jacquemet (2007), however,
shows that more than one stable quiescent steady state can
exist for a charge-conserving model with a given value of Γ0.
Examining the atrial model by Nygren et al. (1998), Jacquemet
found that for some values of Γ0 the model had a stable steady
state where Vm is polarised at rest (−60 to −90 mV), a stable
steady state where the cell is depolarised to about −30 mV, and an
unstable periodic steady state where the model displays
automaticity. In the course of this study we also found
examples of more than one stable limit cycle in other analytic-
Vm models, which are discussed below.

Although undoubtedly important for reproducible modelling,
it is reasonable to question the physiological relevance of
quiescent steady states and limit cycles. Convergence to a
perfect limit cycle seems unlikely to occur in real cells, as
channel activity and other chemical processes are inherently
stochastic and will perturb each orbit differently. The idea of a
limit cycle, however, overlaps well with biological concepts of
homeostasis and robustness. Even though the cell’s environment
is constantly altering to some degree, it would be ideal for a cell to
exist in close proximity to a stable limit cycle such that small
stochastic perturbations converge back to the same behaviour—at
least while energetic demands are met.

2 IMPACT OF THE ALGEBRAIC VOLTAGE
FORMULATION ON NUMERICAL
SOLUTIONS
2.1 Models and Simulation
CellML files for the TTP06 and ORd-CiPA models were obtained
from the Physiome Model Repository (Yu et al., 2011). The
TTP06 model has epi-, endo- and mid-myocardial variants;
where not stated otherwise we used the epicardial variant in
this study. The units in the obtained CellML files for TTP06 had
to be corrected before the algebraic-Vm form could be applied, as
described in Supplementary Material Section S1.1. The
algebraic-Vm forms of the TTP06 and ORd-CiPA models were
derived, and model variants that employ this form were created
for comparison with the original derivative-Vm form. A detailed
overview of the conversion of a model to its algebraic-Vm form is
given in Supplementary Material Section S1.3, along with a
guide to performing this translation in other models.

Simulations were performed using Myokit (Clerx et al., 2016)
which imported the CellML models, and using solver tolerances
stated in the section below. Unless stated otherwise, figures were
created after 2000 pre-pacing stimuli at a frequency of 1 Hz. In
the TTP06 model, the stimulus current was modelled as a K+

current of amplitude −52A/F lasting 0.5 ms. In the ORd-CiPA
model, the stimulus current was also attributed to K+ ions and its
amplitude was set at −50A/F and its duration at 1 ms.

All code used for this article is publicly available and open
source (see Data Availability at the end of the article).

FIGURE 2 | Evolution of resting membrane potential (RMP) in a
simulation with the derivative-Vm ORd-CiPA model, starting from the
published initial conditions. 2000 paces were simulated, we are showing
paces 250 onwards to examine the behaviour close to periodic steady
state. A slight drift is observed when using a coarse solver tolerance, but this
disappears when tolerances are tightened.
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2.2 Accuracy of Solutions
Simulations in Myokit are performed using the CVODES
software package (Hindmarsh et al., 2005) to numerically
integrate the differential equations. CVODES has two
“tolerance” settings that control the accuracy of the numerical
solutions (Cohen et al., 1996). To visualise the influence of solver
tolerance on AP simulations and find suitable tolerances to use in
this study, simulations were run for 2000 paces with the ORd-
CiPAmodel in its derivative-Vm form, using a coarse setting (10–6

and 10–4 for absolute and relative tolerance, respectively) and a
fine setting (10–8 and 10–6). The resting membrane potential
(RMP) was measured as the Vm 1 ms before application of the
stimulus, and plotted for the final 1750 paces in Figure 2.

As expected, using coarse tolerances results in (a small)
numerical error in the solution, but the figure also shows a
slight drift in Vm, even after 1,000 paces. When tightening the
solver tolerance, the numerical noise is significantly reduced, and
Vm stabilises after around 700 paces. The other state variables
show a similar pattern, as can be seen for [K+]i in Supplementary
Material Section S1.4.

To further investigate the long term stability of the solutions,
3,000 paces were simulated with the ORd-CiPA and TTP06
models, in both the derivative and the algebraic-Vm forms.
Since, with fine tolerances, the system had stabilised after 2000
paces (see Figure 2), the variation in the state variables after 2000
paces could safely be attributed to numerical error and not to

electrophysiological phenomena. We quantified this variation by
measuring the standard deviation in the final 1,000 paces in [K+]i
(the state variable that had the highest absolute value and largest
variations over successive paces, see Supplementary Material
Section S1.4). This standard deviation was evaluated for several
solver tolerances, in both the derivative and algebraic-Vm forms
of the models, and plotted in Figure 3 to create a “map of
stability”.

For both models, numerical solutions appear less stable when
using the derivative-Vm form Eq. 1. We believe this is because the
intracellular ionic concentrations andVm are updated without the
numerical method having any knowledge of Γ0. This can lead to
numerical errors that break conservation of charge, effectively
introducing variations in Γ0, and allowing the periodic steady
state of the system to change. By contrast, when explicitly
incorporating the algebraic constraint on Vm (Eq. 6) and
fixing Γ0, conservation of charge is guaranteed, so that the
periodic steady state stays the same and the stability of the
solution is improved.

For the remainder of this manuscript, we therefore used the
algebraic-Vm form and absolute and relative solver tolerances of
10–8 and 10–6, respectively.

2.3 Computation Time
We also investigated whether computation time was affected by
switching to the algebraic-Vm form of the model. One might have

FIGURE 3 | Numerical stability of [K+]i in the TTP06 and ORd-CiPA models, comparing the derivative and algebraic-Vm forms. The colour map corresponds to the
standard deviation of [K+]i between the 2000th and 3000th pace. The darker the map, the lower the variance, and the more stable the simulation.
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expected an improvement in simulation time due to a smaller and
better conditioned system with the redundant ODE removed
(avoiding a singular Jacobian as Varghese and Sell (1997)
suggested), but there was no significant (if any) change in
computation time, see Supplementary Figure S5 in the
Supplementary Material.

