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The suprachiasmatic nucleus (SCN), the central circadian clock in mammals, is a neural
network consisting of various types of GABAergic neurons, which can be differentiated by
the co-expression of specific peptides such as vasoactive intestinal peptide (VIP) and
arginine vasopressin (AVP). VIP has been considered as a critical factor for the circadian
rhythmicity and synchronization of individual SCN neurons. However, the precise
mechanisms of how VIP neurons regulate SCN circuits remain incompletely
understood. Here, we generated ViptTA knock-in mice that express tetracycline
transactivator (tTA) specifically in VIP neurons by inserting tTA sequence at the start
codon of Vip gene. The specific and efficient expression of tTA in VIP neurons was verified
using EGFP reporter mice. In addition, combined with Avp-Cre mice, ViptTA mice enabled
us to simultaneously apply different genetic manipulations to VIP and AVP neurons in the
SCN. Immunostaining showed that VIP is expressed at a slightly reduced level in
heterozygous ViptTA mice but is completely absent in homozygous mice. Consistently,
homozygous ViptTAmice showed impaired circadian behavioral rhythms similar to those of
Vip knockout mice, such as attenuated rhythmicity and shortened circadian period. In
contrast, heterozygous mice demonstrated normal circadian behavioral rhythms
comparable to wild-type mice. These data suggest that ViptTA mice are a valuable
genetic tool to express exogenous genes specifically in VIP neurons in both normal
and VIP-deficient mice, facilitating the study of VIP neuronal roles in the SCN neural
network.
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INTRODUCTION

The SCN is a heterogeneous structure made up of various types of neurons (Antle and Silver,
2005). Almost all SCN neurons contain γ-aminobutyric acid (GABA) as a neurotransmitter.
These neurons can be differentiated by the co-expression of specific peptides (Welsh et al., 2010).
These include AVP-producing neurons located predominantly in the dorsomedial part or the
shell of the SCN, as well as vasoactive intestinal peptide (VIP)-producing neurons and gastrin-
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releasing peptide (GRP)-producing neurons in the
ventrolateral part or the core of the SCN. VIP is expressed
in approximately 10% of SCN neurons (Abrahamson and
Moore, 2001; Herzog et al., 2017). It is the most important
contributor to the synchronization among SCN neurons
(Harmar et al., 2002; Colwell et al., 2003; Aton et al., 2005;
Maywood et al., 2006). VIP neurons receive direct projections
from the retina, and VIP has been implicated in the
photoentrainment of the central circadian clock of the SCN
(Abrahamson and Moore, 2001; Colwell et al., 2003; Jones
et al., 2015, 2018; Vosko et al., 2015). Therefore, mice deficient
in VIP (Vip−/−) or its receptor (Vipr2−/−) demonstrate a variety
of abnormalities in the circadian rhythmicity and synchrony,
including arrhythmicity, multiple circadian periods, shortened
free-running period, and reduced responsiveness to the light
(Harmar et al., 2002; Colwell et al., 2003; Aton et al., 2005).
However, the precise mechanisms of how VIP neurons regulate
SCN circuits remain incompletely understood. Also, other
neuropeptides, such as AVP and GRP, may play some roles
in the intercellular communication of SCN neurons (Li et al.,
2009; Maywood et al., 2011; Ono et al., 2016).

Genetic manipulation specific to VIP neurons is a powerful
approach to studying these neurons’ functions. So far,
genetically modified mice utilizing the Cre/loxP system and
FLP/FRT system have been generated, namely, Vip-ires-Cre and
Vip-ires-Flp mice, respectively (Taniguchi et al., 2011; He et al.,
2016). The Tet system is another genetic engineering system in
which tetracycline transactivator (tTA) binds tetracycline-
responsive element (TRE) and activates the gene downstream
of TRE (Gossen and Bujard, 1992; Aiba and Nakao, 2007).
Moreover, the tTA activity can be turned off (Tet-off system) or
turned on (reverse tTA, Tet-on system) in the presence of
tetracycline or its analogue doxycycline. Here, we established
a ViptTA knock-in mouse line in which tTA2 (Urlinger et al.,
2000) is expressed specifically in VIP neurons. In combination
with a series of genetically modified mice and viral vectors
equipped with TRE-driven gene expression, ViptTA mice can
express various exogenous genes specifically in VIP neurons.
Furthermore, because the transcription of the endogenous Vip
coding sequence was blocked in the ViptTA allele, homozygous
mice of the line behaved as Vip-deficient mice. Thus, this new
mouse line provides a valuable tool for the functional study of
VIP neurons.

