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Respiratory arousals (RA) on polysomnography (PSG) are an important predictor of
obstructive sleep apnea (OSA) disease severity. Additionally, recent reports suggest
that more global indices of desaturation such as the hypoxic burden, namely the area
under the curve (AUC) of the oxygen saturation (SaO2) PSG trace may better depict the
desaturation burden in OSA. Here we investigated possible associations between a new
metric, namely the AUC of the respiratory arousal electroencephalographic (EEG)
recording, and already established parameters as the apnea/hypopnea index (AHI),
arousal index and hypoxic burden in patients with OSA. In this data-driven study,
polysomnographic data from 102 patients with OSAS were assessed (32 female; 70
male; mean value of age: 52 years; mean value of Body-Mass-Index-BMI: 31 kg/m2). The
marked arousals from the pooled EEG signal (C3 and C4) were smoothed and the AUC
was estimated. We used a support vector regressor (SVR) analysis to predict AHI, arousal
index and hypoxic burden as captured by the PSG. The SVR with the arousal-AUC metric
could quite reliably predict the AHI with a high correlation coefficient (0,58 in the training
set, 0,65 in the testing set and 0,64 overall), as well as the hypoxic burden (0,62 in the
training set, 0,58 in the testing set and 0,59 overall) and the arousal index (0,58 in the
training set, 0,67 in the testing set and 0,66 overall). This novel arousal-AUC metric may
predict AHI, hypoxic burden and arousal index with a quite high correlation coefficient and
therefore could be used as an additional quantitative surrogate marker in the description of
obstructive sleep apnea disease severity.
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INTRODUCTION

In 2008 it has been stated that 3–7% of adult men and 2–5% of
adult women in populations at risk for sleep disordered breathing
or cardiovascular diseases have sleep apnea syndrome. There has

been a 14–55% increase in prevalence of obstructive sleep apnea
(OSA) over the last 20 years. In particular, patients with
cardiovascular disease have been found to have a two-to
threefold increased prevalence relative to the normal
population (Young et al., 2002; Punjabi, 2008). In a large
population-based study (“HypnoLaus study”) the prevalence of
moderate-to-severe sleep-disordered breathing was even higher,
with 23·4% in women and 49·7% in men (Heinzer et al., 2015).

The pathogenesis of sleep-disordered breathing is based on
central nervous and/or neuromuscular processes that lead to
changes in central respiratory regulation and/or upper airway
muscle tone during sleep. However, the exact pathogenesis is still
the focus of research and not completely understood.

Obstructive sleep apnea is diagnosed using
polysomnography (PSG) or home sleep testing (HST).
(Markun and Sampat, 2020). In this process, obstructive
sleep apnea is diagnosed when the breathing disorder
cannot be explained by any other sleep disorder, medical
condition, medication, or other substance. In addition, to
meet the diagnostic criteria, an apnea-hypopnea index (AHI)
> 15/h (each event lasting ≥10 s) of sleep time or an AHI ≥5/h

FIGURE 1 | The raw EEG signal (in blue) for a duration of 30 seconds is shown in the top plot with a significant respiratory arousal. In the bottom blot (in red) the
smoothed version of the EEG signal is shown to estimate the area under the curve.

FIGURE 2 | Pipeline figure to show the procedure from the raw EEG data, estimating the area under the curve (AUC) and then followed by the linear as well as the
SVM regression.
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of sleep time in combination with typical clinical symptoms
or relevant comorbidity must be present (Darien, 2014). The
evaluation of PSG/HST adheres to the evaluation criteria of
the American Association of Sleep Medicine (AASM). The
main clinical findings are daytime sleepiness, including
involuntary falling asleep, and the AHI, which objectifies
the diagnosis and, in conjunction with the clinical
symptoms, determines the severity of the disease. An AHI
between 15/h and 30/h sleep time classifies OSA as moderate.

In the range of an AHI >30/h sleep time, OSA is referred to as
severe (Mayer et al., 2016).

However, in recent years, consensus is emerging within the
sleep medicine community that the AHI metric may not be
sufficient as a singular assessment parameter for classifying the
severity of OSA. This metric has many limitations to stand as the
sole parameter for defining severity. (Malhotra et al., 2021).
Beginning with the fact that there are multiple definitions of
hypopnea, the index of apnea and hypopnea provides no

TABLE 1 | The epidemiological data of the 47 patients with AHI >30/h shows age in years, BMI in kg/m2, CVRF for the number of cardiovascular risk factors (hypertension,
obesity, diabetes mellitus, hyperlipoproteinemia), AHI in number per hour, RDI (Respiratory Disturbance Index) in number per hour, TST (total sleep time) in minutes, ODI
(oxygen desaturation index) in number per hour and Arousal Index in number per hour.

