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Mechanosensation is essential for normal gastrointestinal (GI) function, and

abnormalities in mechanosensation are associated with GI disorders. There

are several mechanosensitive ion channels in the GI tract, namely transient

receptor potential (TRP) channels, Piezo channels, two-pore domain

potassium (K2p) channels, voltage-gated ion channels, large-

conductance Ca2+-activated K+ (BKCa) channels, and the cystic fibrosis

transmembrane conductance regulator (CFTR). These channels are

located in many mechanosensitive intestinal cell types, namely

enterochromaffin (EC) cells, interstitial cells of Cajal (ICCs), smooth

muscle cells (SMCs), and intrinsic and extrinsic enteric neurons. In these

cells, mechanosensitive ion channels can alter transmembrane ion currents

in response to mechanical forces, through a process known as

mechanoelectrical coupling. Furthermore, mechanosensitive ion channels

are often associated with a variety of GI tract disorders, including irritable

bowel syndrome (IBS) and GI tumors. Mechanosensitive ion channels could

therefore provide a new perspective for the treatment of GI diseases. This

review aims to highlight recent research advances regarding the function of

mechanosensitive ion channels in the GI tract. Moreover, it outlines the

potential role of mechanosensitive ion channels in related diseases, while

describing the current understanding of interactions between the GI tract

and mechanosensitive ion channels.
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1 Introduction

In healthy adult humans, the GI tract is responsible for the management of

approximately 9–11 L of fluid and large amounts of solids and semisolids that pass

through the intestinal lumen every day (Ghishan and Kiela, 2012). Besides secretion and

absorption, the GI tract also senses mechanical stimuli to coordinate the digestion and

absorption of nutrients and waste excretion. Furthermore, during digestion, the GI tract

transfers signals regarding the composition of the intestinal contents to other organs so as

to prepare the metabolic and cardiovascular systems for large amounts of absorbed
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nutrients. This process can also transfer the information of the

required chemicals to other cells to regulate metabolic

mechanisms (Le et al., 2021).

The intestinal mucosa is exposed to a variety of mechanical

stimuli under normal and pathophysiological conditions. These

mechanical stimuli include deformation, pressure, compression,

and shear stress generated by peristaltic contractility, villous

motility interaction with luminal contents, and mucosal

remodeling and healing (Basson, 2003; Perez-Gonzalez et al.,

2022). The bowel wall is exposed to constant tension, determined

by its shape, mechanical characteristics, and muscular

contraction (Basson, 2003). This tension modulates many

important cell physiological functions, such as cell signaling,

mechanosensation, and shape changes (Chao and Sachs, 2021).

Mechanical stimuli can be converted into biochemical signals

by mechanosensitive cells, through a process termed

mechanotransduction. Mechanotransduction is the process by

which cells convert mechanical stimuli from their extracellular or

intracellular forces into biochemical signals, which then trigger

downstream cellular responses (Retailleau and Duprat, 2014).

The ability to sense mechanical stimuli and achieve

mechanotransduction, known as mechanosensitivity, is a

crucial component of GI function (Joshi et al., 2021). In the

GI tract, membrane deformation of the different

mechanosensitive cells that form mechanoreceptors is

generally hypothesized to induce the activation of

mechanosensitive ion channels, which in turn modulate

mechanotransduction. These mechanosensitive cells include

intestinal epithelial cells, SMCs, and enteric neurons. Thus,

the intestinal cells that form mechanoreceptors express ion

channels that are activated by mechanical forces in the bowel

lumen. In this way, they act as mechanodetectors and

mechanotransducers (Del Valle et al., 2012).

In the GI tract, mechanosensitive cells sense mechanical

forces and transduce them into electrical signals by

mechanosensitive ion channels (Hamill and Martinac, 2001).

Mechanotransduction consists of two processes. Firstly,

mechanosensitive cells sense mechanical stimuli by using

mechanoreceptors. Secondly, cells transduce receptor signals

into their corresponding downstream responses using

mechanotransducers (Joshi et al., 2021). Cells may use a series

of mechanoreceptors, namely sarcomeric proteins, ion channels,

cell surface receptors, and transmembrane adhesion receptors

(Gayer and Basson, 2009; Liu et al., 2017; Pang et al., 2018;

Wolfenson et al., 2019; Sheetz, 2021; Lin et al., 2022).

Functionally, the intestinal layers have distinct mechanical

characteristics and can sense a variety of mechanical forces,

finally leading to appropriate GI function (Joshi et al., 2021).

