
Current Progress of Mitochondrial
Genome Editing by CRISPR
Tao Yin1,2, Junjie Luo3, Danqiong Huang1 and Hui Li 1*

1Guangdong Engineering Research Center for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant
Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology,
College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China, 2Key Laboratory of Optoelectronic Devices
and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen
University, Shenzhen, China, 3Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China
Agricultural University, Beijing, China

Keywords: mitochondria, mtDNA, RNA import, CRISPR/Cas, gRNA

INTRODUCTION

Human mitochondrial diseases are commonly caused by mutations in mitochondrial DNA (mtDNA).
The severity of mitochondrial disease is associated with heteroplasmy, which is defined as the coexistence
of two or more different mtDNA variants within one cell (Taylor and Turnbull, 2005). Although
mitochondria-targeted zinc-finger nucleases (mitoZFNs) or mitochondria-targeted transcription
activator-like effector nucleases (mitoTALENs) can be used for mitochondrial genome editing, they
have limitations that include the laborious design and assembly of the monomers, their limited sequence
specificity and large size. The CRISPR/Cas genome editing system is a powerful tool to precisely edit the
genomes of a wide range of mammals and plants. However, the biggest challenge in utilizing this system
inmitochondria is the delivery of exogenous guide RNA (gRNA) intomitochondria. Previous attempts at
delivering gRNA via stem-loop motifs have been reported but there is no robust evidence to show the
success of this approach. In the future, the efficient delivery of gRNA, with a mitochondrial localization
signal (MLS), and the effective cleavage activity of the modified gRNA/Cas complex will be necessary for
mitochondrial genome editing by CRISPR/Cas system.

CURRENT METHODS FOR MITOCHONDRIAL GENOME EDITING

Mitochondrial Genome and mtDNA Disorder
Mitochondria are double membrane-bounded organelles that are known as the “powerhouse of the
cell.” They contain maternally inherited, double-stranded, multi-copy DNA of 16.5 kb. The genome
is circular and encodes 13 protein subunits involved in the respiratory chain, 22 transfer RNAs
(tRNAs) and two ribosomal RNAs (rRNAs) (Falkenberg et al., 2007).

Several mtDNA mutations have been associated with mitochondrial dysfunction (Wallace and
Chalkia, 2013). As there are multiple copies of mtDNAwithin a cell, pathogenic mutations in human
mtDNA are commonly heteroplasmic. When the percentage of mutated mtDNA molecules exceeds
the threshold that compromises the mitochondrial function, thereby disrupting the overall cellular
function, mtDNA disorder will occur (Vafai and Mootha, 2012). It has been reported that the
A3243G mutation, at 50%–90% mtDNA heteroplasmy, may cause the severe mitochondrial
encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome (Goto et al.,
1990; Picard et al., 2014).

Mitochondria-Targeted DNA Nucleases
For clinical applications that target mtDNAdisorder, it is essential to achieve homoplasmic status in a cell
by eliminating the mutated mtDNA. In contrast to nuclear DNA (nDNA) repair pathways, the efficient
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DNA double-strand break (DSB) repair and homologous
recombination (HR) mechanisms are lacking in mammalian
mitochondria (Nissanka et al., 2019; Carvalho et al., 2021). Once
cut on both strands, mtDNA molecules are not repaired, which
results in rapid degradation of mtDNA in mammalian cells (Peeva
et al., 2018). Hence, several approaches have been developed to use
mitochondria-targeted and site-specific DNA nucleases that will
quickly degrade the mutant mtDNA in heteroplasmic cells, to adjust
the heteroplasmy ratio (Patananan et al., 2016; Silva-Pinheiro and
Minczuk, 2022). The expression ofmitochondria-targeted restriction
endonucleases (mtREs) has been used to shift the mtDNA
heteroplasmy ratio from mutant to wild-type in the mouse model
and patient somatic cells. Results indicated that mtREs specifically
reduce the amount of mutated mtDNA molecules (Srivastava and
Moraes, 2001; Tanaka et al., 2002). However, this mtRE approach
has obvious limitations. For example, only one unique restriction site
(XmaI) has been found to arise in approximately 200 different
mtDNA mutations (Reddy et al., 2015). To overcome the limitation