N Minimum Maximum Mean value Standard deviation

Age (years) 47 28 70 50,17 10,85
BMI (kg/m̂2) 47 20,93 46,57 30,99 5,60
CVRF (n) 47 0 3 1,23 0,87
AHI (n/h) 47 14,4 31,3 20,79 4,29
RDI (n/h) 47 15,0 32,7 21,40 4,36
TST (min) 47 202,5 491,0 362,33 54,21
ODI (n/h) 47 1,4 29,8 12,84 7,28
Arousal Index (n/h) 47 4,3 42,5 22,19 7,42

TABLE 2 | The epidemiological data of the 55 patients with AHI between 15 and 30/h shows age in years, BMI in kg/m2, CVRF for the number of cardiovascular risk factors
(hypertension, Obesity, diabetes mellitus, hyperlipoproteinemia), AHI in number per hour, RDI (Respiratory Disturbance Index) in number per hour, TST (total sleep time)
in minutes, ODI (oxygen desaturation index) in number per hour and Arousal Index in number per hour.

N Minimum Maximum Mean value Standard deviation

Age (years) 55 27 86 52,91 12,94
BMI (kg/m̂2) 55 19,57 43,27 31,70 5,12
CVRF (n) 55 0 5 1,77 1,22
AHI (n/h) 55 16,20 130,40 51,07 21,70
RDI (n/h) 55 16,9 130,4 51,89 21,08
TST (min) 55 166,5 458,0 336,86 65,38
ODI (n/h) 55 8,6 97,5 40,44 24,27
Arousal Index (n/h) 55 9,9 93,4 38,19 18,50

FIGURE 3 | Shows the linear regression results between the arousal-AUC and SpO2-AUC for patients with AHI 15–30/h of TST. The green margins indicate the
standard deviation for the correlation and the black dots indicate each subject in this group. r = 0.280/p = 0.056/n = 47.
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information about the length of each event or the severity of
desaturation. Similarly, it is subject to the assumption that apneas
and hypopneas should be evaluated equally in their disease-
promoting effect (Punjabi, 2016; Randerath et al., 2018). Also,
the AHI has a poor correlation with the clinical manifestation of
OSA, such as daytime sleepiness, and does not have good

predictive power about the risks for cardiovascular disease
(CVD) resulting from the condition (Kulkas et al., 2013; Cao
et al., 2020).

Therefore, the search for new parameters and novel
metrics that provide a more precise prediction of adverse
outcomes (cardiovascular, neurocognitive and metabolic,
among others) continues. Polysomnography yields a
valuable variety of data that should be used to describe the

disease. New methods of measurement of respiratory
variables and new technologies can better evaluate the
different pathophysiological mechanisms underlying OSA
(Randerath et al., 2018). One of the new and so far
promising parameters in the PSG raw data is the so-called
“hypoxic burden” (Cao et al., 2020). Hypoxic burden has been
defined as the “total area under the respiratory event-related
desaturation curve” (Azarbarzin et al., 2019). Hypoxic
burden has been associated with increased CVD mortality
in adults aged >40 years in two large cohort studies, namely
the Outcomes of Sleep Disorders in Older Men (MrOS) and
the Sleep Heart Health Study (SHHS). Higher blood pressure
and risk of heart failure in men were also associated with
hypoxic burden after eliminating some confounders, such as
comorbidities (Azarbarzin et al., 2019; Azarbarzin et al.,
2020).