For example, EC cells in the GI epithelium are specialized

mechanosensors that release 5-hydroxytryptamine (5-HT) in

response to mechanical forces. Previous efforts to characterize

intestinal mechanical stimuli have focused on the secretion of GI

hormones by specific cells that sense said mechanical stimuli.

However, recent research developments have revealed that many

GI cell types can sense mechanical stimuli and perform their

corresponding functions. In this review, we highlight recent

advances in our understanding of the structure and function

of mechanosensitive ion channels in the GI tract. We then

summarize how mechanosensitive ion channels are located

and function on various intestinal cells. Finally, we summarize

existing knowledge regarding the potential association between

mechanosensitive ion channels and intestinal diseases.

2 Mechanosensitive ion channels in
the gastrointestinal tract

Mechanosensitive ion channels are transmembrane proteins

that are gated by mechanical forces that form ion currents. They

can also be activated by other stimuli, such as heat or chemical

stimuli (Blackshaw, 2014; Yu et al., 2016). In the GI tract,

mechanosensitive ion channels consist of TRP channels, Piezo

channels, K2p channels, voltage-gated Na+ (Nav) and Ca2+ (Cav)

channels, BKCa channels, and the CFTR (Figure 1) (Zhang et al.,

2010; Coste et al., 2012; Berrier et al., 2013; Gu and Gu, 2014;

Mazzuoli-Weber and Schemann, 2015; Neshatian et al., 2015;

Volkers et al., 2015; Yu et al., 2016; Alcaino et al., 2017).

2.1 Transient receptor potential channel
families

The mammalian TRP superfamily consists of 28 TRP

members, which are classified into six subgroups according to

their amino acid sequence homology: TRPP, TRPC, TRPM,

TRPML, TRPV, TRPN, and TRPA. Of these subgroups,

TRPV4 and TRPA1 are the most closely associated with

mechanical stimuli (Yu et al., 2016; Balemans et al., 2017;

Startek et al., 2019; Karki and Tojkander, 2021). In the

human colon, TRPV4 is situated in fine nerve fibers

associated with blood vessels in the submucosa and serosa,

while the myenteric plexus (MP) and the longitudinal and

circular smooth muscles are mostly negative for its expression

(Brierley et al., 2008). In the murine colon, TRPV4 is located in

epithelial cells and mucosal glial cells of the muscular and

submucosal layers (Alaimo and Rubert, 2019). Studies into

murine models of embryonic explants have shown that

TRPV4 can modulate cellular morphogenesis. Its activation

regulates smooth muscle contractility, which generally

supports organ development (Morgan et al., 2018). Luo et al.

(2018) showed that TRPV4-responsive muscularis macrophages

mediated contractility by directly interacting with SMCs,

independent of neuronal input. TRPV4 can also integrate

mechanical stimuli from different environments that are

converted into Ca2+ signals, promoting various responses in

different tissues (Garcia-Elias et al., 2014). Cui et al. (2021)
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found that for most Ca2+-dependent and secretagogue-induced

