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The global burden of ischemic heart disease is burgeoning for both men and women.
Although advances have beenmade, the need for new sex-specific therapies targeting key
differences in cardiovascular disease outcomes in men and women remains.
Mineralocorticoid receptor directed treatments have been successfully used for blood
pressure control and heart failure management and represent a potentially valuable
therapeutic option for ischemic cardiac events. Clinical and experimental data indicate
that mineralocorticoid excess or inappropriate mineralocorticoid receptor (MR) activation
exacerbates ischemic damage, and many of the intracellular response pathways activated
in ischemia and subsequent reperfusion are regulated by MR. In experimental contexts,
where MR are abrogated genetically or mineralocorticoid signaling is suppressed
pharmacologically, ischemic injury is alleviated, and reperfusion recovery is enhanced.
In the chronic setting, mineralocorticoid signaling induces fibrosis, oxidative stress, and
inflammation, which can predispose to ischemic events and exacerbate post-myocardial
infarct pathologies. Whilst a range of cardiac cell types are involved in mineralocorticoid-
mediated regulation of cardiac function, cardiomyocyte-specific MR signaling pathways
are key. Selective inhibition of cardiomyocyte MR signaling improves electromechanical
resilience during ischemia and enhances contractile recovery in reperfusion. Emerging
evidence suggests that the MR also contribute to sex-specific aspects of ischemic
vulnerability. Indeed, MR interactions with sex steroid receptors may differentially
regulate myocardial nitric oxide bioavailability in males and females, potentially
determining sex-specific post-ischemic outcomes. There is hence considerable
impetus for exploration of MR directed, cell specific therapies for both women and
men in order to improve ischemic heart disease outcomes.
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INTRODUCTION

Ischemic heart disease is a leading cause ofmortality andmorbidity for
both men and women (Murray et al., 2012; Wong, 2014). Although
the burden of ischemic heart disease has steadily decreased in higher-
income countries over the past 25 years, the combination of
population growth and aging has led to a 35% increase in deaths
from ischemic heart disease globally since 1990 (Moran et al., 2014).
Ischemic heart disease is most commonly associated with major
coronary vessel atherosclerotic occlusion eventuating in myocardial
infarction (MI), though impaired microvascular function is
increasingly implicated as an underlying mechanism, especially in
women (Maric-Bilkan et al., 2016; Mehta et al., 2016). While survival
following a sudden cardiac event has improved, the impact of chronic
cardiovascular disease post-MI is increasing. Despite new therapeutic
interventions significantly improving acute MI survival, the
probability of mortality within 5 years after a first MI remains at
approximately 50% (Mozaffarian et al., 2015). Women are especially
vulnerable to premature deathwithin 1 and 5 years post-MI regardless
of age (Mehta et al., 2016), and are more likely to develop heart failure
(Leening et al., 2014). A new generation of novel molecular candidate
targets for optimal therapeutic interventions in men and women with
ischemic heart disease is urgently required.Mineralocorticoid receptor
(MR) directed treatments have emerged as a valuable therapeutic
approach in this setting (Buonafine et al., 2018). This review focuses
on the clinical/pre-clinical evidence relating to MR influence in the
myocardium, and the therapeutic potential for MR antagonists in
treating or preventing cardiac ischemia and reperfusion injury in both
men and women.

MINERALOCORTICOID RECEPTOR
ACTIVATION AND CARDIAC ISCHEMIC
INJURY
The MR is a steroid hormone receptor present in many cell types
within the myocardium (Young and Clyne, 2021). MR activation
by endogenous ligands aldosterone and cortisol (corticosterone in
rodents) is conveyed by a combination of rapid (within minutes)
“non-genomic” MR signaling pathways and “genomic” gene
transcription and protein synthesis over hours-days (Alzamora
et al., 2000; Hayashi et al., 2008; Nolly et al., 2014; Hermidorff
et al., 2017; Ong and Young, 2017). The MR was initially
recognized for its role in sodium and water homeostasis which
occurs via direct regulation of sodium, potassium, and other
electrolyte handling proteins in the distal nephron. Extensive
experimental and clinical studies have highlighted the direct
detrimental impact inappropriate MR activation has on the
cardiovascular system (Young and Rickard, 2015).