Arousals can be spontaneously, physiologically and an integral
part of healthy sleep regulation but also an indication of serious
diseases, such as the sleep apnea syndrome we studied (Strollo
and Rogers, 1996; Dvir et al., 2018). In 2007, the Arousal Task
Force acknowledged in a systematic review that arousal has a
major impact on the sleep process. Arousals are scored as an all-
or-none event and defined as an abrupt shift of the EEG
frequency including alpha, theta and/or frequencies greater

than 16 Hz (but not spindles) that lasts at least 3 s, with at
least 10 s of stable sleep preceding the change. Patients’
subjective and objective excessive daytime sleepiness (EDS), as
one of the clinically leading symptoms, correlates positively with
EEG arousal count. With increase in EEG arousal number,
patients’ psychomotor performance also decreases, hormone
secretions change, upper respiratory function decreases,
sensory arousal threshold increases, and metabolic activity

FIGURE 4 | Shows the linear regression results between the arousal-
AUC and SpO2-AUC for patients with AHI >30/h of TST. The orange margins
indicate the standard deviation for the correlation and the black dots indicate
each subject in this group. r = 0.404/p = 0.002/n = 55.

FIGURE 5 | Shows the correlation coefficient between the arousal-AUC and SpO2-AUC for all arousals of every individual of the two separate groups (Group A: AHI
15–30/h of TST; Group B: AHI >30/h of TST).
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increases (Bonnet et al., 2007). Chemical factors as blood
pressure, CO-2 partial pressure or oxygen saturation are
believed to act as stimuli for triggering respiratory arousals
(RAs) when reaching a certain threshold value (Younes, 2008).
Studies showed that the maximal desaturations of SaO2 during
respiratory events with arousals are larger than desaturations in
events without arousals (Yan et al., 2016). However, it should be
noted that arousal is not only associated with negative effects. The
immediate physiological changes associated with arousal are
beneficial in rapidly alleviating severe respiratory events and
their sequelae (Eckert and Younes, 2014). But among patients
the amount of stimuli that lead to an arousal seem to differ, as well
as within the same individual for one night (Berry and Gleeson,
1997; Berry et al., 1998; Sforza et al., 1999). Conversely the
number of stimuli that lead to an opening of the upper airway
differ among individuals; but seem to be fixed regarding any given
patient during sleep (Younes et al., 2007; Loewen et al., 2009). Not
only the frequency (as depicted by the arousal index), but also the
individual intensity of respiratory arousal is quite strong
correlated to the OSA severity. Over all there is evidence that
the microstructure of respiratory arousals may be patient-specific
and that each OSA patient may have a cortical or sub-cortical
neural arousal-associated pattern generator, which reacts to an
obstructive respiratory event with a stimulus and a specific
signature in terms of duration and intensity, like a distinct
pattern, in order to ensure ventilation during sleep (Bahr
et al., 2021). Overall, it is also not yet fully understood
whether it is obstruction per se or the associated hypoxia that
leads to arousals.

Overall, however, it can be stated, arousal is an important
parameter in understanding the extent to which clinical
symptoms are related to respiratory disturbances during
sleep and the resulting treatment decisions. The primary
aim of our present study was to identify possible
associations between the AUC of respiratory arousal as a
new metric index and already known parameters such as
the hypoxic burden, AHI and arousal index in patients
with OSA. Likewise, the arousal-AUC should provide

another building block for a better understanding of the
origin of arousal. Furthermore, we discuss the results in
terms of suggestions for their further clinical use.

MATERIAL AND METHODS

To correlate the area under the curve of the respiratory arousal with
the hypoxic burden, AHI and arousal index in OSAS patients, PSG
data were used from patients who underwent inpatient
polysomnography for the initial diagnosis of obstructive sleep
apnea, monitored by sleep medicine qualified personnel. Included
in the recording, according to the international AASM standards,
were a sleep electroencephalography (EEG), electrooculogram
(EOG), electromyography (EMG), electrocardiography (ECG),
respiratory flow, snoring, respiratory effort, oxygen saturation,
body position, and a video recording during sleep. Nasal airflow
was detected by measurement of impact pressure through a nasal
sensor that determined pressure fluctuations of the breathed air
stream. Thoracic and abdominal excursions, oxyhemoglobin
saturation (pulse oximeter) and body position were simultaneously
recorded. Snoring was recorded with a pre-laryngeally fixed
microphone. The sampling frequency of the EEG data was
200 Hz. The data was high pass filtered at 0.1 Hz and was not
resampled before the analyses. The two central channels (C3 and C4)
were used for the analysis with the knowledge that many sleep
laboratories around theworld still use the Rechtschaffen&Kales EEG
recordings (Kales and Rechtschaffen, 1968). The polysomnographic
recordings were performed using the Alice-LE-Diagnostic Sleep
System (Philips Healthcare/Respironics, Best, Netherlands as
supplied by Loewenstein Medical, Bad Ems, Germany). In all
patients, two PSG were performed on two consecutive days, and
only the second nightwas used for the analysis of the data in each case
to minimize any potential first-night effect on sleep efficiency and
potentially minimize the possibility of missing a severe OSAS in the
diagnosis (Gouveris et al., 2010). In the morning following each sleep
study night, sleep stages and sleep-related respiratory events were
manually scored according to the American Academy of Sleep

