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The NO-donor Pentaerytrithyltetranitrate (PETN) has vasodilatative properties and direct
protective effects on endothelial cells. We formerly demonstrated that PETN, given to
pregnant women during the second and third trimester, influences endothelial dysfunction
related pregnancy complications like preeclampsia (PE) and fetal growth restriction (FGR).
PETN treatment showed to delay PE to late pregnancy and achieved a profound risk
reduction for FGR and/or perinatal death of 40%. The aim of this study was to confirm the
effect of PETN on endothelial cell dysfunction at molecular level in an experimental
approach. To induce endothelial dysfunction HUVEC were treated with 10 U/l of
thrombin in the presence or absence of PETN. qRT-PCR analysis showed that PETN
induced the expression of heme-oxygenase-1 and superoxide dismutase two but not
endothelial NO-synthase under basal conditions. The induction of antioxidant proteins did
not change basal reactive oxygen species (ROS) levels as measured by MitoSOX™
staining. PETN treatment significantly delayed the thrombin-induced disruption of the
endothelial monolayer, determined using the xCELLigence

®
and attenuated the disrupting

effect of thrombin on tubular junctions as seen in a tube-forming assay on Matrigel™. In
western-blot-analysis we could show that PETN significantly reduced thrombin-induced
extracellular signal-regulated kinase activation which correlates with reduction of thrombin-
induced ROS. These experimental results establish the concept of how PETN treatment
could stabilize endothelial resistance and angiogenic properties in pregnancy-induced
stress. Thus, our results underscore the assumption, that the shown clinical effects of
PETN are associated to its endothelial cell protection.
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INTRODUCTION

Preeclampsia (PE) and fetal growth restriction (FGR) still remain
to be main causes of maternal and fetal morbidity and mortality
associated with pregnancy, labor and birth. Endothelial
dysfunction is recognized to be the primary cause of these
placenta associated pregnancy diseases (Ahmed and Ramma,
2015). The imbalance of endothelial protective and
antiangiogenic factors in the mother’s circulation leads to
peripheral vasoconstriction and subsequent hypertension. The
systemic increase in endothelial permeability results in edema
and endothelial activation induces the formation of
microthrombi, causing malperfusion and damage to
endorgans, such as the placenta, brain, kidney and liver
(Duley, 2009; Young et al., 2010; Ahmed and Ramma, 2015).
This pathophysiological cascade results in the maternal
symptoms of PE: hypertension, coagulopathy and multiorgan
disorder in a previously normotensive woman (Steegers et al.,
2010) and if the placenta is affected, placental malperfusion with
consequent FGR.

It has been observed, that preeclamptic changes are
accompanied by a reduced endothelial production of nitric
oxide (NO), the main vasodilator substance released by the
endothelium. Women with PE show declining NO
bioavailability, while the plasma concentration of the main
vasoconstrictor substance, endothelin-1, increases (Sepulveda
et al., 2017). Under healthy conditions NO is produced by the
endothelial NO-synthase (eNOS) and endothelial cell function is
mainly dependent on correct eNOS function and activity (Daiber
et al., 2019). There are several mechanisms by which NO
production and NO-bioavailability are reduced. Oxidative
stress—one characteristic feature of PE (Ahmed and Ramma,
2015)—is one factor which leads to eNOS uncoupling and thus
reduced activity (Wenzel et al., 2007; Li et al., 2013; Daiber et al.,
2017; Luo et al., 2019). Oxidative stress is caused by high levels of
reactive oxygen species (ROS) that are generated as by-products
of cellular metabolic or enzymatic reactions and in higher
concentrations under conditions of cellular stress. One of the
main sources of ROS is the enzyme NADPH-Oxidase (Bedard
and Krause, 2007; Buvelot et al., 2019). A reduction of high ROS
levels leads to the restoration of normal eNOS function and
consequently to a normal endothelial cell function (Forstermann
and Munzel, 2006; Kar et al., 2012).

