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Background: The gastrointestinal tract has been speculated to serve as a reservoir for
Acinetobacter, however little is known about the ecological fitness of Acinetobacter strains
in the gut. Likewise, not much is known about the ability of Acinetobacter to consume
dietary, or host derived nutrients or their capacity to modulate host gene expression. Given
the increasing prevalence of Acinetobacter in the clinical setting, we sought to characterize
how A. calcoaceticus responds to gut-related stressors and identify potential microbe-
host interactions.

Materials and Methods: To accomplish these aims, we grew clinical isolates and
commercially available strains of A. calcoaceticus in minimal media with different levels
of pH, osmolarity, ethanol and hydrogen peroxide. Utilization of nutrients was examined
using Biolog phenotypic microarrays. To examine the interactions of A. calcoaceticus with
the host, inverted murine organoids where the apical membrane is exposed to bacteria,
were incubated with live A. calcoaceticus, and gene expression was examined by qPCR.

Results: All strains grew modestly at pH 6, 5 and 4; indicating that these strains could
tolerate passage through the gastrointestinal tract. All strains had robust growth in 0.1 and
0.5 M NaCl concentrations which mirror the small intestine, but differences were observed
between strains in response to 1 MNaCl. Additionally, all strains tolerated up to 5% ethanol
and 0.1% hydrogen peroxide. Biolog phenotypic microarrays revealed that A.
calcoaceticus strains could use a range of nutrient sources, including
monosaccharides, disaccharides, polymers, glycosides, acids, and amino acids.
Interestingly, the commercially available A. calcoaceticus strains and one clinical isolate
stimulated the pro-inflammatory cytokines Tnf, Kc, andMcp-1while all strains suppressed
Muc13 and Muc2.

Conclusion: Collectively, these data demonstrate that A. calcoaceticus is well adapted to
dealing with environmental stressors of the gastrointestinal system. This data also points to
the potential for Acinetobacter to influence the gut epithelium.
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INTRODUCTION

Acinetobacter is a Gram-negative nonfermenting coccobacillus
that is widely distributed in nature. Certain Acinetobacter species
are classified as opportunistic pathogens and are commonly
associated with healthcare associated infections (Peleg et al.,
2008; Nemec et al., 2015; Mancilla-Rojano et al., 2020). The
Acinetobacter species that are considered to be pathogens include
A. baumannii, A. pittii and A. nosocomialis (Mancilla-Rojano
et al., 2020). These species cause infections like bacteremia,
ventilator-associated pneumonia, urinary tract infection,
meningitis, and wound infection. A. baumannii is the most
frequently isolated and best studied of the Acinetobacter
species. In contrast to A. baumannii, A. calcoaceticus has been
considered to have a lower virulence since colonization is more
frequently noted than infection (Glew et al., 1977). However, A.
calcoaceticus can still cause infection and understanding the
mechanism by which A. calcoaceticus interacts with the host
remains an important topic.

Acinetobacter species are capable of occupying several
ecological niches, including the mammalian intestine.
Acinetobacter species have been identified in the human fecal
microbiota and it has been speculated that the gut could serve as a
potential reservoir for Acinetobacter infection (Timsit et al., 1993;
Xavier et al., 1996; Ayats et al., 1997; Dijkshoorn et al., 2005; Roy
et al., 2010; Pandey et al., 2012; Aljindan et al., 2015; Cheng et al.,
2015; Li et al., 2015; Braun et al., 2017; Li et al., 2019). Consistent
with this hypothesis, A. baumannii can bind to rabbit small
intestinal glycosphingolipids (Madar Johansson et al., 2020) and
colonize the mouse gastrointestinal tract in a secretory IgA
dependent manner (Coron et al., 2017; Ketter et al., 2018).
Moreover, ampicillin treatment of mice has been shown to
elevate A. baumannii and A. calcoaceticus fecal levels,
suggesting that antibiotic selection could allow the outgrowth
of endogenous strains (Raplee et al., 2021). Apart from these
studies, little is known regarding the factors that influence
Acinetobacter colonization and little data exists on the effects
of A. calcoaceticus. The importance of Acinetobacter in the gut is
highlighted by the fact that Acinetobacter species are elevated in
certain disease states including ulcerative colitis, a subset of
inflammatory bowel disease (IBD) (Gophna et al., 2006; Lucke
et al., 2006; Leung et al., 2014; Kevans et al., 2015; Tang et al.,
2015; Sjoberg et al., 2017; Sekido et al., 2020; He et al., 2021; Qi
et al., 2022). In this study, we sought to examine the ability of A.
calcoaceticus strains to survive environmental stressors found in
the gut, interact with other gut microbes and utilize dietary
components. We also examined the reciprocal interactions of
A. calcoaceticus strains on the host using intestinal organoids.