3 PHYSIOLOGICAL IMPACT OF Γ0

3.1 Γ0, [K+]i and [Na+]i in Human Ventricular
AP Models
The algebraic-Vm form of the model (Eq. 6) gives the voltage in
terms of the total intra- and extra-cellular ionic concentrations.
The impact of variations in these parameters and variables across
ventricular models was investigated by computing Γ0 for several
literature models using the published initial conditions. This
work could be carried out only for models which obey the
conservation of charge principle. The results are shown in
Table 1 which reports Γ0 (Eq. 6), the corresponding C0 as
defined by Endresen et al., and the corresponding voltage
offset ΔV for each of the investigated models.

These parameters contain information about the difference
between the un-modelled intra- and extracellular charged species
(e.g. H+, Mg2+, cations, phosphates, proteins). In the TTP06 Epi
model, for example, the intra- and extra-cellular charges of these
missing species are responsible for a voltage offset of 18.2 V. In
the ORd-CiPA model, the voltage offset is of −126.8 V.

The Tomek et al. (2020) model (an update of the 2019 version
to conserve charge) has a very high Γ0 constant due to the
inclusion of chloride ions, for which there is a very large
difference between intra- and extracellular concentrations. In
the Ten Tusscher et al. (2004) model, the epicardial and
endocardial versions were assumed to have the same initial
conditions, so their missing charge concentrations are the
same. The 2006 epi/endo variants of the Ten Tusscher model
(Ten Tusscher and Panfilov, 2006) have minor differences in the
initial conditions and buffered Ca2+ concentrations. As a result,
there are slight differences in Γ0 between the various versions of
the Ten Tusscher et al. model.

It remains to be seen whether the Γ0 value (net concentration
of un-modelled charge) is biologically as variable as the values it

has been implicitly assigned within models, or whether this
simply reflects lack of information on real concentrations and
subsequent uncertainty in what initial conditions should
be used.

Comparing the magnitudes of Γ0 and ΔV in Table 1 shows
that a 20 mV variation one might observe in resting
potential between models corresponds to Γ0 variations of
approximately 0.002 mM, much smaller than the variation
in the offset constants between models. So what we observe is
not influenced much by the precise value of the initial
condition for the RMP (this is the same reason initial
gating variable values have negligible effects) but instead by
how the various possible initial concentrations cause
longer term system behaviour to change via altered Nernst
potential (or GHK flux equations) and resulting currents, as
well as any explicit concentration-dependence in gating
kinetics. So the impact of initial RMP on Γ0 can be
neglected in comparison to that of initial concentrations
(RMP is also much easier to measure to within a few
millivolts in experiments). As a consequence, variation of

TABLE 1 | The integration constant for a range of human APmodels, written asC0 (Hund et al., 2001)—see Section 1.2—, net un-modelled species concentration Γ0 Eq. 6,
and voltage offset ΔV Eq. 5. The Trovato et al. (2020) and Stewart et al. (2009) models are Purkinje fibre models, while the remaining models represent ventricular cells.

Model C0 (mM) Γ0 (mM) ΔV (mV) Included ions

Trovato et al. (2020) 195.3377 −46.3377 −1.0605 × 106 K+, Na+, Ca2+

Stewart et al. (2009) 147.2641 2.1359 1.8273 × 104 K+, Na+, Ca2+

Ten Tusscher et al. (2004) Epi/Endo 150.5207 −1.1207 −9.5878 × 103 K+, Na+, Ca2+

Ten Tusscher and Panfilov (2006) Epi 147.2683 2.1317 1.8237 × 104 K+, Na+, Ca2+

Ten Tusscher and Panfilov (2006) Endo 150.5427 −1.1427 −9.776 × 103 K+, Na+, Ca2+

Iyer et al. (2004) 135.7501 10.2499 1.6659, ×, 105 K+, Na+, Ca2+

O’Hara et al. (2011) Endo 156.8010 −7.8010 −1.2680, ×, 105 K+, Na+, Ca2+

O’Hara et al. (2011) Epi 156.8022 −7.8022 −1.2682 × 105 K+, Na+, Ca2+

Dutta et al. (2017) (ORd-CiPA) Endo 156.8011 −7.8011 −1.2680 × 105 K+, Na+, Ca2+

Tomek et al. (2020) Epi 135.7563 −137.1563 −2.2294 × 106 K+, Na+, Ca2+, Cl−

Tomek et al. (2020) Endo 135.7555 −137.1555 −2.2294 × 106 K+, Na+, Ca2+, Cl−

FIGURE 4 | Initial concentrations published for cardiac AP models, for a
range of species and tissues. Green: human, Purple: canine, Orange: rabbit,
Yellow: Guinea pig, Blue: mammalian, Pink: murine. The dotted box highlights
the extreme values of intracellular concentrations, estimated from the
work of Bers et al. (2003) for Na+ and from the Grandi et al. (2010) and the
Tomek et al. (2020) models for K+.
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the initial voltage used to compute Γ0 from Eq. 6 was neglected
in this study and the initial voltage as published in the original
models was used to compute Γ0 in simulations of the
sections below.

3.2 Γ0 and Ranges of K+ and Na+
In this section, we estimate the variability of Γ0 from literature
and observe how this variability might impact the AP predicted
by the model. The values that can be taken by Γ0 are, for a large
part, dictated by the uncertainty in intracellular concentrations in
intact myocytes. Extracellular concentrations are fixed
parameters in most AP models that are more reliably
estimated (at least in in vitro experiments); we therefore
investigate the effect of only the initial conditions of
intracellular state variables on long-term model behaviour.

A literature search was carried out to find the range of
intracellular K+ and Na+ concentrations observed
experimentally in human cardiomyocytes and/or used in
simulations. The contribution of Ca2+ to total intracellular
charge at the end of the resting phase of the AP is much
smaller, so its variation can be neglected compared to K+ and
Na+, and Γ0 variation between the models is mainly due to
different intra- and extra-cellular K+ and Na+. The
concentrations of [K+]i and [Na+]i used in previous cardiac
AP models are reported in Figure 4, for a range of tissues and
species based on the annotated CellML models at https://github.
com/Chaste/cellml that were studied in Cooper et al. (2015).