The importance of oxidative stress and endothelial
dysfunction in the pathophysiology of PE has prompted the
development of therapeutic approaches targeted to restore the
redox equilibrium like Vitamins, Proton Pump Inhibitors and
Aspirin. The organic nitratester pentaerythrityltetranitrat
(PETN), which has been used as angina pectoris therapy for
many years, is a NO-donor, as well as an antioxidative and
endothelium stabilizing drug. It enhances endothelial function
through antiproliferative and antiapoptotic mechanisms
(Oppermann et al., 2009); amongst others through activation
of the antioxidant heme oxygenase-1 (HO-1) (Dragoni et al.,
2007; Schuhmacher et al., 2010). HO-1 catalyzes the degradation
of heme to ferritin, CO and bilirubin in a rate limiting step
(Sikorski et al., 2004; Hull et al., 2014; Daiber and Munzel, 2015).

CO acts as a vasodilator and bilirubin has additional antioxidative
properties, potentiating the antioxidative effect of HO-1. Thus
HO-1 induced by PETN might protect from endothelial
dysfunction.

Consequently, in a clinical prospective, randomized, placebo-
controlled, double-blinded pilot study at the Department of
Obstetrics, Jena University Hospital, Germany we tested the
effectiveness of PETN for secondary prevention of FGR, PE
and preterm birth in 111 pregnant women who presented an
abnormal placental perfusion at 19–24 weeks of gestation,
indicating a risk for placenta associated pregnancy
complications. In this study PETN showed to reduce the risk
of severe FGR and perinatal death by 39%, and for preterm
delivery before 32 weeks of gestation by 70% (adjusted OR 0.204;
95% CI 0.052–0.801). (Schleussner et al., 2014; Bowkalow et al.,
2018). Although, the total number of patients developing PE did
not differ between groups, onset of PE was delayed and severity
reduced. Additionally, treatment with PETN led to an improved
placental perfusion (Bowkalow et al., 2018). These data
profoundly suggest that PETN is effective in the treatment of
endothelial dysfunction during pregnancy by influencing
endothelial function.

The aim of this experimental study was to investigate the effect
of PETN on endothelial cell function in vitro and thus, to confirm
the hypothesis of an endothelial protective effect of PETN at a
molecular level.

MATERIALS AND METHODS

Cell Culture and Treatment
Human umbilical vein endothelial cells (HUVEC) were
purchased from PromoCell. The manufacturer works
according to the Declaration of Helsinki “Ethical principles for
Medical Research Involving Human Subjects” (1964). No patients
were involved in this study. HUVEC were cultured in Endothelial
Cell Growth Medium (ECGM) containing Supplement Mix
(PromoCell) and 10% FCS (Sigma-Aldrich). HUVEC were
incubated under standard culturing conditions (37 °C, 5%
CO2, humidified atmosphere). HUVEC were cultured on cell
culture plates (Nunclon™ Delta Surface 20,8 cm2) 4 × 105 per
plate. At 100% confluence HUVEC were pretreated with 50 µM
PETN (Dotticon®) or DMSO (Sigma-Aldrich) for 24 h. For
experiments in which the basal effect of PETN was
investigated cells were then analysed. For stimulation
experiments cells were then treated with 10 U/ml thrombin
(Sigma-Aldrich) in serum starved medium (ECGM without
Supplement Mix or FCS) for 2–30 min depending on the
experiment in the presence or absence of PETN. Thrombin
stimulation is acknowledged as an established model for PE
in vitro as described by Huang et al. (2015) and others before
(Zhao et al., 2012; Brunnert et al., 2021). Thrombin was used to
mimic PE-induced endothelial dysfunction.

RNA Isolation and qRT-PCR
After HUVEC were treated with PETN or DMSO for 24 h RNA
was isolated by using TRIzol reagent (Invitrogen) following
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manufacturer’s instructions. Total RNA concentration was
determined using the QIAxpert System (QIAgen). Samples
with A260/A280 ratio >1.8 were stored at −80°C until
processed. The expression of mRNA levels was determined by
reverse transcription using High-Capacity RNA-to-cDNA™ Kit
(Applied Biosystems). Quantitative real-time PCR was performed
using TaqMan assays (HO-1, Assay ID: Hs01110250_m1, eNOS,
Assay ID: Hs01574665_m1, superoxide dismutase 2 (SOD2)
Assay ID: Hs00167309_m1 and GAPDH, Assay ID:
Hs02758991_g1) and TaqMan Universal PCR Master Mix
reagents (Applied Biosystems). qRT-PCR was run on a
Mx3005P qPCR System (Applied Biosystems). Expressions of
all mRNA levels were normalized using the 2−ΔΔCt method
relative to GAPDH.