FIGURE 6 | Shows the linear regression results between the AHI and
SpO2-AUC for patients with AHI 15–30/h of TST. The green margins indicate
the standard deviation for the correlation and the black dots indicate each
subject in this group. r = -0,0580/p = 0,6987/n = 47.

FIGURE 7 | Shows the linear regression results between the AHI and
SpO2-AUC for patients with AHI >30/h of TST. The orange margins indicate
the standard deviation for the correlation and the black dots indicate each
subject in this group. r = -0,0480/p = 0.728/n = 55.
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Medicine (AASM)-2012 guidelines (Berry et al., 2012). This was
performed visually by sleepmedicine board-certified specialists. Nasal
airflow amplitude reduction greater than 90%, lasting for at least 10 s,
was defined as apnea. Hypopnea was defined as an airflow reduction
between 50 and 90% with an associated 3% reduction of the blood
oxygen saturation (SpO2). Apnea events were further classified into
obstructive, central, or mixed based on simultaneous evaluation of
nasal airflow and thoracic and abdominal excursion. Physiological
EEG arousals (e.g., the one associatedwith changes in sleep stage) and
motor-related arousals were excluded in this study.

Each patient also underwent a clinical examination prior to
polysomnography, which adhered to the criteria of the DGSM
(German Society for Sleep Research and sleep medicine) S3
guideline 2017 which is based on the guidelines of the AASM
Manual for the scoring of sleep and associated events (Berry et al.,
2012; Mayer et al., 2016).

Criteria for data inclusion and analysis, were a first
diagnosis of OSAS with an AHI ≥15/h. Exclusion criteria
were age <18 years, active malignant tumors (end of last
therapy <5 years), COPD (Gold 2–4), Raynaud’s syndrome
(due to problems with oxygen saturation measurement),
congestive heart failure (NYHA III or IV), severe
psychiatric illness, severe insomnia or pre-existing therapy
for a known OSAS. Approval for the study was provided by
the local Institutional Review Board (Nr. 2018–13942). The

research findings presented in this manuscript are based on
research and clinical practices that conform to the principles
of the Helsinki Declaration.

Figure 1 shows an example of a pooled EEG trace in the top plot
and the smoothed curve below from which the area under the curve
was estimated. The pooling was done to increase the signal-to-noise
ratio for the further analyses of area under the curve (AUC). In this
study, the technique used was pooling together signals frommultiple
EEG channels (C3 and C4) weighted by their respective signal-to-
noise (SNR) relative to the overall SNRof both the channels. The SNR
was estimated in the raw signal, by taking “signal” component as the
mean ±2 standard deviation and the “noise” component as the mean
±0,5 standard deviation. The values to indicate the SNR’s for each
channel separately were: C3 (24,42 ± 4,84)dB, C4 (22,39 ± 5,51)dB
and for the pooled signal SNR (31,23 ± 3,15)dB. The EEG signal was
then smoothed based on the 200-time points average (sampling
frequency of 200Hz) equivalent to one second epochs. After the
smoothing the area under the curve was determined based on the
starting and end point was manually marked for each arousal. The
slope was estimated from the starting point to the neighboring peak
and followed by estimation of the AUC as illustrated in the schematic
Figure 1. Here, we performed both a linear regression as well as a
support vector regressor (SVR) analysis, representing a machine
learning-based multiple regression method that could associate the
observed and trained values and present the correlation coefficient as

FIGURE 8 | Box plot with the distribution of a data set. The x axis shows the division into training set, test set and overall testing. The y-axis shows the SVM
correlation coefficient.
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a prediction (Drucker et al., 1996). Figure 2 shows the procedure
from the raw EEG data, estimating the area under the curve (AUC)
and then followed by the linear as well as the SVM regression. To
create a better comparison, we not only created a correlation between
arousal-AUC and SpO2-AUC, but also between AHI and
SpO2-AUC.

