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Higher thrombotic burden in the acute phase of COVID-19 relies on a complex interplay
between pro-inflammatory cytokine/chemokine release, increased endothelial dysfunction/
damage, and potential sepsis-induced coagulopathy development in severe cases, all
promoting coagulation activation. Plasma levels of cytokines and chemokines are known to
be increased in COVID-19 however, are much higher in severe infections. Increased levels of IL-
1β, IL-6, and IL-8 are known to play an important role in both acute and chronic inflammation,
resulting in pathological clotting. However, little has been published on the effects of these
interleukins on red blood cells (RBCs). Evidence shows that cytokines have a negative effect on
the RBCs ultrastructure and introduce signs of eryptosis. Eryptosis can be described as a form
of suicidal death of RBCs characterized by distinct findings of cell shrinkage, membrane
blebbing, activation of proteases, and phosphatidylserine exposure at the outer membrane
leaflet. Red blood cells from COVID-19 patients had increased levels of glycolytic intermediates,
accompanied by oxidation and fragmentation of ankyrin, spectrin beta, and the N-terminal
cytosolic domain of band 3 (AE1). Significantly altered lipid metabolism was also observed, in
particular, short- and medium-chain saturated fatty acids, acyl-carnitines, and sphingolipids.
Emerging research suggests that RBCs may contribute to a precision medicine approach to
sepsis and have diagnostic value in monitoring complement dysregulation in COVID-19-sepsis
and non-COVID sepsis as research indicates that complement activation products and viral
antigens are present on RBCs in patients with COVID-19.
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INTRODUCTION

Since 1856, the aetiology and risk of thrombosis have been assessed using Virchow’s triad. This triad
consists of stasis, vessel damage, and hypercoagulability (David et al., 2009). Our understanding of
thrombosis has since then evolved and a modern interpretation of this triad includes: hemodynamic
disruption, intrinsic hypercoagulability, and endothelial damage or dysfunction as the three broad
categories that lead to thrombosis (Monie and Deloughery, 2017). The importance of this triad in
disease-associated complications lies in combining the inflammatory and coagulation pathways in
the genesis of clotting (Ahmed et al., 2020).

COVID-19 has been regarded as an infective-inflammatory disease and it has become
increasingly clear that high levels of pro-inflammatory mediators play a major role in the
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clinical deterioration in patients with severe disease. Recent
evidence indicates a tendency for thrombosis in COVID-19
patients (Ahmed et al., 2020). Given the ongoing global
pandemic, there is an urgent need to understand the rate of
bleeding and thrombotic manifestations associated with COVID-
19 coagulopathy (Grobler et al., 2020). Even though most of the
patients infected with COVID-19 experience only mild
symptoms there is a considerable percentage of patients that
deteriorate significantly, causing multiple organ failures that
result in death (Martha et al., 2021). Higher thrombotic
burden in the acute phase of COVID-19 relies on a complex
interplay between pro-inflammatory cytokine/chemokine release,
increased endothelial dysfunction/damage, and potential sepsis-
induced coagulopathy development in severe cases, all promoting
coagulation activation (Marchandot et al., 2020). A
hypercoagulable state in patients with severe COVID-19 has
emerged as multiple changes in circulating prothrombic
factors have been detected such as elevated factor VIII,
increased fibrinogen, circulating prothrombic microparticles,
neutrophil extracellular traps and signs of hyperviscosity
(Maier et al., 2020; Panigada et al., 2020; Ranucci et al., 2020).
Multiple studies performed on subjects with COVID-19 have
shown laboratory results in severe disease that included: elevated
lactate dehydrogenase (LDH), serum ferritin, D-dimer, and
creatine kinase (Ponti et al., 2020; Ragab et al., 2020; Tian
et al., 2020). A meta-analysis was done by Henry et al.,
totalling a number of 2984 COVID-19 patients also reported
laboratory data with a comparison between those with severe and
non-severe disease and provided a list of laboratory results in
patients with severe or fatal COVID-19. Amongst these results,
they showed that patients with severe disease had increased levels
of ESR, IL-6, IL-8, CRP, serum ferritin, and LDH (Henry et al.,
2020). It is suggested that the increased cytokines contributed to
the cytokine storm seen in patients with severe disease (Ragab
et al., 2020; Hu et al., 2021). The cytokine storm is attributed to
the action of the pro-inflammatory cytokines such as IL-1, IL-6,
IL-18, and TNFα (Ponti et al., 2020; Ragab et al., 2020; Zeng et al.,
2020; Hu et al., 2021).