ofmtREs, other alternative approaches have been developed. The use
ofmitoZFNs ormitoTALENs (Figure 1A), which are composed of a
mitochondrial targeting sequence (MTS), the specific DNA
recognition modules and a non-specific FokI nuclease, has
successfully altered the heteroplasmy ratio in previous studies
(Minczuk et al., 2008; Bacman et al., 2013; Gammage et al., 2014;
Reddy et al., 2015; Gammage et al., 2016; Bacman et al., 2018;
Gammage et al., 2018b). Zinc-finger proteins, as the recognition
modules of the mitoZFNmonomer, can recognize a 12 bp sequence.
Unlike mitoZFN, the mitoTALEN monomer utilizes TAL effector
proteins as the recognition modules that can recognize
approximately 17 nucleotides. In addition to the conventional
mitoTALEN monomer, a new monomer, mitoTev-TALE, has
been successfully used to manipulate mutant mtDNA in cybrid
cells (Pereira et al., 2018). The TAL effector proteins are linked to the
I-TevI nuclease in mitoTev-TALE, rather than the FokI nuclease, as
in mitoTALEN. Recently, a radically different approach for mtDNA
editing has been reported, namely double-stranded DNA deaminase

FIGURE 1 | Potential methods for sgRNA importation into mitochondria. (A) Diagram illustrating the cleavage mechanism of mitoZFNs, mitoTALENs and the
CRISPR/Cas9 system. MTS, mitochondrial targeting sequence; FokI, non-specific FokI nuclease; sgRNA, single guide RNA. (B) Stem-loopmotifs identified in human 5s
rRNA, 7-2 RNA, H1 RNA,D-arm and F-hairpin motifs identified in yeast tRNALys (CUU). (C) The secondary structures of the original sgRNA and sgRNA with MLS. The
original sgRNA is comprised of three stem loops and one tetraloop. When compared with the original sgRNA, the potential mitochondria-targeted sgRNA may be
have an additional MLS at the 5′-end. The target complimentary region, which the RNA sequence for recognized target DNA, is shown in green. The backbone of the
sgRNA is shown in red. MLS is the mitochondrial localization signal and is shown in purple.
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(DddA)-derived cytosine base editors (DdCBEs) (Mok et al., 2020;
Lee et al., 2021; Silva-Pinheiro et al., 2022). The DdCBE is composed
of mitoTALE proteins, the interbacterial toxin DddA and an uracil
glycosylase inhibitor. It is able to precisely catalyze C•G-to-T•A
conversions in human mtDNA with high target specificity.

Despite the promising results of mitoZFNs and mitoTALENs
in mtDNA editing, these methods have limitations. Since each
mitoZFN or mitoTALEN monomer needs to be designed and
engineered to recognize a specific range of mtDNA sequences,
they require enormous labor and cost-intensive protein
production. In addition, the size of the coding nuclease
sequences exceeds the capacity of current virus-based (adeno-
associated virus, AAV) delivery systems (Moraes, 2014). The
CRISPR/Cas9 genome editing system may solve this issue as it
relies on the single guide RNA (sgRNA) to recognize a specific
20 bp DNA sequence and only Cas9 nuclease can cleave this
specific DNA sequence (Figure 1A) (Hsu et al., 2013; Ran et al.,
2013; Doudna and Charpentier, 2014). Currently, reliable
chloroplast and mitochondrial genome editing methods by
CRISPR/Cas9 system exist only in yeast and green algae (Yoo
et al., 2020). Yoo et al. introduced plasmids, which contained a
cassette for the organelle-specific expression of Cas9 nuclease and
a cassette for the expression of sgRNA, into yeast mitochondria
and Chlamydomonas chloroplasts through microprojectile
transformation. The authors confirmed the insertion of donor
DNA at the target sites of organelle DNA, facilitated by HR, only
in the presence of Cas9/sgRNA activity. In mammals, two
independent studies have attempted to edit mtDNA through
the utilization of a CRISPR/Cas9 genome editing system (Jo et al.,
2015; Bian et al., 2019). In these studies, mitochondria-targeted
Cas9 nucleases (mitoCas9) and unmodified sgRNAs in cells
resulted in mtDNA cleavage. These data implied that the
original sgRNA, without any modifications, was spontaneously
delivered into mitochondria from the cytosol. This occurred
despite the double-membrane structure of mitochondria
making it difficult for exogenous RNA and proteins to
spontaneously enter mammalian mitochondria. However,
attempts to repeat this work, by other research groups, have
not been successful (Pereira and Moraes, 2017). Therefore, it is
not clear whether the CRISPR/Cas9 genome editing system is able
to cleave or edit mammalian mtDNA, due to the challenge of
importing the exogenous sgRNA into the mitochondria.