METHODS

General Bacterial Culturing Techniques
Acinetobacter calcoaceticus ATCC 23055 (American Type
Culture Collection) and A. calcoaceticus CB1 (Carolina
Biological Supply) were purchased from commercial sources.
Four clinical isolates of A. calcoaceticus strains that were

isolated from ventricular fluid of pediatric patients were
provided by Dr. James Versalovic. All A. calcoaceticus strains
were cultured aerobically in brain-heart-infusion (BHI) medium
(ThermoFisher) at 37°C. Overnight cultures were sub-cultured
into M9 minimal media containing glucose at an optical density
(OD600nm) = 0.1. To model environmental stressors, M9 media
was supplemented with NaCl (0.1, 0.5, or 1 M), H2O2 (0.05, 0.1,
0.2%), or ethanol (1, 2.5 or 5%). M9 was also adjusted to varying
pH values (4, 5, 6, 7). Growth was monitored after 18 h
incubation by OD600nm.

To examine nutrient uptake, A. calcoaceticus strains were
added to M9 media lacking glucose at OD600nm = 0.1. Then
100 μL of this culture was added to each well of a 96-well Biolog
Phenotype Microarrays for Microbial Cells (PM1 and PM2
plates). Growth was monitored at 18 h by OD600nm on a
Synergy HT BioTek plate reader. Stool-based bioreactors were
generated as previously described (Engevik et al., 2021). Briefly,
stool samples were cultured anaerobically for 24 h to allow
microbes to establish stable communities, then inoculated with
A. calcoaceticus strains at an OD600nm = 0.05. After 48 h of
incubation with A. calcoaceticus strains, samples were collected
for gDNA isolation. For imaging purposes, A. calcoaceticus
strains were fluorescently tagged with CFDA-SE
(ThermoFisher) as previously described (Engevik et al., 2021).
Briefly, A. calcoaceticus strains were washed 2x with sterile PBS
and incubated for 1 h aerobically at 37°C with 10 μM CFDA-SE.
After the incubation, bacteria were washed 3–5x with sterile PBS
to remove any unused CFDA-SE. Bacteria were then ready for
incubation with organoids.

Organoid Generation
Intestinal organoids were generated from four adult (8–12 weeks)
C57B6/J mice as previously described (Engevik et al., 2013). The
jejunum was rapidly dissected, washed with ice-cold PBS (PBS;
Gibco) and opened longitudinally. The jejunum was then cut into
~1-cm length pieces and placed in a 15-ml conical tube
containing 5 ml of ice-cold PBS, 43.4 mM sucrose, 0.5 mM
DTT and 3 mM EDTA (Gibco). The tissue was incubated at
4°C rocking for 30 min. Crypts were mechanically disrupted by
shaking in 5 ml of ice-cold PBS with D-sorbitol and sucrose and
collected following filtration with a 70-µm cell strainer (Corning
cat# 431,751). Crypts were centrifuged, resuspended in Matrigel
(Corning), and incubated with complex media containing WNT,
R-spondin, Noggin and EGF. Organoids were passaged >2 times
to ensure no tissue fragments remained. Organoids were
differentiated and grown inside-out by adding split organoids
directly to complex media without Wnt and incubated at 37°C
with 5% CO2 for 5 days before use.

For imaging purposes, live fluorescently tagged A.
calcoaceticus was incubated with inside-out organoids for 3 h.
Organoids were then washed with PBS, fixed with 4%
paraformaldehyde for 30 min, incubated in 30% sucrose/PBS
overnight and frozen embedded. Sections were stained with
phospho-ezrin, radixin, moesin (1:200 dilution, Rabbit Ab,
Cell Signaling #3726S) overnight at 4°C. After washing,
sections were incubated with donkey-anti-rabbit Alexa Fluor
555 (1:1,000 dilution, ThermoFisher # A31572) for 1 h at
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room temperature and counter stained with Hoechst 33,342
(Invitrogen) for 10 min at room temperature. Slides were
cover-slipped with mounting media (Life Technologies) and
imaged using a Zeiss AxioScan at ×20 (Zeiss). The relative
fluorescence intensity of adhered bacteria was quantified using
FIJI (Formerly ImageJ) software (NIH) and reported as relative
fluorescence. Three regions of interests per image and four images
per slide were used for semi-quantitation of stain intensity.