Mechanism of Activating the Cytokine
Storm
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection of type I and II pneumocytes causes virus-related
epithelial pyroptosis and activation of macrophages in the
pulmonary alveoli (Argañaraz et al., 2020; Pearce et al., 2020).
The acute-phase response cytokines, IL-6 and TNF-α, are
suggested to be the major ‘culprits’ in the pathogenesis of
COVID-19 hyper-inflammation (Panigrahy et al., 2020). It has
been suggested that IL-6 promotes a macrophage activation
syndrome (MAS), triggering mass production of pro-
inflammatory cytokines and inducing migration of neutrophils
and fibroblasts into the pulmonary epithelium (Pearce et al.,
2020). Activated macrophages are the main source of pro-
inflammatory cytokines such as IL-1β, IL-6, IFN-γ, IL-8, and
TNF-α (Argañaraz et al., 2020). The cytokine IL-6 induces
endothelial activation and inflammatory cell migration. There

is an increase in tissue factor (TF) secretion and upregulation of
the coagulation cascade leading to immune-mediated thrombosis
(Pearce et al., 2020). Endothelial activation stimulates
inflammatory cross-talk contributing to a second cytokine wave.

Increased levels of IL-1β, IL-6, and IL-8 are known to play an
important role in both acute and chronic inflammation, with
resulting pathological clotting (Bester and Pretorius, 2016).
However, little has been published on the effects of these
interleukins on RBCs. In 2016, Bester et al., showed that
increased levels of IL-8 had a negative effect on the RBCs
ultrastructure and introduced signs of eryptosis (Bester and
Pretorius, 2016). Red blood cells are extremely vulnerable cells,
particularly during inflammation, whether it is acute or chronic
(Pretorius et al., 2016). A study by Darbonne et al., established
that there were surface binding proteins for IL-8 on RBCs and
that these cells act as a general intravascular sink for soluble
chemotaxins for modulating inflammation (Darbonne et al.,
1991; Karsten et al., 2018). In a review Karsten and Herbert
described the Duffy antigen receptor for chemokines (DARC) on
RBCs as a chemokine scavenger which is able remove or release
cytokines as needed (Fukuma et al., 2003; Karsten and Herbert,
2020). Here they also added that DARC is activated by clotting
and the release of chemokines occurs in response to clotting
which links DARC as a key factor in inflammation (Fukuma et al.,
2003; Karsten and Herbert, 2020). Therefore it can be said that
RBCs may also be in immuno-stimulatory and may contribute to
the cytokine storm (Karsten and Herbert, 2020).

Effect of COVID-19 on the Red Blood Cells
The morphology of the RBC in patients presenting with COVD-
19 related with anemia, was observed by Berzuini et al., where
peripheral blood smears were analysed. Their unsuspected
findings showed several RBCs shape abnormalities with a high
frequency of stomatocytes and knizocytes. Other features
observed were that of polychromasia, basophilic stippling,
rouleaux formations, and autoagglutination (Berzuini et al.,
2021).