Increased activation of MR via inappropriately elevated
mineralocorticoid levels or tissue injury are associated with
cardiovascular comorbidity and structural remodeling, including
fibrosis and myocardial hypertrophy, thereby predisposing the
ischemic heart to poor outcomes (Young and Clyne, 2021). MR
antagonists have proven benefit for patientswith all cause heart failure,
with heart failure post-MI and in patients with moderate heart failure,
and show potential for patients with heart failure with preserved

ejection fraction (HFpEF) (Pitt et al., 1999; Pitt et al., 2003; Markowitz
et al., 2012; Miller and Howlett, 2015). Clinical studies (Table 1)
indicate that MR antagonists are underutilized and can provide
specific benefit for patients with acute MI and high aldosterone
levels (Beygui et al., 2009; Rao et al., 2013; Wong et al., 2021).
Serum biomarkers for collagen turnover within the RALES and
EPHESUS trials indicated MR suppression limits structural
remodeling of the extracellular matrix in all cause heart failure and
post-MI. However, clinical trials of MR antagonists also suggest that
MI classification, heart failure status and timing of MR antagonist
administration remain important factors in determining post-MI
cardiovascular outcomes (Bulluck et al., 2019; Chen et al., 2021;
Mares et al., 2022). The ALBATROSS trial concluded that early
MR antagonist administration initiated within 72 h post-MI and
prior to the onset of heart failure did not improve patient outcomes
and survival six months post-MI (Beygui et al., 2016). In contrast,
data from larger cohort populations in combination with results of
the REMINDER trial indicated that MR antagonist use reduces the
rate of cardiovascular related death irrespective of heart failure
status (Beygui et al., 2018). Similarly, the MINIMISE trial reported
mixed outcomes in acute ST-segment elevation myocardial
infarction (STEMI) patients when MR antagonist was
administered immediately prior to reperfusion (Bulluck et al.,
2019). In this study infarct size at 3 months was unaffected,
while left ventricular remodeling was reduced by MR antagonist
therapy. This relative protection from structural remodeling prior
to the onset of heart failure post-MI may be key to the benefits
observed with MR antagonist administration. With the ongoing
development of non-steroidal MR antagonists, additional trials will
be required to determine their efficacy in different patient cohorts
over an extended period post-MI to improve outcomes.

ISCHEMIA, REPERFUSION, AND THE
MINERALOCORTICOID RECEPTOR

The mechanisms that underlie the tissue response to injury during
ischemia/reperfusion and the progression to cardiac dysfunction have
been studied extensively (Davidson et al., 2019). Interruption of
coronary flow to the myocardium impairs cardiomyocyte steady-
state metabolism, ultimately leading to dysfunction, arrhythmias, and
cell death. The cellular response involves a complex series of events
during ischemia can lead to cross-sarcolemmal ion imbalance,
activation of stress-responsive intracellular signaling pathways and
disruption of critical metabolic processes that contribute to the cardiac
pathology. Reperfusion of the myocardium is hence essential to
salvage viable myocardium, though this in itself can exacerbate the
demise of “at risk” cardiomyocytes (Heusch, 2020). The loss of
myocardium culminates in fibrosis and scarring, disrupting normal
conduction pathways, which can promote vulnerability to arrhythmia
and increasemyocardial stiffness. Compensatory hypertrophic growth
of the survivingmyocardiumpost-MImaintains functional capacity in
the short term, but ultimately the myocardium is unable to
compensate for increased wall pressures leading to failure of
myocardial pump function and death.