MATERIALS AND METHODS

Animals
To generate ViptTA mice, we inserted a tTA2-polyA cassette at
the start codon of Vip gene in its second exon by the CRISPR/
Cas9-mediated targeting strategy (Figure 1A). The donor
DNA was synthesized, containing tTA2 cDNA (Urlinger et
al., 2000), SV40 polyA signal, and 300 bp sequences of the
mouse Vip gene (NCBI Gene: 22353) 5′ and 3′ to the start
codon. C57BL/6J mice were purchased from Japan SLC, Inc.
(Shizuoka, Japan). One crRNA targeting exon 2 (5′- TCTTTT
CAGAGGCACCGAGA -3′) of the mouse Vip gene was

designed using the online sgRNA design tool available at
https://crispr.mit.edu/ and purchased from Integrated DNA
Technologies (Coralville, IA). The fertilized pronuclear-stage
embryos were prepared by in vivo fertilization in human tubal
fluid medium (ARK Resource; Kumamoto, Japan) with
sperms from two C57BL/6J males and oocytes from five
superovulated females injected with anti-inhibin serum
and human chorionic gonadotropin. Next, the ssODN
(40 ng/μl) and the complex of crRNAs (0.61 μM),
tracrRNA (0.61 μM), and Cas9 protein (30 ng/μl)
(Integrated DNA Technologies) in TE were injected into
the nucleus of approximately two hundred pronuclear-
stage embryos by microinjection. Embryos were then
washed and cultured in potassium simplex optimization
medium (ARK Resource) overnight. The obtained ninety-
three 2-cell embryos were transferred to recipient mice.
Fourteen mice were born and tested for the correct
targeting of the tTA2-polyA cassette by genomic PCR and
sequencing. Six out of 14 mice (F0) had a correct insertion of
the cassette, and two F0 mice were bred with C57BL/6J mice
to obtain F1 generation. These two lines backcrossed to
C57BL/6J mice at least twice were used for further
analyses. We did not discriminate between these two lines
in this manuscript because they were indistinctive regarding
the tTA2 expression and circadian behavior. To evaluate the
specific expression of tTA2, ViptTA mice were crossed to Actb-
tetO-EGFP reporter mice. Actb-tetO-EGFP reporter mice
were generated from Actb-tetO-FLEX-EGFP mice (Aida et
al., 2015) by crossing with germ cell-specific Prdm1-Cre mice
(JAX 008827) to eliminate the Cre-dependency of EGFP
expression.

Avp-Cre mice were reported previously (Mieda et al., 2015)
and used in hemizygous condition. This line is a transgenic
mouse harboring a modified BAC transgene, which has an
insertion of codon-improved Cre recombinase gene
immediately 5′ to the translation initiation codon of
exogenous Avp gene in the BAC, but without manipulation
of the endogenous Avp loci in the mouse.

All mice were maintained under a strict 12 h light/12 h dark
(LD) cycle in a temperature- and humidity-controlled room and
fed ad libitum. All experimental procedures involving animals
were approved by the appropriate institutional animal care and
use committees of Kanazawa University and Tokyo Medical and
Dental University.

Immunohistochemistry
Immunostaining was performed as described previously
(Mieda et al., 2015). Mice were sacrificed at approximately
ZT5 by transcardial perfusion of PBS followed by 4%
paraformaldehyde fixative. To examine the specificity of
tTA2 expression by fluorescent immunostaining (in Figures
1C,D), Vipwt/tTA;Actb-tetO-EGFP mice were pretreated with
intracerebroventricular colchicine injections (40 µg in 1 µl
saline) for 48 h before perfusion fixation. Serial coronal
brain sections (30 µm thick) were prepared with a cryostat
(CM 1860, Leica) and collected in 4 series—one of which was
further immunostained. The antibodies used were: rabbit anti-
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GFP (Thermo Fisher Scientific, 1:1,000), rabbit anti-AVP
(Millipore, 1:4,000); rabbit anti-VIP (Immunostar, 1:1,000);
biotinylated goat anti-rabbit IgG antibody (Vector Lab, 1:
1,000), and Alexa 488-conjugated goat anti-rabbit IgG
(Molecular Probes, 1:1,000). The expression of EGFP was
detected by its native fluorescence for fluorescent
immunostaining (Figures 1C,D). The VIP expression levels
were quantified by Photoshop (Adobe) as follows (Figure 2B).