Reactive Oxygen Species Detection With
MitoSox™
HUVEC were seeded in 8-chamber Culture Slides (Corning),
50 000 cells in 400 µl of ECGM containing Supplement Mix and
10% FCS per well, and left overnight. They were then incubated
with 50 µM PETN or DMSO for 24 h. The basal effect of PETN
was then analyzed. For investigation of the thrombin effect cells
were treated with 10 U/ml thrombin in serum starved medium
(ECGM without Supplement Mix or FCS) for 10 min. For ROS
detection MitoSOX™ (Thermo Fisher) was added at a
concentration of 5 µM in HBSS/Ca/Mg (Sigma Aldrich) and
left for 10 min at 37°C protected from light. The working
solution was removed, wells were washed three times with
PBS, fixated with 5% formaldehyde solution (Thermo Fisher),
and cells were covered using VectaShield HardSet™ Antifade
Mounting Medium with DAPI (Vector). Four representative
pictures were taken per slide. Following photodocumentation,
images were then evaluated using the ImageJ software (National
Institute of Health).

Permeability Assay
HUVEC were seeded to E-Plates®-16 (xCELLigence®, Acea
Biosciences Inc.) at a density of 104 per well. Change of
density of cells leads to a change of impedance, represented as
cell index. To analyze a change of density after treatment
normalized cell index was used. After pre-incubation in
ECGM containing Supplement Mix and 10% FCS with 50 µM
PETN or DMSO respectively for 24 h. To compare the formation
of the barrier between control and PETN-treated cells cell index
was then measured and compared. To analyze the effect of
thrombin on endothelial barrier cells were treated with 10 U/
ml thrombin in serum starved medium (ECGM without
Supplement Mix or FCS) for up to 30 min. Barrier disruption
leads to decreased cell index. The mean of the normalized cell
index of duplicates was used for statistical analysis. Values were
recorded over time as linear data.

Angiogenesis Assay
Culture plates (BD Falcon®-12-Well non-tissue treated Cell
Culture Plates, BD Biosciences) were coated with 400 µl
Matrigel™ (BD Matrigel™ Basement Membrane Matrix, BD

Biosciences) per well and incubated in ECGM with
Supplement Mix and 10% FCS overnight. 1.6 × 105 HUVEC
cells, labelled with CellTracker™ Green CMFDA Dye (Thermo
Fisher Scientific) were added to each well and incubated with
50 µM PETN or DMSO for 24 h to allow forming of a network of
capillary-like structures. Following photodocumentation to
compare the PETN effect on formation of capillary-like
structures the networks were treated with 10 U/ml thrombin
in serum starved medium (ECGM without Supplement Mix or
FCS) and changes in network structure were analyzed at 5, 10, 20,
and 30 min. Captured images were analyzed using the
angiogenesis-analyzer-tool of ImageJ (National Institute of
Health) quantifying the number of nodes in the network
which were then normalized to time point 0.

Western Blot
For western blot experiments HUVEC were pretreated with
PETN or DMSO for 24 h followed by incubation in serum
starved medium containing 50 µM PETN or DMSO for 4 h.
Serum starved HUVEC were then treated with 10 U/ml
thrombin. For protein analysis the reaction was stopped after
2 min by adding phosphatase inhibitor (Serva Electrophoresis) (1:
100) and cell pellets were produced. For western blot analysis cell
pellets were lysed in RIPA buffer (NaCl 0.2 M, sodium
desoxycholate 1%, Triton X-100 1%, SDS 0.1%, Tris-HCl
0.05 M pH 7.5, EDTA 4 mM, proteinase inhibitor mix,
phosphatase inhibitor) on ice for 30 min. The supernatant was
used for analysis and western blot was performed as previously
described (Multhaup et al., 2018). The antibodies used were
directed against extracellular signal-regulated kinase (ERK)
(Cell Signaling, 9102) at 1:2000, P-ERK (Cell Signaling, 4377)
at 1:2000. Label application was conducted with horseradish
peroxidase conjugated anti-rabbit IgG (Cell Signaling, 7074) in
5% (w/v) milk buffer at 1:104. Detection was performed using the
MF-ChemiBIS 3.2 detection system (biostep, DNR Bio-Imaging-
Systems) and visualized via GelCapture Acquisition Software
(DNR Bio-Imaging-Systems Version 5.1).