In human ventricular cardiomyocytes the intracellular sodium
concentration ([Na+]i) was found to range experimentally from 4
to 16 mM (Bers et al., 2003). Fry et al. (1986) determined
experimentally that the intracellular potassium concentration
([K+]i) is 113 ± 6 mM in rat cardiomyocytes. We did not find
direct experimental measurements of [K+]i in ventricular human
cardiomyocytes in the literature. Also, experimental
measurements of intracellular ionic concentrations in intact
cardiomyocytes were all performed in the quiescent
configuration. We therefore used initial values for [K+]i from
human ventricular AP models as a measure of uncertainty in
[K+]i, which ranged from 120 mM in the Grandi et al. (2010)
model to 152 mM in the Tomek et al. (2020) model. With these
estimated ranges for [K+]i and [Na+]i, the range for their sum
varies by 44 mM. Such uncertainty in intracellular concentrations
produces the high variability of Γ0 between models that is
observed in Table 1.

The extreme K+ and Na+ concentrations from Figure 4 were
used to initialise [K+]i and [Na+]i in simulations to observe the
effect of such variations on the limit cycle AP. The K+

concentration was initialised to 120 mM and to 152 mM in the
two models, whilst the initial Na+ concentration was initialised to
4 mM and to 16 mM, respectively. Γ0 was computed from Eq. 6
for these intracellular concentrations and initial voltage set to its
published value (−84.9 mV for the TTP06model, − 88 mV for the
ORd-CiPA model). The high total concentration of intracellular
ions yielded Γ0 = −20.4 mM and Γ0 = −24.4 mM in the TTP06 and
the ORd-CiPA models, respectively. The low total concentration
of intracellular ions yielded Γ0 = 23.6 mM and Γ0 = 20.9 mM in
the TTP06 and the ORd-CiPA models, respectively.

In simulations in sections below where the value of Γ0 is
imposed by the user, the initial intracellular concentrations must
be changed to satisfy the algebraic constraint of Eq. 6 and leave
the initial voltage unchanged. Otherwise, the high variations of Γ0
reported in Table 1 would lead to voltage offsets of up to several
kilovolts. The intracellular concentration of K+ was therefore
adjusted with Eq. 6 so that the initial voltage remains untouched
and consistent with the required value of Γ0. Alternatively, Na+
could be adjusted; but the degree of variation of Γ0 could lead to
negative values of [Na+]i so we adjust K+ instead.

The ORd-CiPA model has extra ionic variables compared to
the TTP06 model: variables were added for the concentrations of
sodium and potassium in the subspace domain, denoted by
[Na+]SS and [K+]SS. At the limit cycle, the difference between
diastolic concentrations of ions in the subspace and in the
intracellular compartment were observed to be smaller than
0.1 mM, even when initial conditions were set to very different
values (results not shown). Furthermore, there is no physical
structure delimiting the subspace from the bulk intracellular
space. Thus, K+ and Na+ concentrations in the subspace are
very close to concentrations in the main intracellular
compartments at the end of the resting phase of the AP,
i.e., when state variables are initialised in simulations. To
avoid introducing big differentials in K+ and Na+

concentrations between the subspace and the bulk cytosol
compartment in simulations where the user introduced
changes to initial conditions for [K+]i and [Na+]i, the initial
conditions of [Na+]SS and [K+]SS were set to the same values as
[Na+]i and [K+]i respectively.

The limit cycle APs, observed after 2,000 paces, are plotted in
Figure 5. The difference in Γ0 induces important changes in the
limit cycle AP, especially for the TTP06 model. For instance, the
TTP06 model does not have a physiological AP when simulated
with a very low Γ0 value, the cell does not depolarise. In the ORd-
CiPA model, the RMP is particularly impacted, decreasing from
−82 mV for Γ0 = −24.4 mM to −88 mV for Γ0 = 20.9 mM. This
shows that Γ0 variations have a strong impact on the model
output, which is investigated further below.

3.3 Effect of Γ0 on Steady States
Several authors have asserted that Γ0 (or its equivalents from the
literature) defines the steady states of various models, both under
paced and unpaced conditions (Hund et al., 2001; Jacquemet,
2007; Livshitz and Rudy, 2009; Pan et al., 2018). Here we
investigate the steady states and limit cycles reached by the
TTP06 and ORd-CiPA models for initial conditions that
sample the range of physiologically-plausible Γ0 values
(Section 3.2).

The range of experimental concentrations determined in the
previous section was sampled at 10 linearly spaced Γ0 values. For
each Γ0 value, the [Na+]i range was sampled linearly at 10 points.
The initial [Ca2+]i was taken to range from 0.5 to 1.5 times its
originally published value, also with 10 sampling points, giving a
total of 100 samples for each Γ0 value. The remaining Ca2+

concentrations were initialised to a random value ranging
from 0.5 to 1.5 times their published initial value. The initial
value for [K+]i was computed using Eq. 6 to match with the initial
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voltage of the published model. Due to the linear relationship
between the ionic concentrations in Eq. 6, a hyperplane in the
state variable space can be associated to each Γ0 value. The initial
values of the remaining state variables (gating variables) were
taken randomly within the range 0–1, and the sum of the Markov
states in the IKr compartment of the ORd-CiPA model was
maintained equal to 1. The quiescent steady state was reached
after 4000 s without pacing and the limit cycle was recorded after
2000 s of steady 1 Hz pacing, and the values of the state variables
at the end of the diastole were recorded.

The quiescent steady state and the 1 Hz limit cycle diastolic
intracellular concentrations are shown in Figure 6. For each Γ0
value, all the simulations converged to the same quiescent or
periodic steady state. The steady states that can be reached by the
models for the various Γ0 values align on these plots.

Note how some of the points in Figure 6A appear to move
outside the Γ0 plane. Only [K+]i, [Na+]i, and [Ca2+]i are plotted
to allow a 3D visualisation of the quiescent steady states and limit
cycles. Thus, major changes in other concentrations, which are
not plotted in the figure, shift the steady states. Although the
steady state variables appear outside of the initial Γ0 plane in this
lower dimensional representation, Γ0 was correctly preserved
throughout the simulations.