First, the images were transformed to grayscale. Then, the
mean intensities of pixels within the SCN were calculated.
Finally, the values of the region lateral to the SCN were
regarded as background and were subtracted from those of
the SCN. For immunohistochemistry using diaminobenzidine
(DAB) reactions (Figure 1B), color development was
performed using the VECTASTAIN Elite ABC-HRP Kit
(PK6100, Vector Lab) and DAB Substrate Kit (SK4100,

FIGURE 1 | Generation and validation of ViptTA knock-in mice. (A) Targeting strategy for generating ViptTA mice. A tTA2-polyA cassette was inserted at the start
codon of Vip gene in exon 2. (B) tTA-mediated EGFP expression was mostly restricted in the SCN and cerebral cortex in Vipwt/tTA mice crossed with Actb-tetO-EGFP
reporter mice. Coronal brain sections were immunostained for GFP in brown. Lower panels (scale bar, 100 μm) are magnified images of regions indicated by rectangles
in upper panels (scale bar, 500 μm). (C–D) Coronal brain sections prepared from Vipwt/tTA;Actb-tetO-EGFP mice were immunostained for VIP (C) or AVP (D) in
magenta (middle). Native EGFP fluorescent images are shown on left. The white rectangles in the merged images (scale bar, 100 μm) indicate the regions of the enlarged
images (far right; scale bar, 30 μm). For fluorescent immunostaining, mice were pretreated with intracerebroventricular injections of colchicine (40 μg in 1 μl saline) for
48 h before transcardial perfusion of 4% paraformaldehyde fixative. (E) Differential labeling of VIP and AVP neurons in the SCN of Vipwt/tTA;Avp-Cre+ mice. AAV-EF1α-
DIO-mCherry and AAV-TRE-jGCaMP7s were injected unilaterally into the SCN in Vipwt/tTA;Avp-Cre+ mice. A representative coronal section of the SCN is shown (scale
bar, 200 μm) (n = 3). Note that jGCaMP7s-labeled neurons (left, green) are in the SCN core, while mCherry-labeled neurons (middle, magenta) are in the SCN shell. These
two populations of neurons rarely overlap (right).
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Vector Lab). For Figures 1A,C,D representative optical section
was imaged from each stained section by laser-confocal
microscopy (Olympus, FluoView FV10i), then fluorescent
cells in the images were counted. For Figures 1B, 2A,
immunostaining of EGFP or VIP in sections was observed
by epifluorescence or bright-field microscopy (KEYENCE, BZ-
9000E).

Generation and Focal Injection of
Recombinant AAV Vectors
The AAV-2 ITR-containing plasmid pAAV-TRE-ChR2-EYFP
(Addgene #110339, a gift from Dr. Hyungbae Kwon) was
modified to construct pAAV-TRE-jGCaMP7s by replacing a
BamHI-HindIII fragment containing hChR2-EYFP cDNA with a
BamHI-HindIII fragment containing jGCaMP7s cDNA amplified
by PCR from the plasmid pGP-AAV-CAG-FLEX-jGCaMP7s-
WPRE (Addgene #104495, a gift from Dr. Douglas Kim &
GENIE Project), using the following primers: 5′- ataggatccgccacc
ATGggttctcatca -3′ and 5′- gcgaagctTCActtcgctgtcatcatttg -3′.
pAAV-EF1a-DIO-mCherry was a gift from Dr. Bryan Roth
(Addgene #50462).

Recombinant AAV vectors (AAV2-rh10), AAV-TRE-jGCaMP7s
and AAV-EF1α-DIO-mCherry, were produced using a triple-
transfection, helper-free method and purified as described
previously (Mieda et al., 2015). The titers of recombinant AAV
vectors were determined by quantitative PCR: AAV-TRE-
jGCaMP7s, 6.3 × 1011; and AAV-EF1α-DIO-mCherry, 5.2 × 1012

genome copies/ml. Stereotaxic injection of AAV vectors into the SCN
of Vipwt/tTA;Avp-Cre+ mice was performed as described previously
(Maejima et al., 2021). Two weeks after surgery, coronal brain slices

(100 µm thick) were prepared, and fluorescence of jGCaMP7s and
mCherry was observed as described above.