In contrast to mitochondrial protein, the mechanism of
importing nucleus-encoded RNA into mitochondria is still not
fully understood (Gammage et al., 2018a). A controversial
mechanism of importing RNA into mammalian mitochondria,
mediated by polynucleotide phosphorylase (PNPase), is not
widely accepted (Wang et al., 2010; Wang et al., 2012a). If the
delivery of exogenous sgRNA into mitochondria can be achieved,
the CRISPR/Cas9 genome editing system could be widely used to
edit the mitochondrial genome.

Delivery of Exogenous sgRNA Into
Mitochondria
There are numerous endogenous RNAs reported to have
functional roles in mammalian mitochondria, such as H1

RNA (RNase P), 7-2 RNA (RNase MRP) and 5S rRNA
(Puranam and Attardi, 2001; Mercer et al., 2011; Smirnov
et al., 2011). Notably, some distinct stem-loop motifs have
been found at the 5′ or 3′ -end of these RNA molecules and
could mediate the import of nucleus-encoded RNA molecules
into mitochondria (Figure 1B). For example, it has been
suggested that stem-loop motifs identified in H1 RNA and 5S
rRNA are MLS for mitochondrial import of RNA molecules
(Wang et al., 2012b; Towheed et al., 2014; Zelenka and Ježek,
2016). Meanwhile, other studies have claimed that the delivery of
synthetic RNA into mammalian mitochondria can be achieved
through the utilization of F-arm or D-hairpin motifs from yeast
cytosolic tRNALys (CUU) (Gowher et al., 2013; Tonin et al., 2014).
In the CRISPR/Cas9 system, the sgRNA is created by fusing the
CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA)
sequences together into a single RNA chimera. It forms a
T-shaped architecture, with one tetraloop and three stem-
loops. Stem-loop 1 is essential for the formation of a
functional Cas9/sgRNA complex. Stem-loop 2 and stem-loop 3
support the stable complex formation and enhance the stability of
the sgRNA (Jinek et al., 2012; Anders et al., 2014; Nishimasu et al.,
2014). Another study has suggested that sgRNA, with an
elongated 5’ end or insertions in the tetraloop, should not
significantly disrupt the CRISPR/Cas9 system (Tang et al., 2017).

The above studies provide some inspiration for methods of
delivery of exogenous sgRNA into mitochondria. The potential
mitochondria-targeted sgRNA architecture may be comprised of
additional MLS at the 5′-end of the sgRNA and conserved
structures in the sgRNA (three stem-loops and one tetraloop),
to ensure that it is imported into mitochondria and to meet the
requirement for Cas9/sgRNA complex formation, respectively
(Figure 1C). The varied stem-loop motifs (20–40 nt RNA
sequences) identified in mitochondria-targeted RNAs act as
the MLS for sgRNA and may provide a potential pathway for
importing sgRNA into mammalian mitochondria.