For gene expression analysis, inside-out organoids were
incubated with live A. calcoaceticus strains adjusted to an
OD600nm = 1.0 for 3 h at 37°C (n = 4 different mouse
organoids; performed in replicates per mouse). After
incubation, organoids were centrifuged at 300 × g for 5 min
and the organoid pellet was resuspended in 400 μL TRIZOL.
Organoids were stored in TRIZOL at −80°C until the RNA was
isolated.

RNA Isolation, cDNA Generation, gDNA
Isolation and qPCR
Total RNA was extractr’ed from organoids in TRIZOL according
to manufactures instructions, with the addition of glycogen.
cDNA was generated from 500 ng RNA via the Verso cDNA
synthesis kit (ThermoFisher #AB-1453). gDNAwas isolated from
1 ml aliquots of stool-based bioreactors using the Zymo Quick-
DNA Fecal/Soil Microbe Kits according to the manufacturer’s
instructions. Quantitative real time PCR (qPCR) was performed
using a Bio-Rad CFX96 Real Time qPCR machine (Bio-Rad).
Forward and reverse primers were added to SYBR Green
mastermix (Genesee Scientific #17-501DP) and cDNA.
Epithelial genes were normalized to the housekeeping gene
18S and relative expression was calculated using the ddCT
method. Bacterial colony forming units (CFUs) were
calculated from CT values based on standard curves as
previously described (Engevik et al., 2013).

Statistics
Data are presented as mean ± standard deviation, with points
representing individual bacteria strain growth rate with a n = 4
(repeated 3 independent times). Comparisons within groups were
made with One-way Analysis of Variance (ANOVA) and
comparisons between groups were made with a Two-way
ANOVA (Table 1). All analyses were corrected for multiple
comparisons by controlling the False Discovery Rate.
GraphPad version 9.3 was used to generate graphs and
statistics (GraphPad Software, Inc. La Jolla, CA). A *p < 0.05
value was considered significant while n is the number of
experiments performed.

RESULTS

It has been speculated that the gut may be a site for Acinetobacter
colonization and thus could be a source of endemic infections
(Timsit et al., 1993; Xavier et al., 1996; Ayats et al., 1997;
Dijkshoorn et al., 2005; Roy et al., 2010; Pandey et al., 2012;
Aljindan et al., 2015; Cheng et al., 2015; Li et al., 2015; Braun et al.,T

A
B
LE

1
|T

w
o
W
ay

A
N
O
V
A
st
at
is
tic
s
fro

m
ba

ct
er
ia
lg

ro
w
th

in
th
e
pr
es
en

ce
of

st
re
ss
or
s.

A
ll
co

m
pa

ris
on

s
w
er
e
m
ad

e
ag

ai
ns

t
A
.
ca

lc
oa

ce
tic
us

A
TC

C
23

05
5.

S
ig
ni
fic
an

t
p
va
lu
es

(p
<
0.
05

)a
re

co
lo
re
d
in

bl
ue

.