intestinal anion secretion, the serosal TRPV4-constituted SOCE

mechanism is likely universal. Fichna et al. (2015) demonstrated

that TRPV4 channels are located in myenteric neurons in the

mouse colon and play a significant inhibitory role in colonic

motility regulation. Their study suggested that the mechanism of

TRPV4-mediated relaxant action requires NO generation and

intracellular and extracellular Ca2+. TRPV4 is also situated in

primary spinal afferent neurons innervating the colon. The

activation of protease-activated receptor-2(PAR2) increases

currents in these neurons, prompts the discharge of action

potentials from colonic afferent fibers, and induces mechanical

hyperalgesia (Sipe et al., 2008). Besides TRPV4, TRPA1 also plays

a crucial role in mechanosensation in the GI tract. In the

mammalian GI tract, TRPA1 is situated in both extrinsic

afferent neurons and intrinsic enteric neurons (Balemans

et al., 2017). TPRA1 is also located in nonneuronal 5-HT-

releasing EC cells (Nozawa et al., 2009), cholecystokinin-

releasing endocrine cells (Purhonen et al., 2008), and other

intestinal epithelial cells (Purhonen et al., 2008; Balemans

et al., 2017; Alaimo and Rubert, 2019). TRPA1 is a non-

selective, homotetrameric cation channel that is activated by a

range of exogenous or endogenous compounds (Meents et al.,

2019; Souza Monteiro de Araujo et al., 2020). TRPA1 is assumed

to function as a mechanosensor and pain sensor in various

human tissues and plays a vital role in detecting mechanical

stimuli by visceral afferent fibers (Uckert et al., 2017; Moore et al.,

2018; Giorgi et al., 2019). Brierley et al. (2009) found that

TRPA1 mRNA expression is enriched within GI sensory

neurons, whilst in the periphery, TRPA1 protein is localized

within nerve endings at sites where mechanical stimuli are

transduced. Under inflammation, TRPA1 appears to play an

important role as a secondary transducer of many

proinflammatory mediators, such as endogenous PAR-2

agonists, bradykinin, and capsaicin. PAR-2 (Cattaruzza et al.,

2010) and Bradykinin (Balemans et al., 2017) functionally

sensitize TRPA1 to increase mechanosensory function, which

is absent in TRPA1 gene knock-out mice (Balemans et al., 2017),

while capsaicin functionally desensitizes TRPA1 to decrease

mechanosensory function (Brierley et al., 2009; Balemans

et al., 2017; Moparthi and Zygmunt, 2020). TRPA1 is present

in nociceptive neurons innervating the colon, where

TRPA1 activation causes hypersensitivity to colorectal

distention. TRPA1 mediates visceral hypersensitivity (VH)

induced by PAR2 and trinitrobenzene sulfonic acid (TNBS, an

inflammatory agent) (Cattaruzza et al., 2010). However,

TRPA1 mechanosensitivity in hair cells has been questioned.

TRPA1-deficient mice exhibit no vestibular defects and show

normal auditory function, suggesting that TRPA1 is not required

for hearing mechanotransduction (Bautista et al., 2006; Kwan

et al., 2006). The activity of human TRPA1 (hTRPA1) is

abolished by the thiol reducing agent TCEP (Moparthi and

Zygmunt, 2020). The mechanosensitivity of hTRPA1 is

dependent on its redox state, and it is suggested that oxidative

stress transforms hTRPA1 into a protein conformation that is

sensitive to mechanical stimuli (Moparthi and Zygmunt, 2020).

2.2 Piezo channels

In 2010, Coste et al. (2012) screened and first identified

Piezo1, a mechanosensitive ion channel protein, in the glioma

Neuro2A cell line. They subsequently found its subtype, Piezo2,

through sequence homology (Saotome et al., 2018). Piezo1 and

Piezo2 each have a unique propeller-like structure and are

associated with mechanotransduction in various key processes

(Fang et al., 2021). Piezo channels are expressed throughout the

digestive system in humans and mice, such as in epithelia, the

enteric nervous system, and SMCs (Bai et al., 2017; Mazzuoli-

Weber et al., 2019). Specifically, the Piezo2 channel is highly and

specifically expressed in human and mouse EC cells (Wang et al.,

2017).

Piezo channels act in mechanotransduction pathways and

other developmental signaling networks, such as proliferation

and differentiation pathways. Piezo1 and Piezo2 interact with

several critical mechanotransduction proteins such as

transmembrane protein 150C (Anderson et al., 2018) and

Stomatin like 3 (Qi et al., 2015). They are also associated with

negative regulator proteins such as sarco/endoplasmic reticulum

Ca2+-ATPase (Zhang et al., 2017) and Polysystin-2 (Peyronnet

et al., 2013). Furthermore, Annexin A6 (ANXA6) regulates

intracellular Ca2+ stores by negatively interacting with Piezo

channels (Raouf et al., 2018). The Piezo channels regulate

neurogenic locus notch homolog protein 1 (Notch1) signaling

by activating the ADAM10 sheddase, playing a significant role in

regeneration and cell differentiation pathways (Alabi et al., 2016).

Notch1 is also associated with cell fate determination, by acting

as a receptor for Delta1, Jagged1, and Jagged2 like ligands

(Shimizu et al., 2000; Qin et al., 2019).

2.3 K2p channels

The K2p channel is a major and structurally distinct

subgroup of the mammalian K+ channel superfamily (Enyedi

and Czirjak, 2010). Three K2p channel subtypes (TRAAK,

TREK-1, and TREK-2) exist in the extrinsic afferent neurons

that innervate the mouse colon (Alcaino et al., 2017; Ma et al.,

2018).