Preclinical and clinical studies further indicate aldosterone excess
is a damage provocateur in the ischemic context (Tables 1 and 2).
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Stimulation of MR by cortisol or aldosterone increase infarct size in
ex vivo rat hearts even at low doses (Mihailidou et al., 2009), via
mechanisms that are at least partly attributable to greater
cardiomyocyte apoptotic vulnerability. Cardiomyocytes
demonstrate aldosterone-induced apoptosis via rapid activation of
calcineurin and NADPH oxidase/apoptosis signal-regulating kinase
one signaling complexes (ASK1) (Mano et al., 2004; Hayashi et al.,
2008). The activated MR also mediates upregulation of Ca2+ influx
that augments cardiomyocyte apoptosis (Ferron et al., 2011). These
detrimental actions are exacerbated by MR potentiation of reactive
fibrotic remodeling (Brilla and Weber, 1992; Brilla, 2000; Rickard
et al., 2009). Exposure of rodents to exogenous mineralocorticoids

upregulates transcription of genes underlying extracellular matrix
turnover and cardiac remodeling signaling cascades (Rude et al.,
2005; Tsai et al., 2013). Together, these findings highlight the
potential for MR inhibition to minimize myocardial remodeling
following ischemia/reperfusion injury via both genomic and
potentially non-genomic pathways.

Pre-Ischemic Regulation of
Mineralocorticoid Receptor Activity
Many studies have assessed the conditioning capacity of
pharmacological agents to minimize injury when administered

TABLE 1 | Summary of clinical trials assessing MR antagonist intervention outcomes.

Disease Intervention Outcomes References

Heart failure Spironolactone ↓ deaths, ↓ heart failure hospitalization, improved heart failure symptoms Pitt et al. (1999)
Heart failure post-MI Eplerenone ↓ deaths/cardiovascular deaths, ↓ cardiovascular deaths and hospitalization Pitt et al. (2003)
Post-MI Spironolactone (at reperfusion) no benefits (vs. standard therapy) Beygui et al. (2016)
Post-STEMI MR antagonist (meta-analysis) ↓ all-cause deaths Beygui et al. (2018)
Post-STEMI Spironolactone (at reperfusion) no effect on MI size, improved LV EDV and ESV Bullock et al. (2019)
Post-MI MR antagonist (meta-analysis) ↓ all-cause deaths, ↓ cardiovascular event incidence Chen et al. (2021)
Post-STEMI MR antagonist (meta-analysis) ↓ all-cause deaths, ↑ LV ejection fraction

MI, myocardial infarction; STEMI, ST-elevation myocardial infarction; LV, left ventricle; EDV, end-diastolic volume; ESV, end-systolic volume; ↑, increase; ↓, decrease

TABLE 2 | Summary of MR and sex-specific modulation of cardiac structure and function.

Model Treatment Intervention Animal Sex Major findings References

Fibrosis Inflammation Function

ER modulation

WT Aldo/salt +ERα
+ERβ

Rat F only ↓ perivascular ↓ OPN Vasan et al. (2004)

Cardiomyocyte-specific
ERα overexpression

MI Mouse M vs. F ↓ LV
(F only)

↑ p-JNK
(F only)

Westerman et al. (2016)

Cardiomyocyte-
specific ERβ
overexpression

Coronary artery
ligation

Mouse M vs. F ↓remote LV (M
only)

↑ ejection fraction
↑ diastolic function
(F = M)

Kanashiro-Takeuchi
et al. (2009)

ERβ deficient DOC/salt Mouse M vs. F ↑ LV (F vs. M) Gurgen et al. (2011)

MR modulation

WT Eplerenone MI Rat M vs. F ↓ LV
(F only)

↑ ejection fraction
(F only)

Usher et al. (2010)

ERβ knockout DOC/salt Mouse M vs. F ↑ LV
(F only)

Lombès et al. (1995)

WT DOC/salt +/-
mTOR-I

Mouse M vs. F ↑ LV
(F only)

↓
(F only)

↑ ejection fraction
(M only)

Grohe et al. (1997)

WT Chronic NO
deficiency
(in vivo)

Acute I/R
(ex vivo)

Mouse M vs. F ↑ LV
(M = F)

↑
(M = F)

↓ systolic function
(F only)

Usher et al. (2010)

Cardiomyocyte-
specific MR
knockout

Chronic NO
deficiency
(in vivo)

Acute I/R
(ex vivo)

Mouse WT
vs. KO

↓ LV
(KO only)

↓
(KO only)

↑ systolic function
(KO only)

Usher et al. (2010)