N
aC

l
p
H

E
T
O
H

H
2
0 2

S
tr
ai
n

0
M

0.
1
M

0.
5
M

1
M

pH
7

pH
6

pH
5

pH
4

0%
1%

2.
50

%
5%

0%
0.
05

%
0.
10

%
0.
20

%
C
B
1

0.
13

79
0.
10

97
<0

.0
00

1
<0

.0
00

1
0.
01

48
0.
00

03
0.
42

24
0.
25

73
0.
07

9
<0

.0
00

1
<0

.0
00

1
0.
02

04
0.
28

19
0.
16

3
0.
22

86
0.
55

14
M
3

0.
92

69
0.
48

24
0.
01

26
0.
01

36
0.
18

14
0.
37

55
0.
01

33
0.
08

27
0.
31

<0
.0
00

1
0.
00

23
0.
05

94
0.
27

81
0.
03

35
<0

.0
00

1
<0

.0
00

1
T8

2
0.
28

79
0.
02

18
0.
95

43
0.
00

13
0.
03

4
0.
72

45
0.
64

18
0.
47

56
0.
83

35
0.
00

01
<0

.0
00

1
0.
00

03
0.
25

43
0.
29

75
0.
03

93
0.
00

2
M
5

0.
57

7
0.
01

31
<0

.0
00

1
<0

.0
00

1
0.
87

67
0.
00

02
0.
26

52
0.
26

72
0.
18

45
<0

.0
00

1
0.
00

18
<0

.0
00

1
0.
07

75
0.
00

83
0.
07

34
0.
00

07
X7

5
0.
11

06
0.
36

61
<0

.0
00

1
0.
00

02
0.
25

73
0.
00

02
0.
00

03
0.
00

17
0.
49

96
<0

.0
00

1
<0

.0
00

1
<0

.0
00

1
0.
08

33
0.
01

99
<0

.0
00

1
<0

.0
00

1

Frontiers in Physiology | www.frontiersin.org May 2022 | Volume 13 | Article 8800243

Glover et al. Acinetobacter calcoaceticus in the Gut

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


2017; Li et al., 2019). To examine the efficiency of A. calcoaceticus
strains to withstand the conditions of the gastrointestinal tract, we
grew commercially available and clinical isolates of A.
calcoaceticus in minimal media at pH 7, 6, 5, and 4. Cultures
were seeded with OD600n = 0.1 and growth was considered to be
above an OD600nm = 0.2. As expected, we observed robust growth
of the commercially available A. calcoaceticus strains (ATCC
23055, CB1) and clinical isolates (M31602, T82482, M53152,
and X75393) in pH 7 media (Figures 1A–F; Table 1). We
observed growth (OD600nm > 0.2) of all strains at pH 6, pH 5,
and pH 4; although growth was significantly reduced compared to
pH 7. These findings suggest that A. calcoaceticus is well adapted
to withstand varying intestinal pHs.

The intestine harbors varying ranges of osmolarity, with the
small intestinal villi encountering 400–700 mM (Overduin et al.,
2014). To model the gut, we added increasing concentrations of
NaCl (0.1, 0.5 and 1 M) to minimal media and examined the
growth of A. calcoaceticus (Figures 2A–F; Table 1). All strains
were found to have similar growth at 0.1 and 0.5 M as media
controls. Decreased growth was observed at 1 MNaCl with all but
the T82482 strain. We observed that the ATCC 23055 strain
exhibited the most significant decline in growth (Figure 2A).
These data highlight thatA. calcoaceticus can grow well in various
osmolarities which mirror the gut environment.

In the gut, commensal microbes such as Lactobacilli can
generate ethanol and hydrogen peroxide (Engevik and
Versalovic, 2017) and microbes occupying the same niche

must adapt to these stressors. To model the production of
localized ethanol and hydrogen peroxide, we supplemented
minimal media with ethanol (1, 2.5 or 5%) (Figures 3A–F;
Table 1) or hydrogen peroxide (0.05, 0.1 or 0.2%) (Figures
4A–F; Table 1). Impressively, all A. calcoaceticus strains could
grow in up to 5% ethanol. Our commercially available ATCC
23055 strain was the most sensitive strain to ethanol, exhibiting a
~2-fold decrease in growth in 1% ethanol compared to media
controls (Figure 3A). In contrast, clinical isolates T82482
(Figure 3D), M53152 (Figure 3E), and X75,393 (Figure 3F)
exhibited only a slight decline in growth at the higher ethanol
concentrations; suggesting that these clinical isolates are highly
resistant to ethanol. When A. calcoaceticus was treated with
hydrogen peroxide (Figures 4A–F), all strains could grow with
0.05 and 0.1% hydrogen peroxide. The commercially available
ATCC 23055 and CB1 were the most tolerant to 0.2% hydrogen
peroxide (Figures 4A,B); exhibiting a less than 2-fold decrease in
growth compared to the no hydrogen peroxide controls. In
contrast, the clinical isolates M31602 (Figure 4C), T82482
(Figure 4D), M53152 (Figure 4E), and X75,393 (Figure 4F)
were sensitive to 0.2% hydrogen peroxide and did not grow above
the seeded density of OD600nm = 0.1. Collectively, these data with
stressors indicate that A. calcoaceticus is well adapted for the
environmental stressors associated with gut colonization.