Mitochondrial Genome Editing by CRISPR/
Cas9 System
Attempts to develop a mitochondria-adapted CRISPR/Cas9
system, using mitoCas9 and sgRNA that contains the stem-
loop motif, have been reported. One such study declared that
the stem-loop motif from H1 RNA can mediate delivery of
sgRNA into mitochondria. In mouse cells, modified sgRNA/
mitoCas9 complexes were able to reduce the amount of
mtDNA that carried the 11205G mutation in the
mitochondrial ND4 gene (mtND4). Both modified sgRNAs,
with the stem-loop motif from H1 RNA, and non-modified
sgRNAs were present in the mitochondrial fraction. Modified
sgRNAs were highly enriched in the mitochondria of transfected
cells versus non-modified controls (Hussain et al., 2021).
However, the process used in this study for mitochondria
isolation did not remove the outer mitochondrial membrane
to eliminate outer-membrane contaminants. Consequently, the
levels of sgRNAs detected in the mitochondrial fraction may be
over-estimated, due to contamination by cytosolic RNAs and
RNAs associated with the outer membrane. In addition, analysis
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and quantification of mtDNA content, 48 and 72 h after cells were
transfected, in the control and experimental groups, have not
been performed in this study. The additional long-term analysis
of mtDNA content may strengthen the conclusion that the
mitochondria-adapted CRISPR/Cas9 system reduces the
mitochondrial genomes.

Another study claimed that using a pair of modified sgRNAs,
with an F-arm motif from yeast cytosolic tRNALys (CUU), reduced
the mtDNA content in Kearns Sayre Syndrome cybrids, through
incorporation of mitoCas9. No changes in mtDNA content were
observed when using a single modified sgRNA. Moreover, any
significant shift of mtDNA heteroplasmy was not observed
(Loutre et al., 2018). Loutre et al. detected either the modified
sgRNAs, with an F-arm/D-hairpin, or original sgRNAs that
lacked the stem-loop motif in the enriched mitochondrial
RNA samples. The sgRNAs bearing the F-arm motif and the
original sgRNAs had a similar ability (approximately 35%) to
enter mitochondria. These data implied that mitochondria-
adapted CRISPR/Cas9 system was unbale to specifically reduce
mutant mtDNA content, and the F-arm motif was unable to
improve the mitochondrial import of sgRNA. In addition, the
cleavage activity of the sgRNA (with an F-arm or D-hairpin
motif)/Cas9 complex had been partially or completely blocked,
which meant that the stem-loop motif may have influenced the
binding of sgRNA and Cas9 nuclease or the recognition process
of the sgRNA and targeted DNA.

A different study found that numerous insertion/deletion
(InDel) events in mtDNA were generated using the
unmodified sgRNA/mitoCas9 complex (Wang et al., 2021).
Interestingly, in this study, the InDel frequencies generated by
the mitochondria-adapted CRISPR/Cas9 system were low, at
<0.05%, which was much lower than the elimination efficacies
of mutated mtDNA by mitoTALENs/ZFNs. Moreover, modified
sgRNAs, with the stem-loop motif from 7-2 RNA or H1 RNA,
were unable to increase the frequencies of InDel, when compared
with the original sgRNA. These data implied that stem-loop
motifs from 7-2 RNA and H1 RNA were unable to improve
the import of sgRNA into mitochondria. Generally, homology
between nuclear mitochondrial DNA sequences (NUMTs) and
mtDNA causes problems for the detection of mtDNA variants
from Next Generation Sequencing (NGS) data because the origin
of sequences cannot be determined (Maude et al., 2019). Hence,
the InDel events determined by NGS may be over-estimated in
this study. Wang et al. need to prove that the observed InDel
events happened in mtDNA and not in NUMTs. If this is not
properly addressed, it will undermine the credibility of reports of
CRISPR-mediated mtDNA manipulation.