Red blood cells have a complex membrane structure as shown
in Figure 1 that is continuously exposed to inflammatory
molecule insults, inducing a programmed cell death specific to

FIGURE 1 | Schematic representation of RBC membrane showing
protein orientation. Adapted from (Desouky 2009). SA, sialic acid.
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RBCs, known as eryptosis. By definition, eryptosis is a
fundamental cellular death process of RBCs similar to
apoptosis of nucleated cells (Qadri et al., 2017). Eryptosis is
characterized by RBC shrinkage, cell membrane blebbing, and
cell membrane scrambling with phosphatidylserine (PS)
translocation to the RBC surface. In the pilot study exploring
the link between SARS-CoV-2 and RBC physiology, findings
suggests that the virus induces increase of IgG’s on the RBC
surface, RBC oxidative stress, with accompanying increase in
intracellular Ca2+ as well to increase RBC’s fragility to mechanical
stress (Bouchla et al., 2022). In the setting of sepsis, increased RBC
intracellular reactive oxygen species have been known to result in
decreased RBC deformability, changes similar to seen with
eryptosis (Pretorius 2018). Another adverse effect of the
increased intracellular Ca2+ is to cause the translocation of
membrane PS to the outer space of the RBC membrane. This
action stimulates thrombosis through the formation of
microparticles and the prothrombinase complex assembly
(Bouchla et al., 2022).

Research performed by Piagnerelli et al., showed that in
COVID-19 patients with acute respiratory distress syndrome,
especially non-survivors, had an altered RBC shape as assessed by
flow cytometry, but no change in RBC deformability was found.
However, RBC deformability in those patients with bacterial
sepsis, was significantly altered (Piagnerelli et al., 2022).

Proteins found on the RBC membrane are classified into two
groups: integral and peripheral as shown in Figure 1. Integral
proteins are the glycophorin and band 3 which are tightly bound
to the membrane through hydrophobic interactions lipids in the
bilayer. A filamentous network of proteins is anchored to the
bilayer by the integral proteins. This network is made up of three
principal components: spectrin, actin, and protein 4.1, details of
which are shown in Figure 1 (Thangaraju et al., 2020). The
protein band 4.1 stabilizes the attachment of spectrin and actin.
Holding the cytoskeleton and bilayer together is the protein
ankyrin which anchors spectrin to band 3 and via band 4.1 to
glycophorin as clearly defined in Figure 1. The non-linear spring
action of spectrin is revealed under the action of an atomic force
microscopy tip as the individual spectrin chain is stretched (Shin
et al., 2007). These membrane proteins provide specific functions.
The most abundant trans-membrane protein is band 3 and it is
responsible for anion exchange at the level of the plasma
membrane (Azouzi et al., 2018). A red blood cell contains 1.2
million band 3 and 0.5 million glycophorin molecules (Johansson
and Falk, 2021). Due to the serious clinical complications such as
hypoxia and acute respiratory distress syndrome observed in
COVID-19, there has been a re-evaluation of RBC-virus
interactions. Thomas et al., showed that RBCs from
29 COVID-19 patients had increased levels of glycolytic
intermediates, accompanied by oxidation and fragmentation of
several proteins (ankyrin, spectrin beta, and the cytosolic domain
of band 3 (Thomas et al., 2020). Of particular interest was the
observation of oxidation of the N-terminal of band 3. In addition,
analysis of clinical hematological parameters such as red blood
cell count, hematocrit and mean corpuscular hemoglobin
concentration remained relatively normal in COVID-19
infected patients (Thomas et al., 2020). However, mortality

risk in COVID-19 appears to be associated with an increased
level of red blood cell distribution width (RDW). In a meta-
analysis of COVID-19 patients, higher levels of RDW were
associated with more severe disease (Zinellu and Mangoni, 2021).

A recent study by Cosic et al., 2020 provides new insight into
the pathophysiology of COVID-19 and the RBC. Their findings
are based on outcomes measured using a biophysical model, in
which band 3 was suggested to be the point of attachment for
SARS-CoV-2 on the RBC surface stating that there might be a
likely interaction between the RBC band 3 surface protein and the
S1 spike protein in the SARS-CoV-s virus (Cosic et al., 2020). This
would corroborate findings by Thomas et al., 2020 where the
oxidation of band 3 can be attributed to the direct binding of the
virus (Thomas et al., 2020). The degradation of band 3 will
adversely affect the physiology of the RBC. Disruption of the
normal physiology will lead to impaired function of the RBC, a
significant one being the delivery of oxygen (Gallagher, 2016).
Hypoxia is a common finding in patients with severe COVID-19
disease. The postulation that the effect of the virus on the RBC is
due to binding to surface receptors, is likely. However, it is
unlikely that the source of attachment of the SARS-CoV-2 is
via the angiotensin-converting enzyme 2 (ACE2) receptor on the
RBC (Cosic et al., 2020). The absence of the ACE2 membrane
protein on the RBC, has been confirmed by the erythrocyte
proteome database (https://rbcc.hegelab.org) (Hegedüs T et al.,
2015).