Next, we sought to examine the potential nutrient sources for
A. calcoaceticus within the intestine. To address this, we grew A.
calcoaceticus strains in minimal media lacking glucose in Biolog

FIGURE 1 | Growth of (A) calcoaceticus in various pHs. Growth of A. calcoaceticus strains as measured by OD600nm after 18 h of incubation. Growth was
examined in the following strains: (A) ATCC 23055, (B) CB1; clinical isolates: (C) M31602, (D) T82482, (E) M53152, and (F) X75,393). *p < 0.05, One Way ANOVA.
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phenotypic microarrays (Figures 5, 6). Growth was considered to
be > 1.5 fold change. Compared to growth in a media without a
carbon source, A. calcoaceticus had improved growth in the
presence of glucose (Figure 5A). Since A. calcoaceticus had
improved growth with glucose, we first examined
monosaccharides (Figure 5A). ATCC 23055 and CB1 grew
well with L-arabinose, D-galactose, D-mannose, D-fructose,
D-tagatose, D-glucosamine, D-ribose, and N-acetyl-D-
glucosamine. Interestingly, clinical isolates M31602, T82482
and M53152 did not grow with arabinose and exhibited
strain-dependent growth with D-mannose, D-fructose,
S-tagatose, D-ribose and N-acetyl-D-glucosamine. M53152
alone grew with L-glucose, B-D-allose, D-fucose, and
L-sorbose, highlighting strain-specific nutrient preferences.
When we examined alcohol sugars (Figure 5B), we found that
all strains could use adonitol and no strains could use
D-mannitol, L-arabitol, i-erythritol, or dulcitol.

In terms of growth with disaccharides (Figure 5C), we found
that all strains used gentiobiose and no strains used lactulose or
turnanose. For the other disaccharides and trisaccharides, we
observed strain-dependent growth. For example, M53152 grew
with D-melbiose, D-trehalose, maltose, D-melibiose, sucrose,
D-cellbiose, D-raffinose, stachyose and maltotriose, while
T82482 only grew with D-palatinose, D-melezitose,
D-raffinose and stachyose. When we examined polysaccharide
utilization, we found very similar profiles between ATCC 23055
andM53152. Both strains were highly efficient at using laminarin,
mannan, pectin, α-Cyclodextrin, β-Cyclodextrin, γ-cyclodextrin

and dextrin (Figure 5D). In general, most strains grew well with
dietary polysaccharides. In the nucleosides (Figure 5E) and
glycosides (Figure 5F) classification, we found strain-
dependent use of specific compounds. ATCC 23055 and
M53152 exhibited the highest fold change in growth with
chondroitin sulfate C, 2,3-butanedione and 3-hydroxy 2-
butanone.

Of the acids (Figure 6A), we found that all strains could use
a-keto-glutaric acid. ATCC 23055 and M53152 responded to the
largest number of acids, including B-methyl-D-glucuronic acid,
γ-amino butryic acid, butryic acid, capric acid, 4-hydroxy benzoic
acid and acetamide. Unique profiles were observed with the other
acids examined depending on the strain. Even without a carbon
source, we found that all A. calcoaceticus strains had improved
growth with L-glutamine and ATCC 23055 and M53152 used
L-lysine, L-methionine, L-Ornithine, L-Phenylalanine and
L-valine (Figure 6B), indicating that select amino acids could
be used as an alternative to carbon. Tween can be employed as a
stool emulsifier and tween enemas have been used to treat fecal
mass obstructions (Wood and Katzberg, 1978). None of the A.
calcoaceticus strains responded to tween with improved growth
(Figure 6C). These data indicate that A. calcoaceticus can use a
wide range of nutrients sources, ranging from sugars to
amino acids.

In addition to stressors and nutrients, Acinetobacter species
encounter a complex community of micro-organisms when
colonizing the gastrointestinal tract. To confirm that A.
calcoaceticus could proliferate in this competitive environment,