Statistical Analysis
All data are from at least three independent experiments and
shown as mean values ±SEM. Statistical analysis was performed
using Sigma Plot 14.5 software. An unpaired t-test was performed
for experiments with two conditions (control vs. PETN). For
experiments with more parameters (control vs. PETN and time or
thrombin-treatment) two-way repeated measurement (RM)
ANOVA followed by Holm-Sidak’s multiple comparisons test
was performed. p values <0.05 were considered statistically
significant.

RESULTS

Pentaerythrityltetranitrate Effects in
Endothelial Cells
The aim of our study was to investigate if PETN has a protective
effect on endothelial cells at molecular level. For this we treated
HUVEC with PETN at a concentration of 50 µM for 24 h
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qRT-PCR revealed that this treatment led to a significant 2.58 ±
0.34-fold upregulation of HO-1 mRNA under untreated
conditions (p = 0.006, Figure 1A). This was accompanied by a
significant 1.34 ± 0.08-fold upregulation of the antioxidative
SOD2 (p = 0.012, Figure 1B). However there was no change
in the expression of eNOS mRNA (Figure 1C).

The observed upregulation of the antioxidative proteins
HO-1 and SOD2 led to the assumption that ROS levels might
be lower in HUVEC treated with PETN. However a staining
using the MitoSOX™ reagents revealed, that there was no
difference in ROS levels between untreated endothelial cells
and HUVEC that were treated with 50 µM PETN for 24 h
(Figure 2A).

Because one major problem of PE is the systemic increase in
endothelial permeability we wanted to investigate whether PETN
influences endothelial barrier. We used the xCELLigence® system
to measure the stability of the endothelial barrier. HUVEC seeded
on gold electrodes led to the formation of a stable monolayer as
measured by a constant cell index. When HUVEC were seeded in

medium containing 50 µM PETN and incubated for 24 h the
monolayer showed a comparable cell index and no signs of an
abnormal monolayer formation (Figure 2B).

In addition, an angiogenesis assay where HUVEC were
embedded into Matrigel™ showed that either cells, with or
without treatment of PETN formed a stable network of
endothelial tubules and no difference in the number of tubular
junctions could be observed. While antioxidant defense
mechanisms are upregulated in HUVEC after 24 h of
treatment with 50 µM PETN no abnormal behavior of the
cells could be detected under basal conditions (Figure 2C).

Pentaerythrityltetranitrate in Endothelial
Cells Under Stress Conditions
After we could show that PETN did not lead to abnormal
endothelial cell behavior under basal conditions we wanted to
investigate if it shows protective effects under stress conditions.
To mimic conditions that lead to a breakdown of endothelial

FIGURE 1 | PETN treatment leads to upregulation of antioxidative proteins. RT-PCR data shows that treatment of endothelial cells with 50 µM PETN for 24 h leads
to a significant 2.58 ± 0.34-fold induction of HO-1 mRNA [(A), **p = 0.006] and 1.34 ± 0.08-fold induction of SOD2 mRNA expression [(B), *p = 0.012]. Expression of
eNOS mRNA, is unchanged (C) (n = 4, expression normalised to GAPDH and control, mean value ±SEM, unpaired t-test).

FIGURE2 | PETN treatment does not induce abnormal endothelial cell behaviour. (A) Treatment of HUVECwith 50 µMPETN for 24 h does not influence basal ROS
production (n = 5, representative picture and quantification mean value ±SEM, red = MitoSOX™, blue = DAPI, scale bar = 20 µm) (B) Treatment of endothelial cells with
50 µM PETN for 24 h does not change the basal barrier as seen by unchanged cell index measured by the xCELLigence

®
system (n = 5, cell index ±SEM). (C) In

Matrigel™, treatment of HUVEC with 50 µM PETN for 24 h does not change the basal number of tubular junctions (n = 3, representative pictures, scale bar =
200 μm, and number of junctions mean value ±SEM).
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barrier, as observed under preeclamptic conditions we used
thrombin at a high concentration of 10 U/ml, which is known
to lead to a disruption of the endothelial barrier.