TREK and TRAAK are mechanically activated and can sense

negative membrane pressure and shear stress (Cox et al., 2019;

Lengyel et al., 2021).When negative pressure (such as hydrostatic

pressure) is applied to a membrane, TREK and TRAAK produce

a progressive, non-inactive current. Interestingly, the

mechanosensitivity of individual cells was found to be

retained in the patch-clamp technique (Cox et al., 2019;
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Lengyel et al., 2021). This suggests that TRAAK and TREK

channels are mechanotransducers. Another study showed that

TREK-1 was related to cell membrane polarization, volume

regulation, and shear stress sensing formed by fluid flow

through blood vessels (Noel et al., 2011). Taken together,

these results suggest that TRAAK, TREK-1, and TREK-2 are

mechanosensitive channels that might play a critical role in colon

sensory damage through a disinhibitory mechanism (Kefauver

et al., 2020).

2.4 Voltage-gated ion channels

Nav channels are complete membrane glycoproteins that

consist of an α-subunit of 260 kDa in the center and several β-
subunits of approximately 35 kDa (Dib-Hajj et al., 2009). In the

GI tract, Nav channels are located in both the ICCs and SMCs of

the circular smooth muscle layer of the human jejunum (Holm

et al., 2002; Ou et al., 2002; Strege et al., 2003b), dog jejunum

(Strege et al., 2007), and rat ileum (Smirnov et al., 1992) and

gastric fundus (Smirnov et al., 1992), as well as in the SMCs of rat

and human colons (Xiong et al., 1993; Alcaino et al., 2017;

Campos-Rios et al., 2021). In the human jejunum and colon,

shear stress activates Nav1.5 currents in a cytoskeletal-dependent

manner; membrane lipids also play a significant role (Neshatian

et al., 2015). However, there are species differences in the

expression of the SCN5A-encoded Nav1.5 channel. SCN5A

mRNA is expressed in the circular muscle of humans, mice,

and dogs but not in that of pigs or guinea pigs . Strege et al. (2007)

found that compared with wild-type, SCN5A mutation G615E

Nav1.5 mice had decreased SMCs excitability, suggesting that

Nav1.5 mechanosensitivity may play a crucial excitatory role in

SMC mechano-electrical feedback (Strege et al., 2019).

Furthermore, the Nav1.5 channel is inherently sensitive to

membrane stretch: in a fully reversible manner, stretch evoked

the acceleration of the rate-limiting voltage-dependent step

leading to ionic current activation and inactivation (Morris

and Juranka, 2007; Morris, 2011). The influx of Na+ through

Nav1.5 produces a fast depolarization in membrane potential,

which is crucial for electrical slow waves in GI SMCs (Strege et al.,

2019). Nav1.6 is closely associated with mechanical pain-sensing

and pain transmission in the lower organs (Israel et al., 2019).

Specifically, this channel is found at the end of the pelvic tension-

sensitive unmyelinated colon sensory afferent (Feng et al., 2015).

Moreover, it is activated by colon stretch (Feng et al., 2015).

Several experimental studies have demonstrated that

Nav1.7 plays an important role in pain transduction, such as

inflammation-related pain and mechanical pain (Nassar et al.,

2004; Bi et al., 2017; Campos-Rios et al., 2021; Zhang et al., 2021).

Besides the Nav channel, the Cav channel is a crucial part of

the GI tract. Cav channels are the key signaling sensors for

electrical excitability; they transduce cell membrane action

potentials to the downstream Ca2+ transients. Upon entering

the cytosol, Ca2+ regulates enzyme activation and gene expression

(Altmuller et al., 2017). Recent studies have found that L-Cav also

contributes to the proliferation and differentiation of several

kinds of stem cells (Tan et al., 2019). Cav channels are expressed

in human GI SMCs (Farrugia et al., 1999) and are a significant

factor regarding the membrane potential and excitability of

SMCs. GI L-type Cav1.2 channels have also been shown to be

sensitive to both mechanical osmotic and shear stress (Farrugia

et al., 1999; Strege et al., 2003a; Kim et al., 2007; Anishkin et al.,

2014).

2.5 Other channels

BKCa channels belong to a unique group of ion channels that

are activated by both membrane depolarization and cytosolic

Ca2+. This channel is characterized by its large conductance and

senses intracellular Ca2+, hyperpolarizes the cell membrane, and

controls the excitability and functions in various tissues

(McManus and Magleby, 1991; Brenner et al., 2000). The

stress-regulated exon insert is an indispensable domain for the

mechanosensitivity of BKCa (Wang et al., 2010). The BKCa

channel is a key channel in colonic smooth muscle. BKCa

channels also provide a large outward current to the smooth

muscles to decrease excitability (Ghatta et al., 2006; Singh et al.,

2012).