Mitochondrial Genome Editing by CRISPR/
Cas12a System
In contrast to the CRISPR/Cas9 system, the CRISPR/Cas12a
system only requires a single crRNA (42–44 nt) as gRNA
(Zetsche et al., 2015; Fonfara et al., 2016). Recently, the use of
a mitochondria-adapted CRISPR/Cas12a (mitoCRISPR/Cas12a)
system for mtDNAmanipulation has been reported (Antón et al.,
2020). Antón et al. demonstrated that LbCas12a nucleases were

localized to mitochondria with high efficiency and caused less
mitochondrial damage than the other Cas nucleases, such as
SpCas9 and SaCas9. These data suggested that LbCas12a had a
much higher predisposition to be imported into mitochondria. In
this study, unmodified sgRNA, sgRNA with the stem-loop motif
from H1 RNA and sgRNA with the stem-loop motif from yeast
tRNALys (CUU) were detected in the nuclear fraction and, to a
lesser extent, the mitochondrial fraction. These data showed that
sgRNA can be imported into mitochondria regardless of whether
an MLS was present. As with the Hussain et al. work, the levels of
sgRNAs observed in mitochondria may be over-estimated,
because the outer-membrane contaminants had not yet been
fully removed from the mitochondrial fraction. Although the
authors had not performed any assessment of the delivery
efficiency of crRNAs (with or without an MLS) into
mitochondria, they still tested the activity of mitoLbCas12a/
crRNA (with or without the stem-loop motif from H1 RNA)
complexes in the MELAS cybrids. In theory, mitoLbCas12a/
crRNA complexes would reduce the mtDNA content.
However, instead both modified and unmodified crRNAs seem
to have increased the amount of mtDNA in a mitoLbCas12a-
dependent manner. The authors did not explain the reasons for
the mitoCRISPR/Cas12a system effects. These confusing results
mean that it remains unclear whether the CRISPR/Cas12a
genome editing system is able to edit mammalian mtDNA.

DISCUSSION

Although these reported data are not perfect and are unable to
provide reasonable evidence to show that stem-loop motifs
(D-hairpin, F-arm, 7-2 RNA and H1 RNA) enhance the
delivery efficiency of gRNA (sgRNA and crRNA) into
mammalian mitochondria, these attempts can provide many
new perspectives on the import of gRNA. Meanwhile, several
research reports have shown that nuclear non-coding RNAs
(ncRNAs) act as important mediators of the crosstalk between
the nucleus and the mitochondria. These ncRNAs could directly
impact mitochondria by affecting transcripts of the
mitochondrial genome (Kim et al., 2017; Vendramin et al.,
2017). Further modification of the gRNA scaffold, by
integrating the recent knowledge of mitochondrial ncRNA
transport, may show promise for increasing the delivery
efficiency of gRNA into mitochondria. The CRISPR screening
strategy may efficiently identify appropriate architectures of
gRNA with an MLS, for mitochondria-adapted CRISPR/Cas
genome editing. For specific mutations associated with mtDNA
disorder, the cleavage activity of the modified gRNA/Cas
complex may require validation by exploration and
confirmation in vivo and in vitro, as MLS may affect the
binding of gRNA and Cas nucleases or the recognition of
gRNA and targeted DNA sequences. Therefore, the
utilization of potential MLS from mitochondria-targeted
RNAs, for the import of gRNAs into mitochondria, can
provide a potential future for mitochondrial genome editing
by CRISPR/Cas system, which remains a relatively optimum
strategy.
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Human mtDNA mutations often affect mitochondrial
function and cause mitochondrial diseases. Manipulation of
the mutated mitochondrial genome is the most direct and
thorough approach to resolve mitochondrial dysfunction.
Currently, owing to the lack of an efficient delivery system
to import gRNA into the mitochondria, the popular CRISPR/
Cas genome editing method is still restricted to nuclear
genomes and cannot efficiently be used to edit
mitochondrial genomes. Early attempts to deliver gRNA
into mitochondria were unsuccessful but may bring
inspiration to follow-up researchers. Success at delivering
exogenous gRNA into mammalian mitochondria may create
new possibilities for mtDNA editing and will also help to
prevent mitochondria disorder.
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