For both models, regardless of the initial conditions used for
the state variables, a unique quiescent steady state and a unique
1 Hz limit cycle were observed for each value of Γ0. Thus, the
solution of the model under quiescence and for prolonged
regular pacing is defined by the value of Γ0. This observation
is consistent with the studies mentioned previously, with
constants equivalent to Γ0. As a conclusion, Γ0 can be used
as a single model parameter to summarise the intracellular
concentrations in these models at these pacing conditions
and parameter values. Moreover, the initial conditions for the
gating variables did not impact the limit cycle or steady-state
outputs, so their initial conditions were not altered in further
simulations. When calibrating an AP model based on its limit

cycle or steady state outputs, it appears sufficient to establish the
correct value of Γ0, regardless of how K+, Na+ and Ca2+

concentrations and gating variables are individually
initialised as long as they remain physiologically plausible.
Thus, when exploring values of Γ0 in a derivative-Vm model
the changes could be attributed to a single intracellular
concentration (K+ for example) without loss of generality.

3.4 Model Predictions Are Sensitive to Γ0
The influence of Γ0 on the limit cycle outputs and on the APD
restitution portrait was evaluated in the TTP06 and ORd-CiPA
models. The models’ outputs were recorded with Γ0 values
varying by 30 mM. Intracellular concentrations were initialised
so that Eq. 6 is satisfied with the initial voltage set to its published
value. The state variables other than intracellular concentrations
were initialised to their originally published initial values. 2000
paces were simulated to approach the limit cycle. The inward
rectifier potassium current (IK1) and the sodium potassium
exchanger current (INaK), the currents which showed the
highest sensitivity to Γ0 change, were recorded at 1 Hz pacing,
together with Vm.

The AP duration restitution portrait at limit cycle was
investigated using the Cardiac Electrophysiology Web Lab
(https://chaste.cs.ox.ac.uk/WebLab) (Cooper et al., 2016; Daly
et al., 2018). There, the models were loaded as CellML files, using
the public protocol “Steady State Restitution”. In this protocol,
2000 paces are applied (bringing models close to their limit
cycles) at various pacing periods ranging from 250 to 2000 ms.
Two consecutive APs are then recorded, and their APD90s
measured. The limit cycle outputs at 1 Hz and the restitution
plots are shown in Figure 7.

Γ0 variations impacted the IK1 current particularly strongly in
bothmodels, with faster IK1 activation kinetics for lower Γ0 values,
see Figures 7A,E. In addition, peak IK1 is decreased by 45% when
increasing Γ0 by 30 mM in the ORd-CiPA model. INaK is also
shown to be sensitive to Γ0, see Figures 7B,F. When using a low Γ0

FIGURE 5 | Limit cycle APs for extreme initial conditions for the TTP06 model (A) and for the ORd-CiPA model (B). Extreme Γ0 values covering approximately
44 mM are computed from the extreme [K+]i and [Na+]i observed in human ventricular models, as reported in Figure 4.
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value, INaK is reduced by approximately 15% in both the TTP06
and the ORd-CiPA models. The consequences for the simulated
AP are important, see Figures 7C,G. When looking at the resting
membrane potential (RMP) and the APD at 90% repolarisation
(APD90) for example, RMP is increased from −88 mV to −82 mV
for the TTP06 model, and from −88 mV to −83 mV in the ORd-
CiPA model when increasing Γ0 by 30 mM. APD90 is increased
from 299 to 306 ms for the TTP06 model, and is increased from
265 to 273 ms in the TTP06 ORd-CiPA model, when increasing
Γ0 by 30 mM.

Figures 7D,H show that Γ0 has an effect on the APD90 steady
state restitution portraits. The bifurcation of APD90 in the

restitution portrait is particularly important as it is
characteristic of alternans, when two consecutive APs do not
have the same APD90 but the model outputs are still periodic.
Note that when stable alternans occurs, the limit cycle no longer
follows the trajectory of the state variables over a single pacing
period, but over two consecutive pacing periods.

There is a bifurcation of APD90 for pacing periods at 700 ms
for the TTP06 model and at 400 ms for the ORd-CiPA model.
The pacing periods generating this bifurcation appear to be
independent of Γ0. However, the steepness of the restitution
slope as well as the size of the bifurcation depend on Γ0 used
for the simulation, especially for the ORd-CiPA model. In the

FIGURE 6 | Plot of the quiescent steady state and limit cycle values for [Na+]i , [K+]i and [Ca2+]i . (A): TTP06 model at a quiescent steady state. (B): ORd-CiPA
model at a quiescent steady state. (C): TTP06 model in a limit cycle. (D): ORd-CiPA model in a limit cycle. Each plane has initial conditions satisfying Eq. 6with the same
fixed Γ0 value. 100 combinations of initial conditions are sampled from each plane to cover the physiological range of concentrations. These initial conditions are used in
simulations to reach the (top row) quiescent steady state and the (bottom row) paced limit cycle. The steady state and limit cycle concentrations are plotted as
points (with dashed projections along the associated Γ0 plane), with the colour matching the plane from which the initial conditions were sampled. For clarity, the planes
for which the quiescent steady state is out of the range reported in Section 3.2, are not shown.
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studied models, higher values of Γ0 generate wider bifurcations in
the APD90 restitution portrait. The impact of Γ0 on characteristics
of the alternans predicted by the TTP06 and ORd-CiPA models
stresses the need to carefully consider the value of Γ0 used in AP
models.

4 CALIBRATION OF AP MODELS AND Γ0

The dependency of model outputs to Γ0 observed in Figure 7 is
also expected have an impact when fitting parameter values to
whole traces of Vm, or their derived biomarkers. Indeed, if Γ0 is
fixed to a value that incorrectly summarises the experimental
concentrations under which the data were generated, we might
expect a fitting process to return parameter values which are
skewed away from their correct values. A fitting of the ORd-CiPA
model to synthetic (simulated) data was performed to examine
this effect.