Role of Eryptosis in Thrombosis
A few important functions of eryptosis include its preventative
role in limiting premature hemolysis of damaged RBCs, its
defensive function in malaria-infested RBCs where eryptosis
accelerates the clearance of RBCs infected by plasmodium, and
in conditions such as polycythemia vera, eryptosis facilitates
the removal of excessive RBCs in circulation (Qadri et al.,
2017). Emerging evidence shows that eryptotic RBCs exhibit
an increased tendency of adhering to endothelial cells as well as
platelets. This behaviour theoretically, thus increases the
propensity to halt microcirculation as well as contribute to
thrombosis due to their procoagulant characteristic features
(Borst et al., 2011).

There is also mounting evidence that the biochemical and
biophysical properties of RBCs may actively contribute to the
pathophysiology of hypercoagulability in an array of clinical
conditions (Pretorius and Lipinski, 2013; Pretorius et al., 2016;
Emmerson et al., 2018). Some common conditions and
diseases associated with enhanced eryptosis include
dehydration, hypoxia, iron deficiency anemia, metabolic
syndrome, diabetes mellitus, heart failure, and sepsis
(Aleman et al., 2014).

The signal that initiates eryptosis is the exposure of PS on
the outer membrane leaflet of RBCs (Guo et al., 2018). Upon
activation or injury, cells may expose PS on their external
surfaces, which facilitates the movement of coagulation
proteins onto their membrane surfaces, thereby promoting
the formation of a “thrombogenic membrane” which now
interacts in the coagulation cascade terminating in the
production of thrombin (Lind, 2021). The exposed PS on

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 8996293

Soma and Bester Pathophysiological Changes in Erythrocytes

https://rbcc.hegelab.org/
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


the outer membrane allows it to act as a catalytic surface for
factor Xa and thrombin formation (Guo et al., 2018). Research
suggests that RBCs enhance functional coagulation properties
and platelet aggregation (Brown et al., 2014). This is in striking
contrast to their traditional physiological role of oxygen
transport (Brown et al., 2014). In fact, RBCs have been
localized in coronary atherosclerotic plaques (Virmani and
Roberts, 1983). During RBC aggregation, fibrinogen is believed
to serve as a bridging molecule (Weisel and Litvinov, 2019).
Research performed on SARS-Cov2-related complications
relying on blood foaming, hypothesized that RBC
membrane injury during COVID-19 caused by the binding
of inflammatory molecules results in serious biophysical
events such as bubble nucleation or foaming (Denis 2020).
Decompression illness which comprises both arterial gas
embolism and decompression sickness is caused by bubbles
in blood or tissue during or after a reduction in environmental
pressure (decompression). The bubbles are of clinical
significance as they can produce mechanical, embolic and
biochemical effects. Adverse effects such as capillary leak,
extravasation of plasma and haemoconcentration can occur
when intravascular bubbles damage the endothelial (Vann
et al., 2010). The paper by Denis, postulates that high levels
of Angiotensin II, similar to parameters of body temperature
and PCO2 affects the dissociation curve of hemoglobin and
shifts it to the right during RBC transit in the lungs, providing
an overload in free oxygen and would involve oxygen
supersaturation culminating in bubble nucleation. The end
result of foaming would thus worsen the extensive endothelial
dysfunction, worsen the gas exchange, trigger the coagulation
process, the inflammatory process and the complement
pathway, as occurs in decompression illness (Denis, 2020).
Decompression illness symptoms includes substernal pain,
cough, dyspnoea, progressing to pulmonary oedema,
respiratory failure, right ventricular dysfunction and
cardiovascular collapse (Vann et al., 2010).