Behavioral Analyses
Male and female, Vipwt/wt, Vipwt/tTA, and ViptTA/tTA littermates, aged
8–17 weeks, were individually housed in a polycarbonate cage placed
in a light-tight box. Spontaneous movements in the homecage were
monitored by infrared sensors (O’hara) in 1-min bins as described
previously (Mieda et al., 2015). Actogram, activity profile, and χ2
periodogram analyses were performed via ClockLab (Actimetrics).
The free-running period and amplitude (Qp values) were calculated
for the last 10 days in constant darkness (DD) by periodogram. The
activity onset was calculated from the daily activity profile (average
pattern of activity) of the last 7 days in LDusing themean activity level
as a threshold.

Statistics
All results are expressed as mean ± SEM. For comparison of three or
four groups inFigures 2, 4, one-wayANOVA followed by Tukey post
hoc tests were performed. Probability (p) values less than 0.05 were
considered to be statistically significant. Only relevant information
from the statistical analysis was indicated in the text and figures.

RESULTS

Generation of ViptTA Knock-In Mice
We generated knock-inmice that express tTA2 (Urlinger et al., 2000)
specifically in VIP neurons. To do this, we employed the CRISPR/
Cas9-mediated homologous recombination to target the Vip gene of

FIGURE 2 | VIP expression is absent in ViptTA/ tTA mice. (A) Coronal brain sections containing the SCN prepared from Vipwt/wt, Vipwt/tTA, and ViptTA/tTA mice were
immunostained for VIP (magenta; scale bar, 200 μm). Representative images are shown. (B) VIP immunostaining was slightly reduced in Vipwt/tTA (n = 4) compared to
Vipwt/wt (n = 3) and almost absent in ViptTA/tTA (n = 5) mice. Error bars indicate SEM. **, p < 0.005; ***, p < 0.001 by one-way ANOVA followed by post-hoc Tukey tests.
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the mouse genome to insert a tTA2-polyA cassette at the start codon
of Vip gene in its exon 2 (ViptTA) (Figure 1A). To localize tTA2
activity, we crossed Vipwt/tTA mice to Actb-tetO-EGFP reporter mice,
which express EGFP in the presence of tTA. EGFP expression was
mostly restricted in the SCN and the cerebral cortex in these mice
(Figure 1B). The cerebral cortex contains a population of GABAergic

interneurons that expresses VIP (Taniguchi et al., 2011). In contrast,
there were few EGFP + cells in other regions where some neurons
express VIP, such as the hippocampus and amygdala. In the SCN,
EGFP expression was almost completely colocalized with VIP
immunoreactivity (83.76 ± 0.91% of VIP + cells were also
EGFP+, 87.11 ± 1.47% of EGFP + cells were also VIP+; counts of

FIGURE 3 | ViptTA/tTA mice demonstrate a variety of abnormalities in circadian rhythmicity and synchrony. (A–D) Representative actograms and periodograms of
the locomotor activity rhythm of one Vipwt/wt (A), one Vipwt/tTA (B), two type-A ViptTA/tTA (C), and one type-B ViptTA/tTAmice. Animals were initially housed in 12:12 h light/
dark (LD) conditions and then transferred to constant darkness (DD). Gray shadings in actograms indicate the time when lights were off. Periodograms are for the last
10 days in DD. Peaks above the diagonal line (indicating the 99.9% confidence level) between 16 and 36 h were considered significant circadian periods. Vipwt/wt

and Vipwt/tTA mice show a clear dominant peak around 24 h (A,B). Note that type-A ViptTA/tTA mice expressed no clear period (i.e., arrhythmic; C left) or multiple periods
(C right), whereas those of type-B showed more coherent circadian behavior, with a single, free-running period, although shortened (D).
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three SCN slices each from threemice) (Figure 1C). In contrast, there
was almost no overlap with AVP immunoreactivity (2.45 ± 0.59% of
AVP+ cells were also EGFP+, 5.21 ± 1.16% of EGFP + cells were also
AVP+) (Figure 1D). Thus, the expression of tTA2 occurred
specifically and efficiently in VIP neurons within the SCN,
confirming that ViptTA mice are a useful tool for VIP-neuron-
specific genetic manipulations.