WT, wild type; Aldo/salt, aldosterone/salt treatment; ERα, estrogen receptor alpha; ERβ, estrogen receptor beta; F, female; M, male; OPN, osteopontin; MI, myocardial
infarction; LV, left ventricle; p-JKN, phosphorylated c-Jun N-terminal kinase; DOC/salt, deoxycorticosterone/salt; mTOR-I, mammalian target of rapamycin inhibition; MR,
mineralocorticoid receptor; NO, nitric oxide; I/R, ischemia/reperfusion; KO, knockout; ↑, increase; ↓, decrease; = , equal; +, activation; -, inhibition
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prior to the ischemic insult. Both long-term and acute inhibition of
MR prior to an ischemic event has been shown to be beneficial.
Spironolactone administered to rats for 1 month minimized
ischemic contracture in isolated hearts subjected to 25 min
low-flow ischemia (Rochetaing et al., 2003), indicating a
Ca2+-dependent mechanism underlying greater myocardial
tolerance to the ischemic challenge. During reperfusion,
hearts from rats receiving spironolactone exhibited greater
functional recovery and less ventricular arrhythmias.
Similarly, hearts perfused with 1 μM eplerenone immediately
prior ischemia exhibited improved functional recovery in
reperfusion and reduced infarct size (Chai et al., 2005).
Paradoxically, aldosterone administered prior to ischemia has
also been shown to significantly improve contractile function in
reperfusion (Yoshino et al., 2014). This observation appears to be
mediated by an MR-independent mechanism, for example via
rapid activation of p38-MAPK which is an important mediator of
ischemic preconditioning (Bassi et al., 2008; Bell et al., 2008).

Targeting Reperfusion Injury—A Role for
Pharmacological Regulation of the
Mineralocorticoid Receptor
Studies administering pharmacological agents prior to an
ischemic insult have both provided considerable insight into
the mechanisms of ischemia/reperfusion and identified
numerous conditioning agents that could benefit patients
undergoing cardiac surgery (Venugopal et al., 2009). However,
the practical application of such agents in the clinical setting of a
sudden, major ischemic event is very limited and the
development of cardioprotective agents that can be
administered at the time of reperfusion is a top priority.

Early studies showed that treatment with MR antagonists
post-MI had little or no effect on the progression of infarct-
healing but can prevent development of reactive fibrosis in the
viable rodent myocardium (Delyani et al., 2001; Mill et al., 2003).
However, in subsequent studies MR antagonists were found to be
functionally beneficial following in vivo-MI in rodents for
reducing fibrosis of viable myocardium, abrogating increases
in left ventricular end diastolic pressure and left ventricular
end diastolic volume, and maintaining left ventricular function
(Cittadini et al., 2003; Fraccarollo et al., 2003; Fraccarollo et al.,
2005). Eplerenone administered post-MI also reduces the onset
and progress of cardiac tissue fibrosis (myocardial and aortic),
enhances left ventricle ejection fraction and cardiac output, and
limits left ventricle systolic area and weight independently of
blood pressure (Masson et al., 2004; Wang et al., 2004). Thus, the
timing of MR antagonist therapy is key to the functional and gene
expression outcome in vivo. In addition to fibrotic and functional
outcomes, MR blockers improve neovascular formation and
reduce thinning and dilation of infarcted myocardial walls at
early (3 days) and late (7 weeks) time points in experimental
rodents. This action underpins the improvement in ventricular
wall function and is associated with transient up-regulation of
monocyte chemoattractant protein 1 (MCP-1), early monocyte
and macrophage infiltration and expression of tumour necrosis
factor alpha (TNFα) (Fraccarollo et al., 2008). These beneficial

outcomes are mirrored in transgenic mice lacking the MR in
cardiomyocytes, underscoring the central role of the receptor for
the cardiomyocyte response to ischemia/reperfusion and are
discussed further below (Fraccarollo et al., 2011).

Investigation of the effects of MR suppression on global
remodeling of the left ventricular chamber have reported
variable findings. In a rat model of MI, spironolactone showed
no benefit for reducing left ventricle cardiac chamber mass index
and wall thickness despite reduced cardiomyocyte cross sectional
area and less fibrosis (Enomoto et al., 2005). Whereas other
studies show reversal of left ventricle dilation and dysfunction
with MR blockade post-MI via mechanisms that include
suppression of NADPH oxidase and mitochondrial superoxide
production (Matsumoto et al., 2004).