CFTR is an anion and intracellular ligand-gated channel

related to cystic fibrosis (CF) (Gadsby and Nairn, 1999). CFTR is

situated in the apical membrane in various epithelial tissues of

the human body, including the GI tract and pancreatic ducts

(Gadsby et al., 2006). CFTR is a key determinant of ion and water

homeostasis (Saint-Criq and Gray, 2017). CFTR is highly

expressed at the base of the crypt, playing an important role

in influencing the intestinal stem cell compartment (Barker et al.,

2007; Jakab et al., 2011; Anderson et al., 2019). CFTR could

modulate volume decrease in epithelial cells directly by

responding to hypotonicity-induced membrane stress

(Vitzthum et al., 2015; Xie et al., 2016).

3 Mechanosensitive cells in the
gastrointestinal tract

3.1 Mechanosensitivity of gastrointestinal
epithelium

The integrity and dynamic balance of the epithelium are

essential for survival. They also allow the epithelium to form an

intelligent dynamic barrier between the external environment

and internal organs (Macara et al., 2014). As with other epithelia,

such as those of the bladder and the kidney, the GI epithelium is

mechanosensitive. Moreover, it encounters multiple mechanical

forces, ranging from smooth muscle contraction to shear stress
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(Beyder, 2018). Intestinal epithelial cells, which include Paneth

cells, goblet cells, endocrine cells, and absorptive epithelial cells,

are all mechanosensitive (Basson, 2003; Gayer and Basson, 2009;

Shaw et al., 2012). The mechanosensitivity of these intestinal

epithelial cells has long been a concern about how various forces

interact with the digestive, absorption, secretion, and immune

function of the GI tract.

EC cells are the most numerous neuroendocrine epithelial

cells that line the lumen of the GI tract (Martin et al., 2018). EC

cells have long been a topic of considerable research regarding

mechanosensitive endocrine cells. By acting as “mechanical

sensors,” EC cells function as sensory detectors to detect

mechanical forces during intestinal peristalsis. EC cells can

sense a range of mechanical forces, including flow shear

stress, stretch/distension, membrane distortion/deformation,

tensile force, touch, intraluminal pressure, compression,

turbulent and centrifugal forces, and cell volume changes

(Linan-Rico et al., 2016; Beyder, 2018). These mechanical

forces result in the release of 5-HT, which promotes or

activates intestinal neural reflex, the coordination of numerous

movements, secretion, mixed movements (fed state), and stool

reflexes (Linan-Rico et al., 2016). Studies have shown that

purines, particularly ATP, play a central role in mechanically

stimulating 5-HT release in EC cells (Maffei, 2020). Nevertheless,

it remains unclear as to whether these receptors act as major

mechanical receptors. Wang et al. (2017) found that

Piezo2 messenger ribonucleic acid (mRNA) was located in

both murine and human small intestinal epithelial cells.

Piezo2 immunolabeling, meanwhile, has revealed a specific

distribution of these channels in human jejunum 5-HT

positive EC cells. Piezo2 channels serve as the mechanical

sensor in EC cells. Activated by mechanical force,

Piezo2 facilitates 5-HT release and increases mucosal

secretion, such as chloride secretion (Wang et al., 2017).

However, it remains unknown whether other ion channels

such as K2p channels and Ca2+ channels modulate 5-HT release.

Regarding epithelial cells, here this review focuses on two

functions that mechanical stimuli cause in the epithelium. Firstly,

mechanical stimuli promote the proliferation, differentiation,

and repair of the intestinal epithelium (Shaw et al., 2012).

Enteric epithelial cells are prone to repeating deformation

during peristalsis and villus movement. However, under

abnormal stimulation, such as sepsis or intestinal obstruction,

the mucosa shrinks. This repeated deformation stimulates the

proliferation of intestinal epithelial cells, through both focal

adhesion kinase (FAK) and extracellular signal-regulatory

kinase (ERK) (Chaturvedi et al., 2007). The intestinal mucosa

is in constant contact with pathogens, toxins, and allergens, so it

must be repaired to maintain the mucosal barrier (Suzuki, 2020).