Differential Labeling of Vasoactive Intestinal
Peptide and Arginine Vasopressin Neurons
in the Suprachiasmatic Nucleus of Vipwt/tTA;
Avp-Cre+ Mice
Next, we examinedwhetherViptTAmice are useful to simultaneously
apply different genetic manipulations to VIP and AVP neurons
nearby within the SCN. To do so, we crossed Vipwt/tTA mice to
hemizygous Avp-Cre mice (Avp-Cre+) that express improved Cre
recombinase specifically in AVP neurons (Mieda et al., 2015). Then,
we focally injected two AAV vectors in the SCN of Vipwt/tTA;Avp-
Cre+ mice: AAV-TRE-jGCaMP7s and AAV-EF1α-DIO-mCherry
that express a green fluorescent Ca2+ indicator protein
jGCaMP7s (Dana et al., 2019) and a red fluorescent protein
mCherry in a tTA- and Cre-dependent manner, respectively. As
expected, jGCaMP7s was expressed specifically in the SCN shell,
where AVP neurons locate, whereas mCherry expression was
restricted in the SCN core, where VIP neurons locate
(Figure 1E). Furthermore, there was almost no overlap in the

expression of these two proteins. Thus, we successfully labeled
VIP and AVP neurons differentially within the SCN local circuit.

Homozygous ViptTA Mice Lack Vasoactive
Intestinal Peptide Expression
The Vip coding sequence was interrupted by a tTA2-polyA sequence
in theViptTA allele, resulting in the expression of tTA2 under theVip
promoter. In other words, theViptTA allele should act equivalently to
a Vip knockout allele. Therefore, we next examined the VIP
expression in heterozygous Vipwt/tTA and homozygous ViptTA/tTA

mice by immunostaining. We found that VIP-immunoreactivity in
Vipwt/tTA mice was slightly reduced (~20%) compared to wild-type
mice (Vipwt/wt) but was completely absent in ViptTA/tTA (Figure 2).
These results suggested that the insertion of a tTA2-polyA sequence
at the translation initiation site completely blocks the expression of
VIP peptide.

Homozygous ViptTA Mice Show Impaired
Circadian Rhythms
Previous studies of locomotor activity rhythm in Vip−/− mice
have shown significantly attenuated circadian rhythmicity in
constant darkness (DD), either with a shortened free-running
period or multiple circadian periods (Colwell et al., 2003; Aton
et al., 2005). A small number of Vip−/− mice even demonstrate
arrhythmicity. Therefore, we next recorded the daily rhythm of

FIGURE 4 | ViptTA/tTA mice show impaired circadian rhythms. (A) The circadian amplitude of rhythms was significantly reduced in type-A ViptTA/tTA mice (n = 5)
compared to Vipwt/wt (n = 7), Vipwt/tTA (n = 12), and type-B ViptTA/tTA (n = 7) mice. Bars show circadian amplitudes at the dominant period as determined by χ2
periodogram analysis (Qp values). (B) Free-running period was shortened in type-B ViptTA/tTA mice. (C) Phase angle of entrainment under LD. (D–E) Daily profiles of
circadian behavioral rhythms under LD (D) or DD (E). Error bars indicate SEM. *, p < 0.05; **, p < 0.005; ***, p < 0.001 by one-way ANOVA followed by post-hoc
Tukey tests.
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spontaneous locomotor activity of Vipwt/wt, Vipwt/tTA, and
ViptTA/tTA mice. In these experiments, mice were
individually housed in cages, first in a 12 h/12 h light/dark
(LD) cycle for 10–15 days. Under this condition, all groups
were entrained to the LD cycle and exhibited nocturnal
rhythms in their activity (Figure 3).

Mice were then placed into DD, and their free-running
rhythms were recorded. Under these conditions, several
striking differences emerged in ViptTA/tTA mice compared to
Vipwt/wt and Vipwt/tTA mice. All Vipwt/wt and Vipwt/tTA mice
free-ran with a single, stable circadian period (Figures 3A,B).
The free-running periods were comparable between Vipwt/wt

(23.89 ± 0.03 h) and Vipwt/tTA mice (23.82 ± 0.02 h)
(Figure 4B). In contrast, among ViptTA/tTA mice, one-half (5
of 12) exhibited multiple circadian periods or no statistically
significant circadian period (type-A) (Figure 3C). The remaining
half (7 of 12) free-ran with a single circadian period (type-B)
(Figure 3D). However, the period of type-B ViptTA/tTA mice
(23.30 ± 0.16 h) was significantly shorter than that of Vipwt/wt

mice (Figure 4B).
Type-A ViptTA/tTA mice (Qp 1997.28 ± 61.92) also showed

circadian amplitude significantly lower than that of Vipwt/wt

mice (Qp 3,733.60 ± 306.41) in DD (Figure 4A). In contrast,
there was no significant difference between type-B ViptTA/tTA