Genetic Manipulation of Mineralocorticoid
Receptor Signaling Reveals Ischemic
Vulnerability
To more precisely understand the specific myocardial cell types
involved in mediating MR-dependent adverse and beneficial
outcomes, targeted genetic manipulation studies have proved
to be particularly informative (Table 2). Initial MR deletion
mouse models were homologous MR knockout, which
displayed neonatal lethality due to sodium wasting (Berger
et al., 1998). Subsequent studies focused on genetic
manipulation of MR in specific cell types, including
macrophages, vascular smooth muscle, endothelial and
cardiomyocytes (Young and Rickard, 2015). The
cardiomyocyte MR knockout mouse (myo-MRKO) has
demonstrated a range of novel and important actions of the
MR in the regulation of the tissue response to cardiac ischemia
including promoting an appropriate wound healing response in
the infarct zone, enhanced neovascularization of the scar and
maintenance of the microvascular capillary network, which
together support cardiac functional recovery and long term
viability (Fraccarollo et al., 2011).

Our studies subjecting ex vivo myo-MRKO hearts to an acute
IR challenge demonstrated improved contractile functional
recovery and lower vulnerability to arrhythmias compared
with wild-type controls (Bienvenu et al., 2015). This was
associated with reduced expression of the sodium-hydrogen
exchanger (NHE-1) and reduced CaMKII
autophosphorylation, both of which are predicted to minimize
cardiomyocyte Na+ and Ca2+ loading and suppress cardiac
dysfunction in IR (Bell et al., 2014; Mattiazzi et al., 2015;
Shattock et al., 2015). Genetic inhibition of CaMKII combined
with MR antagonist treatment improved functional recovery and
reduced diffuse fibrosis, suggesting that targeting both pathways
can potentially improve contractile performance and reduce
arrhythmic activity (Driessen et al., 2020). In a chronic model
of MI, suppressing cardiomyocyte MR signaling was also
beneficial. Targeted ablation of cardiomyocyte MR did not
affect infarct size in vivo, yet morphological changes were
minimized, and ventricular function better maintained in the
subsequent 8 weeks post-MI (Fraccarollo et al., 2011). Expression
of genes associated with hypertrophy, stiffness and fibrosis was
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lower in surviving myocardium from myo-MRKO mice and
myocardial/mitochondrial superoxide production was
diminished (Fraccarollo et al., 2011). The authors concluded
that a suppressed NFκB-mediated inflammatory response was
key to minimizing apoptosis and enhancing healing in these mice.

Deletion of MR in other specific cell types of the myocardium
(vascular smooth muscle, endothelial, macrophage cells)
demonstrate cell-specific regulation of myocardial injury and
repair pathways in a manner that would be predicted to
confer protection in the ischemic setting (Bienvenu et al.,
2012; Gueret et al., 2016; Fraccarollo et al., 2019). This
demonstrates the importance of MR signaling across
numerous cardiac cell types in the ischemic context. This may
be critical to determining how targeting MR signaling may be
optimized post-MI. Further studies are hence required to explore
in greater detail how MR-mediated regulation of different cell
populations within the heart interact to determine the functional
and morphological responses to IR (Figure 1).

MINERALOCORTICOID RECEPTOR
SIGNALING, SEX SPECIFICITY AND
CARDIOPROTECTION
The incidence of cardiovascular disease (and more specifically
ischemic heart disease) differs between the sexes, with earlier
onset in men and increasing incidence in women post-
menopause (Leening et al., 2014). Men and women exhibit

differences in symptom presentation, efficacy of diagnosis and
response to interventions (McSweeney et al., 2016). More
specifically, in relation to myocardial infarction, sex-specific
differences in pathophysiological mechanisms and outcomes is
now being emphasized (Mehta et al., 2016). Women are more
likely to develop heart failure after an acute MI, underscoring
the need for new strategies and therapies to adequately address
long term MI recovery in both sexes (Westerman and Wenger,
2016).