FIGURE 2 | Growth of (A). calcoaceticus at varying osmolarity. Growth of A. calcoaceticus strains as measured by OD600nm after 18 h of incubation. Growth was
examined in the following strains: (A) ATCC 23055, (B) CB1; clinical isolates: (C) M31602, (D) T82482, (E) M53152, and (F) X75,393). *p < 0.05, One Way ANOVA.
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we cultured stool-based bioreactors and introduced A.
calcoaceticus strains. After 48 h of culturing, we examined the
presence of A. calcoaceticus in the bioreactors by qPCR
(Supplementary Figure S1A). We found that all strains
effectively colonized the bioreactors, indicating that A.
calcoaceticus could be present within the intestinal milieu.
Next, we sought to examine how A. calcoaceticus interacted
with the intestinal epithelium. To test whether A. calcoaceticus
was able to stimulate epithelial responses, we incubated live A.
calcoaceticus strains with apical side-out intestinal organoids for
3 h. By immunostaining, we found that some A. calcoaceticus
microbes adhered to the organoids (Figure 7A). A similar level of
bacteria was observed on all organoids regardless of the strain
(Supplementary Figure S1B). Analysis of pro-inflammatory
cytokines by qPCR revealed that the commercially available
strains ATCC 23055 and CB1 and one of our clinical isolates
T82482 increased the expression of Tnf (Figure 7B), Kc
(Figure 7C) and Mcp-1 (Figure 7D) compared to media
controls. The T82482 strain also increased the expression of
IL-1α (Figure 7E). Inflammation is known to regulate
intestinal mucus, so we also examined adherent mucins Muc1
and Muc13 and secreted mucins Muc2 in our organoid model.
T82482 was the only strain that upregulated Muc1 (Figure 7F),

but all strains suppressed Muc13 levels (Figure 7G) compared to
media controls. Likewise, all strains suppressed Muc2 expression
(Figure 7H). We also examined an antimicrobial protein secreted
by goblet cells, Relmβ, and we observed that Relmβ expression
was increased in response to T82482 (Figure 7I), suggesting that
goblet cells were not decreased in this model despite decreased
Muc2. Together these findings highlight that A. calcoaceticus
strains are adept at dealing with environmental stressors, are
able to consume multiple nutrient sources, colonize in the
presence of other microbes, and can elicit pro-inflammatory
signaling pathways.

DISCUSSION

The digestive tract is proposed to be a reservoir for Acinetobacter
spp. (Timsit et al., 1993; Corbella et al., 1996; Agusti et al., 2002;
Dijkshoorn et al., 2005; Thom et al., 2010; Lim et al., 2014). In this
study, we confirmed the ability of A. calcoaceticus strains to
withstand conditions that recapitulate the gastrointestinal tract
luminal environment and use various nutritional sources found
in the intestine. We identified that A. calcoaceticus strains are
fairly resistant to changing pH, osmolarity, ethanol and hydrogen

FIGURE 3 | (A) calcoaceticus growth in percentages of ethanol. Growth of A. calcoaceticus strains as measured by OD600nm after 18 h of incubation. Growth was
examined in the following strains: (A) ATCC 23055, (B) CB1; clinical isolates: (C) M31602, (D) T82482, (E) M53152, and (F) X75,393). *p < 0.05, One Way ANOVA.
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peroxide levels. We also found that the majority of A.
calcoaceticus strains used glucose, L-arabinose, D-galactose,
D-mannose, D-fructose and N-acetyl-D-glucosamine,
D-trehalose, adonitol, mannan, pectin, α-Cyclodextrin, β-
Cyclodextrin, γ-cyclodextrin, dextrin, D-ribose and α-keto-
glutaric acid and L-glutamine. These data indicate that A.
calcoaceticus can use a wide range of nutrients sources.
Bioreactor experiments confirmed that A. calcoaceticus could
colonize with other gut microbes. This work adds to existing
research and suggests that Acinetobacter spp. are well adapted for
survival in the gastrointestinal tract.

Entry of Acinetobacter spp. into the gut has recently been
examined by Coron et al. (2017). The authors found that
intranasal administration of A. baumannii in mice, which
mimicked the major method by which ventilated patients in
ICUs commonly become infected with Acinetobacter, resulted in
digestive-tract colonization. This data suggests that patients could
become colonized with Acinetobacter spp. in hospital settings and
this gut colonization could be the precursor of severe infections.
Consistent with this notion, Corbella et al. identified that patients
colonized with A. baumannii in their digestive system had a
positive association for blood infections with multidrug-resistant
A. baumannii strains compared to patients without colonization
(Corbella et al., 1996). Similarly, Medina et al. found that A.

baumannii gut colonization was an independent risk factor for
the development ofA. baumannii respiratory infections (Medina-
Presentado et al., 2013). Wisplinghof et al. reported that the
portal of entry was not identified in 48.6% of the A. baumannii
bloodstream infections, suggesting that a significant proportion
of these infections could be due to intestinal carriage
(Wisplinghoff et al., 2000; Coron et al., 2017). Our work
complements these findings by demonstrating that
Acinetobacter species are equipped to colonize the
gastrointestinal tract, where they could serve as a reservoir for
infection.