(Qp 3,840.01 ± 443.14) and Vipwt/wt mice. In addition, the
circadian amplitude of Vipwt/tTA (Qp 3,706.82 ± 193.27) mice
was not significantly different from Vipwt/wt mice (Figure 4A).
The mean daily profiles of locomotor activity rhythm also
demonstrated the attenuation of circadian rhythm of type-A
ViptTA/tTA mice both in LD and DD (Figures 4C,D). In
contrast, type-B ViptTA/tTA mice increased their locomotor
activity during CT12~18 (evening component) while they
reduced that during CT21~3 (morning component) in DD
(Figure 4D). In LD, the activity onset was ~1.5 h earlier in
type-A and ~0.8 h in type-B ViptTA/tTA mice compared to other
groups (Figures 3C,D and Figures 4C,D).

Based on the above data, we concluded that the circadian
behavior rhythm of Vipwt/tTA mice was not significantly different
compared to Vipwt/wt mice. However, ViptTA/tTA mice were
deficient in VIP expression and exhibited a variety of
impairments in their circadian behavioral rhythms. The
circadian phenotypes of ViptTA/tTA mice were all consistent
with the previous reports concerning Vip−/− mice (Colwell
et al., 2003; Aton et al., 2005).

DISCUSSION

In this study, we generated ViptTA knock-in mice in which tTA2-
coding sequence was introduced into the endogenous Vip locus. As
expected, the expression of tTA in Vipwt/tTA mice was highly specific
to VIP neurons in the SCN. Therefore, in combination with
transgenic mice or viral vectors with TRE-mediated transgene
expression, ViptTA mice can be used to express any protein
specifically in VIP neurons. Furthermore, the double transgenic
mice containing ViptTA and Avp-Cre enabled us to simultaneously
apply different geneticmanipulations to VIP andAVPneurons in the

SCN. Such a dual-targeting strategy would be potent for the study of
SCN, a small but complicated neuronal network consisting of
multiple types of neurons, including VIP neurons. A series of Cre
driver mice specific to a particular type of SCN neurons are currently
available, such asAvp-Cre,Nms-Cre,Grp-Cre,Drd1a-Cre, andVipr2-
Cre (Taniguchi et al., 2011; Lee et al., 2015; Mieda et al., 2015; Smyllie
et al., 2016; Inoue et al., 2018; Cheng et al., 2019). Therefore, by
crossing with one of them, ViptTA mice would provide opportunities
to directly examine the interactions between VIP neurons and
another type of SCN neurons.

Homozygous ViptTA/tTA mice were VIP-deficient and
behaved similarly to VIP−/- mice (Colwell et al., 2003; Aton
et al., 2005). The neuropeptide VIP, which is produced by a part
of retinorecipient neurons of the SCN, has been demonstrated to
be especially important for the maintenance and
synchronization of cellular clocks in individual SCN neurons
(Aton et al., 2005; Maywood et al., 2006). Therefore, attenuated
oscillation and synchronization of SCN neurons may account
for the arrhythmicity and multiple circadian periods observed in
the half of ViptTA/tTA mice (type-A). The short-period
rhythmicity observed in type B ViptTA/tTA mice is also a
feature common to one-third of VIP−/- mice. However, the
cause of their shortened period remains unclear. The
advanced activity onset of ViptTA/tTA mice in LD conditions
may be due to their shortened circadian period and the
reduction in photoentrainment, in which VIP signaling has
been implicated (Colwell et al., 2003; Jones et al., 2015, 2018;
Vosko et al., 2015). Thus, ViptTA/tTA mice provide a novel model
of VIP-deficiency in which we can target genetic manipulations
to the putative VIP neurons. In contrast, heterozygous Vipwt/tTA

mice were comparable to wild-type mice in the VIP expression
and circadian behavior. Therefore, Vipwt/tTA mice enable us to
target genetic manipulations to VIP neurons without
influencing circadian behavior.

In summary, we generated a novel mouse line ViptTA. By
using it, we can target exogenous gene expression to VIP
neurons in both normal and VIP-deficient mice. In addition
to the previously developed Vipires-Cre and Vipires-Flp mice
(Taniguchi et al., 2011; He et al., 2016), ViptTA mice are the
third genetic tool based on the Tet system for manipulating VIP
neurons. It will expand the opportunity for the genetic
dissection of complex neuronal networks, such as the SCN,
in combination with other genetic tools utilizing the Cre/loxP or
FLP/FRT system.
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