Most clinical studies assessing suppression of MR signaling
have involved predominantly male cohorts, and even though data
are adjusted to consider sex as a covariate, differences in clinical
outcomes between men and women may not be observed (Pitt
et al., 2003; Kanashiro-Takeuchi et al., 2009; Nicolaou, 2021).
Moreover, serum aldosterone levels have been strongly correlated
with left ventricular mass in females, but not males even when
serum aldosterone levels are not elevated and the MR inhibitory
effect of progesterone is taken into consideration (Vasan et al.,
2004). Given the importance of cardiac hypertrophy and serum
aldosterone levels as independent cardiovascular disease risk
factors, this observation indicates that some of the differences
observed for males and females in the clinical setting may also
have an MR-dependent mechanism. Endothelial MR expression
has been shown to be higher in female vessel wall, when
compared with males (Faulkner et al., 2019). This observation
reflects the fact that females have higher circulating levels of
progesterone which is a natural antagonist of the MR and
estrogen acting via the ERα inhibits MR activation. Higher

FIGURE 1 | MR activation leads to many detrimental changes in the heart, including cardiomyocyte cell death, inflammation and fibrosis. In addition to these
structural changes, MR signaling leads to stimulation of calcium and sodium flux in cardiomyocytes, predisposing these cells to calcium loading and pH dysregulation.
Overall these modulations of basal cardiac structure and function predispose the heart to ischemic events and result in worse outcomes after ischemia/reperfusion,
increasing the incidence of contractile dysfunction and arrhythmia and also increasing cell death and consequently reactive fibrosis. The negative impacts of MR
activation at a structural and functional level can be abrogated at early and late timepoints, both before and after an ischemic event. MR, mineralocorticoid receptor; NHE-
1, sodium hydrogen exchanger-1; ROS, reactive oxygen species.
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aldosterone levels and potentially tissue expression of MR in
females is likely to be compensatory in premenopausal women.

Steroid hormone ligands for both receptors derive from the
same cholesterol-derived progestogen pre-cursors. Relative levels
of corticosteroids and sex steroids are hence closely linked. It is
well established that estrogen receptors (ER) and MR are co-
expressed in cardiomyocytes, fibroblasts and vascular cells
(Lombès et al., 1995; Grohe et al., 1997), and that these can
modulate cardiac structure and function in settings of IR.
Transgenic animal models have shown that female hearts
overexpressing ERα receptor subtype are relatively protected
from MI-induced fibrosis and exhibit improved
neovascularization (Mahmoodzadeh et al., 2014).
Overexpression of the ERβ receptor subtype improves survival
and cardiac function post-MI in both sexes, due in part to reduced
disturbance of cardiomyocyte intracellular Ca2+ store
management (Bell et al., 2013). In male hearts specifically,
functional improvement was related to a lower level of cardiac
fibrosis highlighting the role of ERβ in post-infarct remodeling
(Schuster et al., 2016). In rodent models activation of both ERα
and ERβ protects against the detrimental blood pressure, fibrotic
and hypertrophic effects of mineralocorticoid excess (Arias-Loza
et al., 2007). For example, deoxycorticosterone/salt-induced
cardiovascular damage is reduced in females with intact ER
signaling. Whereas genetic ablation of ERβ signaling produces
a differential response to mineralocorticoid excess-induced
cardiac fibrosis associated with mTOR (mammalian target of
rapamycin) activation in both male and female mice (Gurgen
et al., 2011; Gurgen et al., 2013). Moreover, the transcriptional
activity of vascular MR can be inhibited by ERα, suggesting that
MR/ER interactions contribute to the mechanisms of sex
differences in cardiac MR activity (Barrett Mueller et al., 2014;
Biwer et al., 2021). Rapid aldosterone effects may also be
medicated by the G-protein coupled ER, though evidence of
direct aldosterone binding remains contentious (Rossol-Haseroth
et al., 2004; Michea et al., 2005; Gros et al., 2011; Gros et al., 2013).
An important consideration moving forward will be developing a
more detailed understanding of the nature of the interaction of
MR with all ER subtypes in influencing genomic and rapid
activation signaling pathways (Funder, 2011).