The synthetic datasets used in model training were generated
by running the ORd-CiPA model for 2000 pre-paces (1 Hz
pacing), and recording the 2001th AP, with one data point per
0.05 ms, no noise was added. The “true” scaling parameters for
conductances were then “forgotten” and re-calibrated to the
synthetic AP data, as in Johnstone et al. (2016). The
parameters used for the simulations are expressed as: gsimulation

= θ × goriginal, with gsimulation the value of the conductance used for
the simulation, θ the scaling factor, and goriginal the original value
of the conductance parameter. Thus, a scaling factor of θ = 1
corresponds to the conductance used in the original published
model (the “true” value in this synthetic study).

Three cases were explored to assess the influence of Γ0 in the
fitting process. In the first case, the initial conditions were
unaltered (assumed to be known/exactly correct), therefore the
value of Γ0 during the fitting was set to the “true” value, i.e. the one
used for synthetic data generation. In the second case, the model

was fitted with a fixed and incorrect Γ0 value computed from
initial concentrations and voltage published for the TTP06model,
a different but still plausible value. The third fitting is the same as
the second case, but Γ0 was added to the set of parameters to be
fitted, to allow compensation for discrepancy in the initial
intracellular ion concentrations provided by the user (in terms
of Figure 6 this allows flexibility in the plane upon which
intracellular concentrations will settle). The initial conditions
used for the fittings are reported in the Table 2.

When using initial concentrations from the TTP06 model,
calcium concentrations, [Na+]i and [K+]i were set to the values
published by Ten Tusscher and Panfilov (2006) [K+]SS and
[Na+]SS were initialised to the same value as [K+]i and [Na+]i.
In the ORd-CiPA model, the SR is split into two sub-
compartments while the TTP06 model has only one SR
compartment. Therefore [Ca2+]NSR and [Ca2+]JSR were
initialised at the same concentration published by Ten
Tusscher et al. for [Ca2+]SR.

The optimisation problem was defined as the minimisation of
the sum of square errors between the synthetic data and the fitted
model AP. The fitting algorithm uses the PINTS Python package
(https://github.com/pints-team/pints) (Clerx et al., 2019), to run
the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES)
(Hansen et al., 2003). The scaling factor parameters θCaL, θKr, θKs,
θNa, θNaL of the ORd-CiPA model were fitted. The initial guesses
for scaling factors were taken from the range 0.2–5, while the
boundaries were set to 0.1 to 10. The CMA-ES hyper-parameter
Σ0, the initial proposal covariance for new parameter samples,
was set to 0.1 along the diagonal for all parameters and zero
otherwise.

The value of scaling parameters retrieved by the three fittings
are compared in Table 3, and the corresponding APs are plotted
in Figure 8. In the case of the first fitting with the correct Γ0, the
true parameter values are retrieved as expected due to these
model parameters being identifiable. In the case of the second

FIGURE 7 | Comparison of model predictions in the periodic steady state outputs for the extreme values of Γ0 computed from Section 3.2. Data is shown for the
TTP06 (top row) and ORd-CiPA models (bottom row). (A,E): IK1 current. (B,F): Sodium-Potassium exchanger (INaK) current. (C,G): AP. (D,H): Limit cycle restitution
portraits showing APD90 variation with the pacing period. The insets show pacing cycle lengths of 500 ms and shorter.
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fitting with a discrepancy in Γ0, the model cannot converge to the
right limit cycle. The optimal AP is still very similar to the
synthetic data, the only difference being a small shift in the
resting membrane potential, as seen in Figure 8A. However, the
discrepancy in ionic concentrations is compensated by a dramatic
shift in the retrieved scaling parameters, especially for gKs (0.522)
and gNaL (1.585). This impacts the response of the model to
perturbation: for example 50% block of IKr as shown in
Figure 8B, where we see a 14 ms difference in the predicted
APD90 which would be significant in many drug effect prediction
settings.

In the case of the third fitting with Γ0 as an inferred parameter,
the true values for all scaling parameters could be recovered. The
fact that the value of Γ0 could also be accurately retrieved from
fitting supports its identifiability as a model parameter, at least in
the absence of model misspecification/discrepancy.

4.1 Calibration When Multiple Stable Limit
Cycles Exist for a Single Γ0 Value
It was shown in Section 3.3 that the ORd-CiPA model, with
published parameters, has a unique limit cycle for any particular

TABLE 2 | Initial conditions used in the various fittings of the ORd-CiPA model to synthetic data.

Case Γ0 Initial
conditions for [K+]i

Initial conditions for
other concentrations

Data generation − 7.801 144.6 mM ORd-CiPA
#1 Fixed & ‘correct’ Γ0 − 7.801 144.6 mM ORd-CiPA
#2 Fixed & ‘wrong’ Γ0 − 1.562 135.4 mM TTP06
#3 Fitted Γ0 Fitted 135.4 mM TTP06

TABLE 3 | Parameters retrieved from fittings in the investigated cases. The fitting process with an incorrect Γ0 value yields incorrect values for model parameters. Such a
model suffers from poor predictive power, this can be corrected by fitting Γ0 together with the other model parameters.

Case Γ0
(mM)

Diastolic [K+]i
atlimitcycle

θCaL θKr θKs θNa θNaL APD90 baseline APD90 with 50% IKr block

Data generation −7.801 144.4 1 1 1 1 1 266 ms 369 ms
#1 Fixed & “correct” Γ0 −7.801 144.4 1.000 1.000 1.000 1.000 1.000 266 ms 369 ms
#2 Fixed & “wrong” Γ0 −1.562 138.6 0.760 1.187 0.522 1.129 1.585 265 ms 383 ms
#3 Fitted Γ0 −7.801 144.4 1.000 1.000 1.000 1.000 1.000 266 ms 369 ms

Values associated with the synthetic (simulated) data generation are written in bold font.