In this study, a data-driven regression model was implemented
without explicitly stating a functional form indicating a
nonparametric technique. In short, the algorithm looks for an
optimally separating threshold between the two data sets by
maximizing the margin between classes’ closest points. The points
lying on the boundaries are called support vectors, and the middle of
the margin is the optimal separating threshold. In most cases the
linear separator is not ideal; therefore, a projection into a higher-
dimensional space is performed where the data points effectively
become linearly interrelated. Here, we have used the RBF kernel for
this projection due to its good performance as discussed inCortes and
Vapnik (1995) and based on previous application of support vector
machines in earlier studies (Cortes and Vapnik, 1995; Muthuraman
et al., 2016; Michels et al., 2017; Michels et al., 2021). Then used the
grid search (min = 1; max = 10) to find the few optimal input
regularization parameters, namely C (Type of classification
algorithm), which is the capacity constant. The parameter C
should be carefully chosen because the larger the C, the more the
error is penalized (i.e., leads to over-fitting) so we tested values in the
range of 1–1,000 and choose a gamma of 0.25 for the RBF kernel
function (which represents the data for the cross validation). The
selection was checked by 10-fold cross-validation by taking 75% of
the data set for training and 10% for testing. A soft-margin classifier
of the calculated independent variables was used for every parameter
and spurious correlations (correlations which could be due to
artifacts) were weighted by a penalty constant P. To optimize
correlation coefficient, this was calculated for every regressor. To
demonstrate that no over-fitting is attested in our data for the SVM
regression algorithm, we performed cross validation. The results from
the SVM were reported here with 10-fold cross validation.

RESULTS

For prediction using support vector regressor analysis, PSG
data from a total of 102 patients were included. Within these
102 patients, there were 47 patients with moderate severity
(AHI between 15 and 30/h of total sleep time). Of these, 27
patients were male and 20 patients were female. The
remaining 55 patients were severely affected with an AHI
>30/h of total sleep time. Among these, 43 were male and 12
were female patients. Table 1 and Table 2 show further
epidemiological data for the above patients separated by
the two groups (Table 1 for the group with AHI >30/h and
Table 2 for the group with AHI between 15 and 30/h).

The 47 patients with moderate severity of AHI between 15
and 30/h of total sleep time, showed a weak and non-
significant correlation between the arousal-AUC of EEG
C3/C4 pooled trace and SpO2-AUC of PSG (r = 0.280; p =
0.056), which is shown in Figure 3. In contrast, the remaining
55 severely affected patients, with an AHI >30/h of total sleep

time, showed a significant correlation in linear regression of
the arousal-AUC of EEG C3/C4 pooled trace and SpO2-AUC
of PSG (r = 0.404; p = 0.002), shown in Figure 4. Figure 5
shows the correlation coefficient between the arousal-AUC
and SpO2-AUC for all arousals of every individual of the two
separate groups.

Compared with the correlation between arousal-AUC and
SpO2-AUC, the correlation between AHI and SpO2-AUC
offered no to little linear correlation for both groups and
did so without significance (group A [r = -0,0580; p = 0,6987]
and group B [r = -0,0480; p = 0.728]). Figure 6 and Figure 7
show the linear regression results between the AHI and SpO2-
AUC for both groups.

By using a support vector regressor (SVR) analysis with the
arousal-AUC metric we could predict the AHI with an
correlation coefficient of 0,58 in the training set, 0,65 in
the testing set and 0,64 overall. The hypoxic burden
showed a correlation coefficient of 0,62 in the training set,
0,58 in the testing set and 0,59 overall. The arousal index had a
correlation coefficient to the arousal-AUC metric of 0,58 in
the training set, 0,67 in the testing set and 0,66 overall.
Figure 8 shows a box plot with the distribution of a data set.

DISCUSSION

Our results show that using an SVR with the arousal-AUCmetric
results in very high predictive power for the AHI, hypoxic burden,
and arousal index and therefore could be used as an additional
quantitative surrogate marker in the description of obstructive
sleep apnea respiratory disease severity.

A significant correlation between the arousal-AUC and SpO2-
AUC was found in patients with AHI >30/h than in patients with
AHI between 15/h and 30/h. Therefore, especially in OSAS patients
with severe respiratory distress, a novel positive correlation between
the hypoxic burden, as represented by the SpO2-AUC-metric, and
the severity of arousal (as represented by the arousal-AUC)was found
(Figures 3, 4). In comparison, wewere able to showwith the data that
the AHI to SpO2-AUC offered no significant correlation. This again
underlines, as described in the introduction, that the AHI as a
singular parameter is not suitable for the description of
obstructive sleep apnea and is inferior to new parameters, which
could be used complementarily. To further understand the origin of
arousal, this correlation can serve as another building block to show
that there is a close relationship between hypoxia and arousal.
However, it cannot be used to conclude a causal relationship.