In animal models, A. baumannii colonized both the small and
large intestine (Coron et al., 2017; Ketter et al., 2018). In these
models, intestinal inflammation was not specifically examined.
However, our apical inside-out organoid model revealed that
certain strains of A. calcoaceticus stimulated pro-inflammatory
cytokines. This data can be interpreted in several ways. First, it is
possible that in the setting of a complex gut microbiota in vivo,
other microbes may dampen pro-inflammatory signatures
associated with Acinetobacter. Second, the existing in vivo
studies used A. baumannii and this study focused on A.
calcoaceticus. It is therefore possible that differences may exist
between the species. Third, our data suggests that pro-
inflammatory responses are strain dependent and these strain

FIGURE 4 | (A) calcoaceticus growth in hydrogen peroxide. Growth of A. calcoaceticus strains as measured by OD600nm after 18 h of incubation. Growth was
examined in the following strains: (A) ATCC 23055, (B) CB1; clinical isolates: (C) M31602, (D) T82482, (E) M53152, and (F) X75,393). *p < 0.05, One Way ANOVA.
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FIGURE 5 | Acinetobacter growth in varying carbon sources. Heat maps representing fold change in growth with the negative control (no added nutrients) set at 1.
Growth was examined with (A) monosaccharides, (B) sugar alcohols, (C) disaccharides and trisaccharides, (D) polysaccharides, (E) nucleosides and (F) glycosides
after 18 h incubation.
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differences may also exist forA. baumannii strains. Future studies
using mouse models are warranted to fully dissect the
colonization capacity and epithelial crosstalk with A.
calcoaceticus.

Elevated levels of Acinetobacter in the setting of IBD has been
observed in several studies (Gophna et al., 2006; Lucke et al., 2006;
Leung et al., 2014; Kevans et al., 2015; Tang et al., 2015; Sjoberg
et al., 2017; Sekido et al., 2020; He et al., 2021; Qi et al., 2022). Two
studies found high abundance of Acinetobacter in pediatric
patients with newly diagnosed ulcerative colitis (Kevans et al.,
2015; Sjoberg et al., 2017); providing potential evidence that
Acinetobacter species could be contributing to the onset of
intestinal inflammation in genetically susceptible patients.
Another study found that Acinetobacter was enriched in the
mucosa-associated bacteria during active colitis in ulcerative
colitis patients (Tang et al., 2015). This study found that
Acinetobacter levels significantly correlated with microbial
pathways in actively inflamed colitis tissue, suggesting a
potential causal relationship between Acinetobacter and
intestinal inflammation. Another study identified Acinetobacter
in the CD14+CD11c + CD163low subset macrophages in the
lamina propia of ulcerative colitis patients (Sekido et al., 2020),
which indicates these microbes were able to bypass the epithelial
barrier. In our intestinal organoid model, we found that severalA.
calcoaceticus strains stimulated pro-inflammatory cytokine

expression and suppressed mucin production. These findings
mirror what has been observed in ulcerative colitis patients
(Trabucchi et al., 1986; Raouf et al., 1992; Pullan et al., 1994;
Tytgat et al., 1996; Hanski et al., 1999; Heazlewood et al., 2008;
Zhao et al., 2010; Larsson et al., 2011; Antoni et al., 2014;
Johansson et al., 2014; Wenzel et al., 2014). Our findings
provide further evidence for the potential link between
Acinetobacter, intestinal inflammation and IBD. In the future,
we plan to dissect the mechanisms of how A. calcoaceticus
initiates inflammation in more depth.

Another observation from our organoid model was that not
all the clinical isolates stimulated pro-inflammation cytokine
expression. Gram-negative bacteria such as Acinetobacter can
activate TLR4 on host cells via the cell wall component
lipopolysaccharide (LPS) (Pelletier et al., 2013). LPS is
comprised of lipid A, the core oligosaccharide, and the
O-specific antigen. Lipid A is considered the bioactive
component of LPS and is responsible for activating immune
responses (Pelletier et al., 2013). A. baumannii has been shown
to modify their lipid A with the addition of positively charged
residues including ethanolamine, phosphoethanolamine,
aminoarabinose, and glucosamine (Moskowitz et al., 2004;
Arroyo et al., 2011; Basheer et al., 2011; Beceiro et al., 2011;
Llobet et al., 2011; Pelletier et al., 2013). These modifications
enhance the resistance of A. baumannii to the antibiotic