FIGURE 8 | Predicted APs for the ORd-CiPAmodel fitted to synthetic data. (A)Comparison of the synthetic data with APs obtained from optimal parameterisations
in the different fitting cases. (B) Prediction of response of the model to 50% block of IKr. Predictions of model with parameter fittings #1, #3 and the true parameters set
overlay.
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value of Γ0 that has been used (implicitly) in previous models. As
shown by previous studies, under certain conditions there are
possibly multiple quiescent steady state (Guan et al., 1997;
Jacquemet, 2007) and/or limit cycle (Surovyatkina et al., 2010)
solutions for the same value of Γ0.

For instance, with 95% reduction of IKr, Γ0 = −20mM, and 1 Hz
pacing, the ORd-CiPAmodel has two stable limit cycle APs, shown
in Figure 9. With the initial Na+ concentration as originally
published in the ORd-CiPA model, the limit cycle AP has an
early after-depolarisation (EAD), whereas the limit cycle AP with
higher initial Na+ concentration exhibits alternans and an EAD.
This is characteristic of a bifurcation of the limit cycle for the same
value of Γ0, which is investigated further in this section.

Various conditions of IKr block (0, 90 and 95%) were applied
to the ORd-CiPA model to test for the presence of multiple limit
cycles for a single value of Γ0. As in Section 3.3, the ORd-CiPA
model was paced to its limit cycle for various initial conditions

that sample the physiological range of concentrations reported in
Section 3.2, but variations of initial conditions were considered
only for [K+]i and [Na+]i this time. Given the low influence of
[Ca2+] variations on Γ0 value, its influence on the model outputs
were neglected. Eq. 6 defines a linear relationship between [Na+]i
and [K+]i and Γ0, and therefore for a fixed value of Γ0, the
intracellular concentrations follow a line in the ([Na+]i, [K+]i)
plane, if the other ionic concentrations are not changed. Ten
different initial conditions were sampled for each of the 15 values
of Γ0 covering the physiological range of concentrations ([K+]i
between 120 and 152 mM and [Na+]i between 4 and 16 mM). In
case there is alternans, diastolic concentrations are read out at the
end of the longer AP.

The limit cycle diastolic concentrations reached for the various
Γ0 values with various IKr block conditions are represented in
Figure 10. For IKr block lower than 90% across the range of initial
conditions we studied, the limit cycle is unique for a given value of
Γ0. In such situations, fitting Γ0 would be sufficient to fully inform
the intracellular concentrations.

In the extreme case of 95% of IKr block, a bifurcation is
observed for the ORd-CiPA model—see Figure 10C. A second
stable limit cycle appears, and intracellular concentrations
converge to one or the other limit cycle value depending on
their initial conditions, despite corresponding to the same Γ0
value. The multiple limit cycles at a fixed Γ0 value are observed for
Γ0 values ranging from −13 to 2 mM—see Figure 10C. In such
cases, Γ0 does not solely determine which limit cycle will be reached,
and one needs to consider [K+]i and [Na+]i initial conditions.

As observed in Figure 10, multiple stable limit cycles can be
found for the same value of Γ0 under particular conditions. In this
section, we investigate how the bifurcations of the limit cycle can
impact the fitting process. Under 95% of IKr reduction, there are
two stable limit cycle APs for the ORd-CiPA model for the same
value of Γ0: one with early after-depolarisation (EAD) generated
with low initial [Na+]i, and one without EAD when simulating
the limit cycle AP from high initial [Na+]i—see Figure 9.

FIGURE 9 | Limit cycle APs for the ORd-CiPA model under 95% of IKr
reduction, generated with the same value for Γ0=−20 mM, but different initial
Na+ concentrations. With the initial Na+ concentration set to 15 mM (Black),
the limit cycle AP shows no early after-depolarisation (EAD). With a lower
initial Na+ concentration of 7.3 mM (Blue), the limit cycle AP exhibits alternans
with an EAD.

FIGURE 10 | Limit cycle concentrations of [K+]i and [Na+]i for simulations with ORd-CiPA model starting from different initial conditions. Each line corresponds to
combinations of intracellular concentrations bound by a single Γ0 value. For each value of Γ0, 10 combinations of [K+]i and [Na+]i are used to sample the whole
physiological range reported in Section 3.2. Limit cycle concentrations of the 10 combinations are marked by circles, with colour matching the initial conditions. For IKr
reduction up to 90%, a unique limit cycle can be reached per value of Γ0. In the case of 95% of IKr reduction, two distinct limit cycles can be observed for higher
intracellular concentrations. (A): With no IKr reduction. (B): With 90% IKr reduction. (C): With 95% IKr reduction.
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The synthetic data was generated with the ORd-CiPA model
under 95% of IKr block, with intracellular concentrations
initialised at [Na+]i � 15mM and [K+]i = 149 mM,
corresponding to Γ0 = −20 mM. Synthetic data showed no
EAD. As seen in Figure 9, there is a second stable limit cycle
AP, with EAD, in this configuration of the ORd-CiPAmodel with
lower initial Na+ concentration.

During the fitting process, the initial concentration of Na+ was
fixed to its published value [Na+]i � 7.3mM, and when a new
value of Γ0 was proposed by the fitting algorithm, the changes in
Γ0 were attributed to K+ ions. As a consequence, when the “true
parameters” were evaluated during the fitting process, an EAD
was observed. The fitting of the ORd-CiPA model to synthetic
data from the same model was performed with the same methods
as in Section 4. The same parameters as previously were fitted
(θCaL, θKr, θKs, θNa, θNaL, Γ0).

Note that for Γ0 = −20mM, [Na+]i can take only values between
14 and 16mM for [K+]i to remain in the physiological range
(Figure 10). This bifurcation was selected despite the initial and
limit cycle concentrations being outside the physiological range,
because of the dramatic changes between the two limit cycle APs
that make more visual the potential impact of multiple stable limit
cycles on the parameters retrieved from model calibration.

The parameters retrieved from the fitting are reported in
Table 4. The limit cycle AP under 95% IKr reduction for the
calibrated model is compared to the synthetic data (Figure 11A)
and its prediction of AP without IKr block is compared to that of

the true model that generated the synthetic data in the validation
case of Figure 11B.