Experimental studies that specifically address sex-difference in
MR involvement in cardiac ischemia are limited but some important
leads have been reported. Suppression of MR signaling in rodents by
eplerenone administered after MI has been shown to achieve more
effective attenuation of left ventricular end diastolic volume
enlargement in female compared to male hearts (Kanashiro-
Takeuchi et al., 2009). Additionally, LV ejection fraction was
increased in female hearts. Transcriptome analysis revealed that
for female hearts, eplerenone reversed transcriptional responses for
19% of down regulated genes and for 44% of up-regulated genes,
whereas only 4% of genes up-regulated in male hearts responded to
eplerenone. These data indicate thatMR blockademay preferentially
reduce structural and functional changes in female hearts through
initiation of specific transcriptional responses (Kanashiro-Takeuchi
et al., 2009).

Nitric oxide (NO) signaling is known to be important in
mediating cardioprotection (Griffiths et al., 2021)—and there

is clear evidence of MR involvement in NO modulation in
endothelial and other cell types. Heart failure is associated
with low levels of bioavailable NO, and clinical evidence
indicates sex differences in NO mediated responses (Zamani
et al., 2015). In addition, an imbalance of NO levels has been
shown to be a key component in the development of heart failure
with preserved ejection fraction in males, but not necessarily
females (Schiattarella et al., 2019; Tong et al., 2019). There is
extensive experimental evidence to indicate that in female cardiac
disease states, NO production and involvement in ROS
modulation is important (Murphy et al., 2011; Casin et al.,
2018). Targeting NO bioavailability is therefore considered an
attractive target for sex-specific therapies in heart failure, but
less is known about possible benefits in ischemic disease
states. Given that there is evidence for an MR-NO signaling
link in endothelial cells, regulating the MR has the potential to
optimize NO conditions and support cardiomyocyte protection
during cardiac ischemia/reperfusion (Jia et al., 2016; Victorio
et al., 2016). Our experimental findings have shown that after
chronic in vivo treatment with an NO-synthase inhibitor,
male and female cardiomyocyte specific MR-KO mice exhibit
different cardiac ex vivo responses. While female hearts
showed MR-dependent abrogation of NO-deficiency induced
ischemic injury (reperfusion arrhythmia, diastolic dysfunction
and impaired contractile recovery), male animals did not
exhibit a similar MR-NO deficiency response interaction
(Bienvenu et al., 2017). More recently, it has been shown that
ERα mediated NO production can abrogate the detrimental
impact of MR activation in the microvasculature of obese
female rodents, highlighting the interplay between MR and ER
in the endothelium (Biwer et al., 2021). Further work is required
to define the nature of the signaling relationship between MR,
ER, and NO in order to effectively exploit this signaling axis
for therapeutic outcomes in tissue injury due to ischemia and
reperfusion.

CONCLUSION

In this review, the accumulating clinical and preclinical data
indicating important involvement of MR signaling in
mediating both acute and longer term cardiac ischemic
damage have been considered. Whilst a range of cardiac cell
types are involved (macrophages, endothelial, and vascular
smooth muscle), the cardiomyocyte-specific mineralocorticoid
signaling pathways appear to be key. Evidence supports a role
for increased aldosterone levels and MR activation in
mediating sex-specific aspects of ischemic vulnerability
through MR-ER receptor interactions providing important
insights into ischemic heart disease in women. While early
clinical trials of MRA showed equal protection for heart failure
in females as well as males, discrepancies remain between
translation of experimental outcomes and observed clinical
sex-differences in the etiology and diagnosis of heart failure.
Thus, there is considerable impetus for exploration of
mineralocorticoid-directed, cell-specific therapies for both
women and men in order to improve ischemic heart disease
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outcomes. Specific, ongoing challenges involve dissecting the
integrative nature of the MR-ER-NO signaling axis so that sex-
specific therapies can be identified to address both acute and
chronic phases of ischemic injury. In this setting, preclinical
mechanistic investigations of cell specific MR interactions with
pathways regulating ischemia injury have considerable
capacity to inform ongoing clinical studies.
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