Using the xCELLigence® system we measured the breakdown
of a stable endothelial monolayer 20 and 30 min after addition of
10 U/ml thrombin. When HUVEC were pretreated with 50 µM
PETN for 24 h before treatment with thrombin, however, the
breakdown of the endothelial barrier was significantly delayed
(p < 0.001, Figure 3).

In addition, we could show that the tubule junctions that were
formed in Matrigel™ by HUVEC were significantly destroyed
after the addition of 10 U/ml thrombin for 5–30 min (p < 0.05).
However, pretreatment with 50 µM PETN led to a milder and
delayed disruption of those junctions (Figure 4).

Having observed a protective effect of PETN on endothelial
cell function, we wanted to investigate the mechanism behind
this. In a western blot experiment we could show that treatment
of HUVEC with 10 U/ml thrombin for 2 min led to a profound
and significant ERK-phosphorylation (p < 0.001). In presence of
50 µM PETN the amount of phosphorylated ERK significantly
decreased by 37 ± 14%. (p = 0.004, Figure 5).

Upregulation of HO-1 and SOD2 in HUVEC pretreated with
50 µM PETN led to the assumption that PETN-mediated
protective effects on endothelial cells were the result of the
reduction of ROS in endothelial cells pretreated with PETN.
To investigate if ROS was produced in HUVEC in response to
thrombin treatment we used the MitoSOX™ reagent. Staining
and evaluation showed that treatment of HUVEC with 10 U/ml
thrombin for 10 min led to a significant 63 ± 29% increase in ROS
production compared to control cells (p = 0.046, Figure 6).
MitoSOX™ staining of HUVEC pretreated with 50 µM PETN
for 24 h showed that the effect of thrombin on ROS production
was significantly reduced and there was only a 21 ± 20% increase
in ROS production (Figure 6).

DISCUSSION

This project focuses on the effect of PETN on functional
changes within HUVEC induced by a high concentration of
thrombin that represent endothelial dysfunction like
breakdown of barrier, impairment of angiogenesis and
induction of stress pathways. Our study demonstrates that
treatment of HUVEC with 50 µM PETN for 24 h led to a
significant upregulation of HO-1 but did not influence the
expression of eNOS. 10 U/ml thrombin led to a stress response
in endothelial cells as seen by increased ROS production, ERK
phosphorylation and a disruption of barrier function and
angiogenesis. These stress effects were significantly
attenuated by pretreatment of HUVEC with PETN. PETN
inhibited the effects of thrombin and therefore protected the

FIGURE 3 | PETN treatment delays thrombin-induced barrier
breakdown. Endothelial cells seeded on gold electrodes form a stable barrier
as measured by cell index using the xCELLigence

®
system. Treatment with

10 U/ml thrombin leads to a fast and almost complete disruption of this
barrier as seen by a strong reduction in normalised cell index (black hatched
bars). Pretreatment of endothelial cells with 50 µM PETN for 24 h (grey
hatched bars) transiently but significantly protects from thrombin-induced
barrier disruption (***p < 0.001 compared to thrombin). (n = 5, normalised cell
index, mean value ±SEM, two-way RM ANOVA followed by Holm-Sidak’s
multiple comparisons test).

FIGURE 4 | Treatment with PETN leads to a delay in thrombin-induced disruption of tubular junctions. In an angiogenesis assay endothelial cells (visualised by
CellTracker™ Green CMFDA) embedded in Matrigel™ formed tubes. Treatment with 10 U/ml thrombin for 5–30 min leads to a significant reduction of tubule junctions
(dotted line, *p = 0.038, **p = 0.001, ***p < 0.001, compared to 0 min). After pretreatment with 50 µM PETN for 24 h the thrombin-induced disruption of tubular junctions
is delayed and reduced (solid line, **p = 0.002, ***p < 0.001 compared to 0 min), (n = 3, representative picture, picture for evaluation, scale bar = 200 μm, and
evaluation of numbers of junctions, mean value ±SEM, two-way RM ANOVA followed by Holm-Sidak’s multiple comparisons test).
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endothelial cells on a molecular level. We propose that PETN
protects endothelial cells from dysfunctional changes like
disruption of angiogenesis and barrier breakdown by
reducing stress-induced ROS production, presumably via
the upregulation of HO-1 and the subsequent inhibition of
NADPH-Oxidase.