Previous in vivo studies have shown that mechanical forces, such

as partial intestinal obstruction, regulate wound closure. In vitro

studies have also demonstrated that the repeated deformation of

intestinal monolayer epithelial cells stimulates Caco-2 or IEC-6

intestinal epithelial cells to close wounds in an ERK-dependent

manner (on a fibronectin substrate) (Zeng et al., 2017). Secondly,

normal epithelial cells can respond to mechanical forces. The

piezo channel could shape stem cell zones by fission, which

contributes to the GI epithelium self-renewing (Tallapragada

et al., 2021). Malignant GI epithelial cells can also act in this

manner, most obviously with increased cell adhesion, which is

essential for tumor metastasis. For example, over-proliferating

adjacent crypts lead to Notch overactivation. Furthermore,

mechanical pressure caused by external forces has been shown

to be related to enhanced β-catenin and Ret signing, resulting in

abnormal crypt foci (Fernandez-Sanchez et al., 2015). Crypt

fission occurs physiologically and complements crypt

hyperplasia as a form of intestinal growth, but it is

abnormally accelerated in colorectal adenomas and

carcinomas (Tallapragada et al., 2021). Recent studies have

demonstrated that, under physiological conditions, the

Piezo1 channel senses both mechanical crowding and stretch.

It may function as a homeostatic sensor to control epithelial cell

numbers, causing cell division in sparse regions and apoptosis

and extrusion in crowded regions (Gudipaty et al., 2017). The

squeezing of live cells due to overcrowding from proliferation

and migration helps to control the number of epithelial cells.

Squeezing can be prevented by using blockers to destroy

Piezo1 channels or achieving gene knockout; the formation of

an epithelial cell mass can also be induced in this way. This cell

mass formation can promote tumor growth, suggesting that

Piezo1 plays a significant role in inhibiting epithelial tumors

by providing a bridge of mechanical forces regarding the

activation of intracellular biochemical pathways (Slattum and

Rosenblatt, 2014).

3.2 Mechanosensitivity of gastrointestinal
neurons

The enteric nervous system is composed of extrinsic and

intrinsic neurons, which are pivotal for GI autonomic function.

Intrinsic neurons are situated entirely within the GI tract, where

they regulate GI peristalsis and secretion functions. The Soma of

extrinsic neurons is contained outside the GI tract. Extrinsic

neurons regulate GI peristalsis and modulate GI tract sensory

function. Extrinsic and intrinsic neurons are both

mechanosensitive.

3.2.1 Mechanosensitivity of intrinsic enteric
neurons

The MP and submucosal plexus (SMP) make up the GI

intrinsic neurons (Phillips and Powley, 2007). The MP, which is

the outer of the two enteric nervous plexuses, comprises a

network of neurons that are located between the outer

longitudinal muscle (LM) and circular muscle (CM) layers in

the GI tract (Smith et al., 2007; Schemann and Mazzuoli, 2010).
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This plexus mainly contributes to the control of SMC motor

patterns (Phillips and Powley, 2007). The SMP is situated in the

submucosa, between the tunica muscularis and mucosa layers

(Phillips and Powley, 2007). Most of the identified intrinsic

neurons are directly mechanosensitive and act as both

primary afferents and interneurons (Smith et al., 2007;

Schemann and Mazzuoli, 2010; Alcaino et al., 2017; Mazzuoli-

Weber et al., 2019). Unlike extrinsic spinal cord and vagal

mechanoreceptors, whether their stimulation is sufficient

seems to depend upon the length of the strain, rather than

intramural tension (Hibberd et al., 2012). Experimental

studies have shown that intestinal neurons have significant

mechanosensitive responses to compression, shear stress,

stretching, and hypoosmotic solutions (Hibberd et al., 2012;

Dong et al., 2015; Kugler et al., 2015; Kugler et al., 2018;

Filzmayer et al., 2020).

Dogiel type II neurons were once thought to be the only

intrinsic sensory neurons in the enteric nervous system. They are

activated by mechanical stimuli from the mucosa, which is

dependent on 5-HT release from EC cells. Dogiel type II

neurons can also respond to both contractions and stretching,

with a constant action potential. Studies have shown that the

expansion of the intestinal wall creates a reflex that is mediated by

neurons, known as the peristaltic reflex (Brehmer, 2021). This

reflex includes spatially coordinated muscle contractions and

relaxations, which contribute to the passage of luminal contents.

It is reasonable that the neuromechanosensors located in the MP

are embedded between two layers of muscle, being therefore

strategically localized to control movement and perceive

deformations (Mazzuoli and Schemann, 2009). When

expansion-induced contractile activity is impaired in the

intestinal segment, myenteric neurons which are detached

from the MP encode mechanical stimuli in order to trigger

the peristaltic reflex. In the ileal intermuscular plexus of

guinea pigs, rapidly adapted mechanosensitive enteric nerve

cells have been demonstrated to trigger a phase-pulse

discharge to respond to dynamic changes during intestinal

deformation. This response has been shown to be

reproducible and increase with force (Mazzuoli and

Schemann, 2009). Rapid deformation can mimic changes in

contractile tissue better than continuous stretching, thereby

producing effective forces on neurons.