The optimal values of θKr and θNa are close to their true values,
but θNaL and θKs have considerable differences to their true values,
57 and 26% too large respectively. This explains why even though
the synthetic data AP is well reproduced (Figure 11A), the fitted
model makes an incorrect prediction in the validation case with
no IKr block (Figure 11B). The optimal value of Γ0 is interestingly
close to its true value. However, one cannot conclude from this
example alone that Γ0 value will still be correctly recovered in the
case of bifurcation.

In this case with bifurcation, fitting initial conditions for both
[Na+]i and [K+]i would be necessary to reach the correct limit
cycle and obtain a correct optimal model. However, we would not
recommend fitting both [Na+]i and [K+]i simultaneously as a
standard. In most cases, there is only one limit cycle solution for a
given value of Γ0, so that the two parameters would be
unidentifiable (see Whittaker et al., 2020).

5 DISCUSSION

We investigated the consequences of computing voltage in AP
models directly from concentrations, using an algebraic-Vm

formulation (Eq. 6). This method for computing voltage
increases the numerical accuracy of solutions, compared to the
canonical derivative-Vm method of integrating the sum of trans-

TABLE 4 |Rescaling factors for conductance parameters retrieved from fitting to data generated under conditions where several stable limit cycles coexist for the same value
of Γ0 = −20 mM.

Γ0
(mM)

Diastolic [K+]i
(mM)

θCaL θKr θKs θNa θNaL APD90 with 95% IKr block APD90 baseline

Data generation −20.0 156.18 1 1 1 1 1 663 ms 264 ms
Fitted values −19.7 155.73 0.863 0.933 1.263 0.936 1.574 663 ms 294 ms

Values associated with the synthetic (simulated) data generation are written in bold font.

FIGURE 11 | Consequence of fitting the ORd-CiPA model in case of multiple stable limit cycles for the same Γ0 value. (A): ORd-CiPA fitted with initial [Na+]i � 7.3
mM under 95% of IKr block is able to reproduce the synthetic data generated with initial [Na+]i � 15 mM (APs superposed). (B): predictions for no IKr block. Despite the
good fit to IKr block data in panel (A), incorrect parameter values are retrieved from fitting, and the prediction of the calibrated model is erroneous.
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membrane currents. The computation time of simulations is not
impacted significantly by the choice of expression for the voltage.
Changing to the algebraic-Vm form of the model did not reduce
the computational time required for AP simulations, as it does
not change the stiffness of the model (the main driver for the
computational cost).

Γ0 is a constant representing the net concentration of un-
modelled charge present in the model, needed to ensure the
consistency of initial values for concentrations and voltage. In
most cases, the value of Γ0 defines the steady-state behaviour of
the model, regardless of the combination of initial values for state
variables such as concentrations in the simulations. Given the
high variability of intracellular concentrations that have been
used in action potential models, with less variability in
extracellular concentrations, Γ0 is also highly variable. Extreme
variations of Γ0 lead to very different steady-state behaviours and
substantially impact their outputs, making it important to
establish the value of Γ0 as accurately as possible.

Measurements of intracellular ionic concentrations in intact
myocytes are not generally available alongside recordings of
electrophysiological activity used to calibrate AP models. We
showed that this issue could potentially be addressed by inferring
Γ0 from the data, along with other parameters of the AP model.

With the algebraic-Vm form of the model, the algebraic
constraint on the variables appears explicitly. At each time-
step, this constraint is therefore rigorously applied to the
system. With the derivative-Vm form of the model, the
constraint is mathematically satisfied by the system—by design
in AP models which satisfy the conservation of charge
principle—but during the numerical integration of the
equations, the constraint is not verified at each time step.
Therefore, the numerical errors that appear during the
integration allow the constraint to be violated. This violation
of conservation of charge explains that with a coarse solver
tolerance, the model does not properly converge to a limit
cycle—see Figure 2. Livshitz & Rudy noted that AP models
are often mistaken as Ordinary Differential Equation (ODE)
systems when they are actually Differential-Algebraic Equation
(DAE) systems—ODE systems with algebraic constraints. With
the algebraic-Vm form of the model, all constraints of the DAEs
appear explicitly, which is best practice (Livshitz and Rudy, 2009).
In theory, the differential and algebraic representations of the
membrane voltage are still mathematically equivalent, so
modellers could use either of them as preferred (Hund et al.,
2001). In practice, we recommend to use the algebraic-Vm

formulation.
Using the algebraic-Vm form of the model makes also Γ0

appear as a model parameter, highlighting the need to consider its
value explicitly. We propose to infer Γ0 from the experimental
data on which the model is calibrated. Endresen et al. (2000)
reported with the derivative-Vm form of the model that “the
observer tracks only the variations in the number of ions, but then
an initial concentration must be guessed”. Livshitz & Rudy
proposed criteria for validation against experimental data and
adequate comparison between dynamic models (Livshitz and
Rudy, 2009). Among these criteria, the use of “a consistent set
of initial conditions for state variables (Vm, intracellular ion

concentrations)” is recommended. Smirnov et al. (2020) also
noted that the question of initial conditions for ionic
concentrations is often overlooked when fitting AP models,
when they fitted the O’Hara Rudy model (O’Hara et al., 2011)
to AP recordings from optical mapping experiments in human
ventricular wedges.

The errors induced in conductance fits when using a fixed but
incorrect Γ0—see Section 4—emphasise the importance of using
the correct initial conditions for concentrations when fitting to
AP data. An AP model calibrated using an incorrect
representation of concentrations (i.e. an incorrect but plausible
value for Γ0) is badly parameterised with up to ±50% error in
some maximal conductance parameters, and has a reduced
predictive power.

Our results show that Γ0 can be fitted to compensate for errors
in assumed intracellular concentrations, at least when fitting to
synthetic (simulated) AP data. So we recommend inferring Γ0
from the training data during model calibration, following the
methods of Section 4. When using real data, discrepancy in the
AP model may cause additional problems, but still the possibility
for uncertainty in Γ0 should be explicitly considered.