Given that hypoxic events usually temporally precede
respiratory arousals in OSAS patients, it may well be argued
that the greater the hypoxic burden, the greater becomes the
central nervous system (CNS) drive trying to compensate the
hypoxic burden by means of an arousal. To our knowledge, there
are no previous reports on such a correlation. There is a much
lesser degree of this precise correlation in OSAS patients with
moderate (AHI = 15–30/h) respiratory distress. This suggests
that, in OSAS patients with moderate respiratory disease severity
the degree and/or the temporal extent of oxygen desaturations
may exert a much less significant stimulatory influence on the
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CNS arousal-generating drive than in patients with severe OSAS.
As a result, either different pathophysiologic mechanisms or
dose-effect responses regarding regulation of arousal features
by hypoxia in OSAS may exist in patients with different
degrees of respiratory OSAS severity.

Younes et al. showed that the average arousal intensity is not
related to the magnitude of the preceding respiratory stimuli but
was positively associated with arousal duration, time to arousal,
rate of change in epiglottic pressure, and negatively with body
mass index (R2 > 0.10, p ≤ 0.006). The authors concluded that the
average arousal intensity is independent of the preceding
respiratory stimulus. (Younes, 2004). The same could be
observed in other studies (Amatoury et al., 2016). It is also
noted that respiratory-induced cortical arousals occur during
inspiration as well as expiration but differ in the increase of
the tensor palatini muscle activity and minute ventilation
(Amatoury et al., 2018). With the knowledge from recent
studies that arousal has a strong correlation with sympathetic
hyperactivity in OSA patients and thus a possible component in
pathophysiological cause, it can be assumed that also here, similar
to the AHI, not only the total number of events, but the
microstructure of the event plays a significant role in the
disease process (Kim et al., 2019; Ferreira et al., 2020). Given
the good correlation coefficient between AUC-arousal and the
AHI, hypoxic burden, and the arousal index, it may be assumed
that AUC-arousal is related to the severity of OSA. These facts
support the hypothesis that not only the intensity alone or
duration alone of an arousal, but the whole microstructure is
relevant to understand the possible arousal “burden”.

One strength of the study is that we used a pooled C3- and C4-
EEG signal for the analysis of the data, which resulted in optimal
use of the available information provided by any one of the two
brain hemispheres (Prucnal and Polak, 2019). The data originated
from a rather large group of 102 patients. A very homogeneous
distribution of the measured values in terms of AHI, age, and BMI
resulted. A weakness of this study is that nomildly affected patients
with an AHI <15/h were studied; nonetheless, we have made the
conscious decision not to study such a group of patients from the
very beginning because we knew from previous research and our
own experience that such patients have much less frequent
arousals, making statistical analysis of arousals in such a mild
OSA patient subgroup quite difficult or impossible. Additionally, a
larger patient population would of course further enhance the
correlation coefficient, as well as the results of the SVM.

Support vector machine algorithms have been increasingly applied
in medical data during the past few years since they can provide
systematized architecture for analyzing and extracting important
information from complex data (Divya and Sonali, 2013; Huang
et al., 2020). For this reason, a support vector regressor analysis
was deliberately chosen in this study, on the one hand with the
intention of making the best possible prediction, and on the other
hand to demonstrate the possibilities provided by machine
learning methods. In the future, this could also improve and
simplify the previous, visually manual analysis of polysomnography.

A larger cohort would be needed to improve the power of the
study. Future studies should further dissect the microstructure of
arousal and compare it with symptomatic components of OSA.
Given the myriad of OSA-associated conditions across multiple
biological systems, one might expect the optimal metric of OSA
severity to differ depending on the outcome of interest (Malhotra
et al., 2021).

CONCLUSION

Given that traditional metrics, such as the AHI or oxygen
desaturation index (ODI), increasingly appear to be
insufficient to capture the complexity of the OSAS disorder in
many patients, the arousal-AUC metric may provide a novel
additional strong correlate for the hypoxic burden that should be
validated in further studies.
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