3.2.2 Mechanosensitivity of extrinsic enteric
neurons

The extrinsic innervation of the GI tract is provided by

neurons from the central nervous system (CNS) that are

situated in the brainstem, and in peripheral afferent ganglia

(Mercado-Perez and Beyder, 2022). Extrinsic neurons do not

play a key role in sensing intraluminal mechanical stimuli, so

their mechanosensitivity is only discussed briefly here.

Spinal cord afferents have high expansion detection

thresholds; they respond to a variety of stimuli extending to a

wide range of injuries (Mercado-Perez and Beyder, 2022). Their

cell bodies are located in the dorsal root ganglia (DRG), whose

peripheral protrusions extend to the intestinal ganglia, mucosal

epithelium, and muscle layer (Kim et al., 2022).

Studies have shown that vagal sensory neurons are

mechanosensitive, with neuronal deformation regulating reflex

activity (Berthoud et al., 2004). Vagal sensory neurons detect

tension at a physiological level, which is essential for normal GI

function (Andrews, 1986). The mechanoreceptors of sensory

neurons in the vagus nerve can be divided into two categories:

those that respond to the dilation and contraction of the

intestinal wall, and those that can be triggered by the

mechanical stimuli of the intestinal lumen (Page et al., 2002).

It is worth mentioning that the properties of extrinsic enteric

neurons differ. First, compared with pelvic muscular afferents,

splanchnic muscular afferents might respond to probing at lower

stimulus intensities. Second, compared with splanchnic muscular

afferents, pelvic muscular afferents exhibited greater responses to

both stretch and probing. Third, the number of stretch-sensitive

pelvic afferents is greater than stretch-sensitive splanchnic

afferents. Taken together, the pelvic muscular afferents are

better equipped than lumbar splanchnic afferents to respond

to a colonic wall stretch (Brierley et al., 2004).

3.3 Mechanosensitivity of gastrointestinal
smooth muscle cells

SMCs play a pivotal role in excitation-contraction coupling

to transduce the electrical signal into contraction by voltage-

gated channels (Joshi et al., 2021), which are key factors

regulating the potential and excitability of SMC membranes.

Na+ entry can be modulated by shear stress, which may change

the contractile activity of intestinal SMCs. Blocking the intestinal

SMC Na+ channel has been shown to lead to membrane

hyperpolarization. Furthermore, with increasing shear stress,

increased Na+ channels may depolarize the intestinal SMC,

bringing the membrane potential closer to this contraction

threshold (Joshi et al., 2021).

Farrugia et al. (1999) found that a stretch-activated,

nifedipine-sensitive calcium channel exists in human jejunal

circular SMCs. The channel is activated by external shear

forces and increases in intracellular pressure. The presence of

stretch-activated calcium channels in the GI SMCs may enable

the SMCs to act as mechanotransducers and to function in the

regulation of smooth muscle tone and intestinal motility.

Stretch-dependent K+ (SDK) channels are expressed in dog

and mouse colonic SMCs. Stretch may regulate these channels by

involving cytoskeletal interactions. SDK channels may play a

significant physiologically role in maintaining membrane

potential during cell elongation (e.g., during organ filling) and

participating in intestinal inhibitory neural responses mediated

by NO via cGMP-dependent pathways (Koh and Sanders, 2001).
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The Piezo channel constitutes a further mechanosensitive ion

channel in SMCs. Recent evidence shows that Piezo1 facilitates

SMC development by regulating vascular endothelium shear

stress sensitivity (Douguet et al., 2019). Moreover, it regulates

the secretion of crosslinking enzymes, which are required to

promote SMC remodeling (Retailleau et al., 2015).

The K2p channel appears to contribute to the regulation of

colon motility, as its activation by agonists can effectively relax

colon SMC tension (Ma et al., 2018). The TREK channel may

offer a mechanism to counter stretch-activated currents, leading

to depolarization and contraction. Hyperpolarization induced by

stretching may constrict the response of contraction to

distension. The outward rectification of TREK-1 increases the

outflow of K2p at the depolarization voltage, thereby assisting

repolarization. Thus, the activation of TREK-1 may increase the

ability of cells to repeatedly produce depolarized electric activity,

such as slow waves (Kraichely and Farrugia, 2007).