Furthermore, fibrinogen influences RBC functionwhen it directly
binds to RBCs by increasing circulating biomarkers by binding to

endothelial cells. The presence of an inflammatory biomarker in
circulation is associated with reactive oxygen species production,
with the consequence of causing eryptosis and pathological
deformability in RBCs (Grobler et al., 2020). The study by
Venter et al., 2020 highlighted the microscopic changes observed
in platelets and RBCs in subjects with COVID-19 and concluded
that structural pathologic findings in both platelets and RBCs are key
role players in the vascular changes seen in complications related to
COVID-19 (Venter et al., 2020).

COVID-19 Associated Endothelial
Dysfunction
Failure by the endothelium layer to perform its functions results in
endothelial dysfunction which is defined as a decrease in the
bioavailability of vasodilator substances, especially nitric oxide
(NO), and an increase in vasoconstrictor substances. The
endothelial cells themselves produce NO oxide which is the most
important vasodilator substance (Fodor et al., 2021). The significant
role of the endothelium in homeostasis is highlighted through
reviewing its functions, which includes: 1) modulation of vascular
permeability, 2) modulation of vasomotor tone, 3) modulation of
coagulation homeostasis, 4) regulation of inflammation and
immunity, 5) regulation of cell growth, and 6) oxidation of low-
density lipoprotein (LDL) cholesterol (Esper et al., 2006).

Emerging research show that COVID-19 is an endothelial disease
(Libby and Lüscher, 2020) with endotheliopathy being directly
implicated in the array of adverse effects such as inflammation,
cytokine storm, oxidative stress, and coagulopathy (Amraei and
Rahimi, 2020). The invasion of SARS-CoV-2 via the endothelial
cells is facilitated by the high expression level of ACE2 and
transmembrane protease serine 2. Another effect of infection with
SARS-CoV-2 includes the release of inflammatory cytokines which
induce the adhesive property of endothelial cells and in turn promote
the infiltration of neutrophils. This subsequently produces reactive
oxygen species and neutrophil extracellular traps, eventually causing
the injury of endothelial cells. The coagulation process is initiated by
activated endothelial cells once they are infected with SARS-CoV-2,

FIGURE 2 | Diagram showing interplay between eryptosis and complications such as endothelial dysfunction, cytokine storm, inflammation, and coagulation. All of
which contribute to the increased thrombotic burden observed in COVID-19 disease.
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leading to platelet binding, fibrin formation, and the clotting of red
blood cells, resulting in the adverse effects of systemic thrombosis
(Perico et al., 2021).

One of the key factors implicated in the pathophysiology of
thrombotic complications observed in COVID-19 amongst which
includes myocardial infarction and stroke is endothelial dysfunction.
In addition, the precisemechanism for the endotheliumdysfunction is
divided between the direct endothelial cell viral infection or a
consequence of the inflammation induced by the virus (Fodor
et al., 2021). The interplay between eryptosis and the
complications of COVID-19 is illustrated in Figure 2. It can be
said that endothelial dysfunction plays a key role.

The post-mortem study examining the lungs of patients who had
died from SARS-CoV-2, performed by Ackermann et al., confirmed
three distinctive angiocentric features of COVID-19 (Ackermann
et al., 2020). The first feature observed was that of a severe grade
of endothelial injury (disruption of intercellular junctions, cell
swelling, and a loss of contact with the basal membrane of the
endothelial cells) associated with intracellular SARS-CoV-2 virus
that damaged endothelial cell membranes. The second was that of
extensive vascular thrombosis with microangiopathy and occlusion of
alveolar capillaries. The third feature was the observation of significant
angiogenesis in the lungs of COVID-19 patients. The first finding of
the presence of the SARS-CoV-2 virus within the endothelial cell is
suggestive of the direct viral effects. This, accompanied by the
perivascular inflammation may be contributing factors responsible
for the endothelial dysfunction associated with COVID-19
(Ackermann et al., 2020). Furthermore, there is evidence indicating
complement dysregulation associated with thrombotic
microangiopathy as one of the most prominent pathophysiological
mechanisms in addition to or as part of thrombo-inflammation in
COVID-19 (Wang et al., 2021).