Literature shows that PETN treatment of endothelial cells
leads to activation of the antioxidant protein HO-1 (Dragoni
et al., 2007; Schuhmacher et al., 2010). HO-1 is the rate limiting
enzyme which catalyzes the degradation of heme to CO and
bilirubin (Sikorski et al., 2004; Hull et al., 2014; Daiber and

Munzel, 2015). The antioxidative effect of HO-1 is potentiated by
the antioxidative properties of bilirubin. Indeed our data confirm
that PETN significantly increases HO-1 mRNA levels under basal
conditions. In addition, the increase in mRNA expression of
SOD2 further underlines the antioxidant properties of PETN.
Furthermore PETN is reported to restore eNOS activity
(Schuhmacher et al., 2010). We could not observe changes in
mRNA expression levels of eNOS upon treatment with PETN.
However, eNOS activity was not evaluated in our experimental
settings.

This hypothesis is further supported by our findings that
there is no reduction in basal ROS levels after treatment of
HUVEC with PETN. This coincides with our finding that
HUVEC treated with PETN did form a stable barrier
comparable to untreated cells and also formed a tubular
network in Matrigel™, which did not differ from the
network formed by untreated cells. Taken together these
data show that PETN does not induce abnormal cell
behavior under basal conditions and thus, does not lead to
excessive and potentially harmful overstabilization of the
endothelial barrier or excessive angiogenesis.

Since our project focuses on the protective effect of PETN
under preeclamptic conditions we looked for a suitable stimulus
to mimic endothelial dysfunction as seen during PE. One
hallmark of this clinical syndrome is organ malperfusion,
which stems from the systemic increase in endothelial
permeability. A factor known to increase endothelial
permeability is thrombin. Literature data shows that there is
an excessive thrombin generation in the placenta during PE
(Lockwood et al., 2007; Huang et al., 2015) which makes
thrombin a suitable model. Nevertheless, keeping in mind,
that in vivo the induction of endothelial dysfunction is more
complex and not only dependent on one factor. Our data depicts
that treatment of HUVEC with thrombin at the high
concentration of 10 U/ml, indeed leads to a stress response,
which can be seen by disturbed angiogenesis, barrier
breakdown, ERK phosphorylation and ROS production.

In literature several pathways are proposed by which thrombin
induces barrier disruption. On the one hand it is reported that
thrombin, via the activation of its receptor protease-activated
receptor 1 (PAR1), leads to an increase in intracellular Ca2+ and a

FIGURE 5 | PETN treatment significantly reduces thrombin-induced
ERK signaling. Stimulation of endothelial cells with 10 U/ml thrombin for 2 min
leads to a profound ERK phosphorylation (black hatched bar, ***p < 0.001).
Pretreatment with 50 µM PETN for 24 h does not induce basal ERK
phosphorylation (grey bar). Thrombin treatment of PETN-pretreated cells still
induces significant ERK phosphorylation (grey hatched bar, **p = 0.003). The
thrombin-effect, however, is significantly reduced by 37 ± 14% compared to
cells that were not pretreated with PETN (**p = 0.004). (n = 5, representative
blot and densitometry, mean value ±SEM, two-way RM ANOVA followed by
Holm-Sidak’s multiple comparisons test).

FIGURE 6 | PETN treatment inhibits thrombin-induced ROS production. Treatment of endothelial cells with 10 U/ml thrombin for 10 min leads to a significant 63 ±
29% increase in ROS compared to control as detected in a staining using the MitoSOX™ reagent (black hatched bar, *p = 0.046). Pretreatment with 50 µM PETN for
24 h reduces thrombin-induced ROS production (grey hatched bar) (n = 5, representative picture, scale bar = 20 μm, and quantification, mean value ±SEM, two-way RM
ANOVA followed by Holm-Sidak’s multiple comparisons test).
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subsequent activation of the Myosin light chain kinase (MLCK).
MLCK phosphorylates MLC, which leads to contraction of the
cell and thus an increase in permeability. Another proposed
mechanism is that thrombin, via protease activated receptor
one and subsequent NADPH-Oxidase activation, leads to ROS
production which induces ERK phosphorylation (Bogatcheva
et al., 2002; Coughlin, 2005; Andrikopoulos et al., 2015). ERK
phosphorylation induces MLC phosphorylation by Rho-
mediated inhibition of the MLC2 phosphatase (Wei et al.,
2011; Aslam et al., 2012). Phosphorylated ERK itself
contributes to barrier dysfunction by phosphorylating junction
proteins which leads to a disassembly of tight junctions
(Makarenko et al., 2014).