FIGURE 6 | Acinetobacter growth in acids, amino acids and tweens. Heat maps representing fold change in growth with the negative control (no added nutrients)
set at 1. Growth was examined with (A) acids, (B) amino acids, and (C) tweens after 18 h incubation.
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colistin and suppresses their immunostimulatory capacity
(Pelletier et al., 2013). In addition to modifying LPS, some
clinical strains of A. baumannii have been identified with loss-
of-function mutations in genes in the LPS biosynthetic
pathway (Moffatt et al., 2010; Nagy et al., 2019); resulting
in strains which completely lack LPS. Although A. baumannii
can survive in the absence of LPS, these microbes have distinct
morphological defects and growth alterations under laboratory
conditions (Nagy et al., 2019; Beceiro et al., 2011; Bojkovic et
al., 2015; Powers et al., 2018; Boll et al., 2016). All of our A.
calcoaceticus strains were resistant to colistin (data not shown)
suggesting that some LPS modification might have occurred in
these microbes. Since we didn’t observe significant
morphological or growth differences between our strains,
we think that all our stains harbor LPS, but we speculate
that their may be different modifications between our A.
calcoaceticus strains which could account for the variability

in cytokine stimulation. We plan in future studies to examine
the LPS structures of our A. calcoaceticus strains.

Interestingly we noted differences between our commercially
available strains and clinical isolates in many of our results. For
example, the clinical isolates were more adapted at survival in
high concentrations of ethanol and NaCl than the lab adapted
strains. The growth of the clinical isolates was also not as robust as
the ATCC 23055 strain in utilizing many of the carbon sources,
such as glucose, L-arbinose, D-trehalose, GluNAc, galactose,
mannose and fructose. In our organoid model, we found that
lab adapted ATCC 23055 and CB1 and one clinical isolate T82482
stimulate multiple pro-inflammatory cytokines, while the other
strains had minimal stimulation of cytokines. A number of
groups have begun to question the adequacy of laboratory-
adapted reference strains to represent “real world”
pathogenesis (Fux et al., 2005). Some laboratory strains have
been sub-cultured for years, which may result in the loss of

FIGURE 7 | (A) calcoaceticus induces inflammatory responses in intestinal organoids. (A) Inside-out organoids incubated with live fluorescently tagged A.
calcoaceticus and immunostained with the apical marker phospho-Ezrin. qPCR analysis of organoids after 3 h of incubation examining expression of (B) Tnf, (C) IL-18,
(D) Mcp-1, (E) IL-1alpha, and (F) Muc1, (G) Muc13, (H) Muc2, and (I) Relmβ.
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important pathophysiological characteristics or the dependence
on lab-specific media components. This limitation can be
overcome by including multiple strains, including clinical
isolates, and examining their collective behavior. While we did
note several differences, in general we found that all strains were
fairly resistant to environmental stressors (pH, osmolarity,
ethanol, and hydrogen peroxide) and we found several
common nutrient sources across strains. Based on these
studies, we believe that A. calcoaceticus species are well
adapted to colonize the gastrointestinal tract and can consume
a variety of nutritional sources. We also believe this work
highlights the benefits of incorporating clinical isolates into
future work.

There are several strengths in our study. To the best of our
knowledge, this is the only study that has examined the ability of A.
calcoaceticus to withstand conditions of the gastrointestinal tract and
the first show that A. calcoaceticus can colonize human stool
communities and modulate the gut epithelium. We incorporated
several clinical isolates, which has allowed us to identify some global
attributes of A. calcoaceticus. However, there are also several
limitations. This work was all done in vitro and in vivo studies
are necessary to truly identify the colonization capacity of A.
calcoaceticus. Although we hypothesize that A. calcoaceticus
activates TLR4 on the gut epithelium to drive inflammatory
signatures, this work did not identify a specific mechanism and
more work is needed to delineate howA. calcoaceticusmodulates the
intestinal epithelium and immune cells.

In summary, we demonstrate that A. calcoaceticus strains can
withstand intestinal conditions and thrive with several dietary
sources. We believe these attributes make Acinetobacter spp.
ecologically fit for colonizing the gut. This information is
clinically important since the gut likely serves as a reservoir

for secondary Acinetobacter spp. infections. Thus, it might be
possible to prevent secondary infections, like blood stream
infections or pneumonia, by inhibiting Acinetobacter gut
colonization and we believe this is an exciting area for future
studies.
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