Involvement of the Complement System in
COVID-19
Patients presenting with severe COVID-19 have several abnormal
parameters on their hematology profiles, such as increased level of
D-dimer, thrombocytopenia, decreased fibrinogen levels, and
prolonged prothrombin time (Tang et al., 2020). Another theory
to understand the pathophysiology of thrombosis in COVID-19
patients is the indirect activation of endothelial cells which are
mediated by complement. When the body is threatened by an
infection, platelets, coagulation factors, and innate immune effector
systems interact to form clots in a process termed immunothrombosis
(Henry et al., 2020). While this is a protective mechanism,
uncontrolled and widespread immunothrombosis may result in
potentially serious microangiopathy with catastrophic consequences
such as general or COVID-19 induced adult respiratory distress
syndrome (Henry et al., 2020) and (Frantzeskaki et al., 2017).

Red blood cells are cells that express complement receptors and
are capable of binding immune complexes through specific
receptors. The study by Lam et al., 2021 reported on the
deposition of complement (C3b and C4d) on circulating RBCs
from hospitalized COVID-19 patients using flow cytometry (Lam
et al., 2021). Evidence of the deposition of immune complexes and

complement on RBCs may alter the rheology of RBCs and this
promotes intravascular stasis and thrombosis that is key in the
pathogenesis of virus associated lung injury (Lam et al., 2021). As
mentioned previously, PS exposure on the surface of cells exposed to
plasma results in thrombin generation and complement system
activation. Phosphatidylserine-binding domains are present on
coagulation proteins found in blood and this facilitates them to
cluster together on exposed PS, resulting in an accelerated reaction
and subsequent generation of thrombin. The exposed PS can lead to
the activation of the complement system as well. Thus, both the
coagulation and complement systems are integral role players in the
complex clinical phenotype of thrombo-inflammation (Lind, 2021).

CONCLUSION

Despite the fact that important physiological systems of coagulation
and inflammation are viewed as separate entities, even discussed as
separate chapters in physiology textbooks, the complications of
COVID-19 illustrate how highly integrated and finely balanced
these biological systems are with widespread crosstalk, all in
preparation for any form of pending bodily injury. The latest
scientific advancements achieved to treat and prevent COVID-19
so promptly, has been remarkable. However, the COVID-19
pandemic continues to wreak havoc as global death estimates
approximates 5,5 million people (WHO COVID-19, 2022).

Complications seen in COVID-19 are as a result of a thrombotic
process and can be defined as immuno-thrombo-inflammation as
supported by current evidence (Lippi et al., 2021). This review also
adds to research advocating the exploration of novel therapeutics
such as drugs to amend PS exposure (Lind 2021), complement
inhibitors (Lam et al., 2021), and drugs that can target the
endothelium so as to treat or prevent vascular complications. It
should be clear that basic biomedical and clinical medicine has to be
combined if we are to achieve improved outcomes in COVID-19.
The interplay between several biochemical, biophysical mechanisms
in the pathogenesis of complications of COVID-19 is also a warning
that to improve outcomes in severe COVID-19, a personalized
therapeutic approach is likely needed for each individual based
on personal risk factors profile and clinical presentation (Lippi
et al., 2021). The crosstalk between eryptosis, endothelial
dysfunction, coagulation and thrombosis in COVID-19, has been
highlighted in this paper. The role of the RBC is clearly beyond that
of oxygen transport. The study indicating the presence of
complement activation products and viral antigens on RBCs in
patients with COVID-19, is evidence that the RBC has been
overlooked to achieve precision medicine which will eventually
aim to improve outcomes in COVID-19 (Lam et al., 2021).
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