In our experiments using the xCELLigence® system we could
show that thrombin treatment of a stable endothelial barrier led
to a fast increase of permeability as shown by a reduced cell index.
Pretreatment of HUVEC with PETN could slow down, but not
completely prevent, this process. We did not find any literature
data showing evidence that PETN can protect from an increase in
intracellular Ca2+ concentration and a subsequent MLCK
activation. However, we could show that thrombin treatment
of HUVEC leads to a strong ERK phosphorylation, as well as an
increased ROS production. Both effects were significantly
reduced after pretreatment with PETN. Nevertheless, the
barrier disrupting pathways involving ERK and ROS only

make up a part of the thrombin effect on endothelial barrier.
This could explain why PETN only partially protects from
endothelial barrier breakdown after thrombin stimulation.
These results lead to the assumption that the protective effect
of PETN on endothelial cells is primarily of an antioxidative
nature.

A disturbance in correct angiogenesis in vivo is one of the
causes of placental malperfusion during PE and FGR.
Thrombin is known to support and strengthen angiogenesis
(Blackburn and Brinckerhoff, 2008; Andrikopoulos et al.,
2015). At the same time, at higher concentrations this effect
is reversed and thrombin leads to apoptosis and disturbed
angiogenesis (Catar et al., 2021). In our experiments treatment
of a network of tubules formed by HUVEC on Matrigel™ with
thrombin led to a disruption of tubular junctions. When cells
were pretreated with PETN this effect was significantly
delayed. Literature shows that PETN enhances endothelial
function through antiproliferative and antiapoptotic
mechanisms (Oppermann et al., 2009). We propose that
this is mediated via a protection from oxidative stress and
ROS-induced cell damage.

One of the main enzymes responsible for ROS production
is NADPH oxidase which is dormant under resting
conditions, but can be activated under stress, for example
by high concentrations of thrombin (Huang et al., 2015). It is

FIGURE 7 | PETN can protect endothelial cells from pregnancy-induced dysfunction. Preeclamptic stimuli lead to increased ROS production via the activation of
NADPH oxidase. This induces endothelial dysfunctions leading to symptoms of preeclampsia like hypertension, edema, microthrombi and malperfusion. PETN
treatment of endothelial cells induces expression of the antioxidative HO-1 which leads to reduced ROS by inhibiting NADPH oxidase activity. This restores endothelial
function which ensures a stable monolayer and an antiadhesive surface of vessels. These changes reduce symptoms of PE. (picture of pregnant woman from
SMART:smart.servier.com).
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known that HO-1 leads to inhibition of NADPH oxidase
activity which results in reduced ROS formation
(Schuhmacher et al., 2010). A proposed mechanism is that
bilirubin inhibits the assembly and therefore activation of
NADPH oxidase (Datla et al., 2007; Luo et al., 2019). In our
experiments thrombin, which was used to mimic
preeclamptic conditions, led to a significant increase in
ROS. Endothelial cells pretreated with PETN showed
significantly lower thrombin-induced ROS levels which
demonstrates the antioxidative effect of PETN via HO-1
under stress conditions. Hence we propose, that PETN
protects endothelial cells on a molecular level mainly
through its antioxidative properties by inhibiting NADPH
oxidase and consequently preventing ROS production and
ROS-induced cell damage.

In contrast to our experimental setup there are a variety of
factors that lead to endothelial dysfunction and increased
permeability during PE. Oxidative stress probably being the
main inducer of the endothelium damaging effects seen in PE
and FGR.

To summarize we revealed that PETN can protect endothelial
cells from pregnancy-induced dysfunction and through
stabilizing endothelial resistance and angiogenic properties.
PETN most likely acts via the upregulation of HO-1 and the
subsequent reduction of stress-induced ROS and effects of
oxidative stress (Figure 7). This confirms our hypothesis that
PETN-induced improvement in endothelial health takes place on
a molecular level and consequently contributes to less severe
symptoms of PE and FGR.
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