In our study, we show that due to the conservation law: 1) a
consistent Γ0 value should be used throughout the model
calibration, and 2) it is sufficient to fit the value of Γ0 to
capture the input of intracellular concentrations on steady
state outputs, unless bifurcations are present. The second
point is supported by observations on other models reported
in the literature (Hund et al., 2001; Jacquemet, 2007; Livshitz and
Rudy, 2009; Pan et al., 2018). For example, Smirnov et al. (2020)
have included initial values for [Na+]i and [Ca2+]SR in their set of
parameters to calibrate, which is similar to fitting Γ0. However,
they fitted their initial conditions independently at each pacing
rate, thus changing the value of Γ0 from one pacing rate to
another.

It remains important to consider that the uniqueness of the
limit cycle for a single Γ0 value cannot be always guaranteed
(Guan et al., 1997; Jacquemet, 2007). The methods presented in
Section 3.3 can be reused to verify that Γ0 solely defines the limit
cycle for a model under a given set of studied experimental
conditions. If the uniqueness of a limit cycle is verified, it is
reasonable to fit Γ0 alone to summarise the initial conditions of
intracellular ionic concentrations. Otherwise, in case of
bifurcation of the limit cycle, we would recommend fitting Γ0
and the initial condition of [Na+]i. Alternatively, initial
conditions for two intracellular concentrations could be
inferred, for instance [K+]i and [Na+]i which have the highest
contribution to the value of Γ0.

5.1 Limitations
As mentioned above and in the literature (Guan et al., 1997;
Jacquemet, 2007), the uniqueness of the steady states for a single
Γ0 value is not always guaranteed. In cases of bifurcation, where
several stable solutions exist for the model with a single value of
Γ0, Γ0 (as well as other parameters) can be incorrectly determined.
We observed in this study that for the ORd-CiPAmodel, the limit
cycle is unique in most physiologically-plausible cases. However,
this property does not always hold if parameters are changed. A
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method to investigate thoroughly the uniqueness of the limit cycle
for a given value of Γ0 for all parameterisations of an AP model
could be extremely costly computationally. Still, we have
demonstrated for the ORd-CiPA model, as originally
published, that Γ0 is identifiable and could be correctly
estimated. We observed consistent findings for Γ0 in the
TTP06 model, which has a very different model structure to
the ORd-CiPA model—data not shown. We therefore expect this
behaviour to be replicated for all AP models that conserve charge.
Hence we recommend to consider calibrating Γ0 as a parameter
that usually encapsulates both the initial conditions of the
modelled ionic species and the un-modelled charge. In the
cases where there are multiple steady states for the same Γ0,
the unidentifiability could be resolved by fitting initial conditions
for ionic concentrations as well.

To define the physiologically-plausible range of
concentrations, we used the extreme values of [K+]i reported
in previous human ventricular AP models. Direct experimental
measurements of [K+]i would help refining this range. Moreover,
[Na+]i and [K+]i were considered separately in our study.
Simultaneous experimental measurements of [Na+]i and [K+]i
in human ventricular cardiomyocytes would give better
understanding of correlation between these concentrations,
which may further restrict the range of physiologically-
plausible Γ0 values.

When AP models are used to investigate changes in
extracellular concentrations (e.g. when simulating hypo/er-
kalemia or ischaemia—pathological changes to extracellular
concentrations such as [K+]) care is needed with Eq. 6. In
such situations, as the extracellular ion of interest changes
concentration, opposite charges will be introduced into the
same solution to maintain electrical neutrality (e.g. if we
experimentally use the salt KCl to change [K+]o we also
change [Cl−]o); if one ion is accounted for in Eq. 6 but the
‘opposite ion’ is not (e.g. the model does include [K+]o but does
not explicitly consider [Cl−]o) then Γ0 will need to be adjusted by
the same amount to account for this extra “opposite” charge.
For models where external concentrations are fixed as
constants, an equation of the form of Eq. 2 with V0 or C0

can then be used equivalently, and would simplify simulation
procedures when extracellular concentrations are changed by
the user, but the interpretation of Γ0 as “net un-modelled
charge” is clearer.

5.2 Possible Extensions to This Study
Although this study was focused on ventricular AP models, the
conservation law that binds together the voltage and intracellular
ionic concentrations applies to all cellular electrophysiology
models: other cardiac cell types, neural, gastric, skeletal
muscle etc.

The improvement in numerical accuracy enabled by the
algebraic-Vm form of the model was shown to reduce the
numerical error that can lead to deviation of state variables
after reaching the periodic steady state—see Figure 3 and
Supplementary Material Section S1.4. The computational
efficiency was similar with the algebraic-Vm form of the model
when using the same solver tolerance.

The extent to which intracellular concentrations are well
established has been somewhat overlooked (Smirnov et al.,
2020). Our study, showed the importance of the correct
estimation of Γ0 in specifying concentrations. In literature
models, there is significant variation between the assumed
initial concentrations, and therefore variation in Γ0, as shown
in Section 3.2. In papers on action potential model
development, we have not found any discussion of the
choice of Γ0, or equivalently the choice of the offset
between concentrations and voltage in initial conditions,
perhaps suggesting somewhat arbitrary choices. It remains
to be seen whether Γ0 exhibits significant physiological
variation to contribute to inter-cell and/or inter-individual
differences in electrophysiology, or whether it is a well-
constrained biological quantity—which would be the case if
the un-modelled missing ions that Γ0 represents do not vary
significantly between cells or individuals. In either case, Γ0
strongly influences model behaviour and a concerted effort
should be made to identify its value alongside other key model
parameters. The recent emergence of cell-specific models
(Groenendaal et al., 2015) may offer an approach to
quantify Γ0 more accurately.

6 CONCLUSION

We advocate here for the use of the algebraic-voltage form of AP
models, as it improves the stability of numerical solutions by
enforcing a hidden algebraic constraint in the models.
Furthermore, the algebraic-voltage form ensures that the
model conserves charge. It also requires the modeller to
think carefully about initial conditions for intracellular
concentrations and to acknowledge their effects on the model
output. We recommend consideration of the potential
discrepancy and uncertainty in intra- and extracellular
concentrations of ions, as model outputs and model fitting
are dependent on these. The Γ0 value summarises these
factors into one parameter which can be fitted alongside the
rest of a model.
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