3.4 Mechanosensitivity of interstitial cells
of cajals

SpanishNobel Laureate physician Santiago Ramon y Cajal first

described cells that are located between SMCs and the nerve

endings in the GI tract (Foong et al., 2020). Currently, they are

known as ICCs and belong to the SMC family, whose development

requires kit signaling activation. Compared with SMCs, ICCs have

fewer contractile elements but contain more mitochondria and

endoplasmic reticulum. An ICC consists of a spindle cell body with

a thin cytoplasm, a large oval nucleus, and dendritic processes

(Sanders, 1996). ICCs have four important functions in the GI tract

(Yin and Chen, 2008). Firstly, ICCs generate electrical slow wave

activity. Secondly, they coordinate the active propagation of slow

wave and pacemaker activity. Thirdly, ICCs transduce motor

neural inputs from the enteric nervous system. Fourthly, ICCs

are associated with myogenic stretch responses (Yin and Chen,

2008; Blair et al., 2014). For example, stretching of the mouse

stomach and human jejunum has been shown to increase the

frequency of slow waves, regardless of neuronal mechanisms

(Treichel et al., 2018). Stretching of gastric antral muscles by

approximately 25% with precise length ramps caused

depolarization and increased slow wave frequency by non-

neural mechanisms. The response to stretch is absent in

muscles of W/Wv mice (which lack ICCs), suggesting that ICCs

provide stretch sensitivity in gastric muscles. Products of

arachidonic acid metabolism, such as prostaglandin E2, may

mediate stretch-dependent responses, and the cyclooxygenase

enzyme II, which is expressed in ICCs, may mediate the stretch

sensor mechanism associated with the ICC (Won et al., 2005).

Recent studies have shown that Na+ channels are expressed in

human ICCs. Activated by shear stress, this native Na+ current in

ICCs can modulate membrane potential and SMC contractile

activity (Ranade et al., 2015).

4 Mechanosensitive ion channels and
gastrointestinal disease

4.1 Mechanosensitive ion channels and
irritable bowel syndrome

Rome IV defined IBS as a functional bowel disorder in which

recurrent abdominal pain is associated with altered bowel habits.

Disordered bowel habits are typically present (i.e., constipation,

diarrhea, or a mix of constipation and diarrhea), as are symptoms

of abdominal bloating/distension (Lacy and Patel, 2017). Ritchie

et al. (1973) first found the pain from distension of the pelvic

colon by inflating a balloon in IBS. The pain may be the outcome

of a low visceral pain threshold for the part of the bowel in

contact with the balloon. The altered intestinal motility in IBS

patients is due to the abnormal mechanical stimuli detected by

the mechanosensitive channel. In IBS patients, repeated

distention of the distal sigmoid colon below the sensory

threshold caused orad exaggerated motility of the colon. The

distention inhibited small intestine motility in healthy subjects,

but this inhibition was attenuated in IBS patients. These results

show that IBS patients may have VH and an abnormal intestinal

reflex (Fukudo et al., 2002). The secretion of chloride is

important because it is the driving force for fluid movement

into the intestinal lumen. Besides abnormal motility, intestinal

secretion is also dysregulated. Mechanical distension causes

reflexes on intrinsic afferent neurons, which triggers the

dysregulation of 5-HT release and chloride secretion of EC

Cells. This may be one mechanism of IBS (Xue et al., 2007).

In addition to motility and secretion abnormality, VH has

become a crucial hypothesis for explaining the pain symptoms of

IBS. Furthermore, it has been considered a biological marker of

IBS (Fuentes and Christianson, 2016). Colorectal visceral pain is

usually caused by cell swelling, instead of heating, extrusion, or

punctures (Feng and Guo, 2020). Thus, ion channel

mechanotransduction is crucial to the underlying mechanisms

of IBS-related visceral pain. Ion channels such as Piezo, TRPV4,

TRPA1, and Nav channels are thought to be the main mediators

of VH (Sipe et al., 2008). This review summarizes the role of

mechanosensitive ion channels in IBS.

Firstly, the expression of Piezo2 in the colon has been shown

to be higher than that in the small intestine. Moreover, the

visceral sensory threshold has been found to be negatively

correlated with the expression of Piezo2 (Bai et al., 2017).

These findings show that Piezo2 may be a potential VH

biomarker. 5-HT plays a pivotal role in the visceral sensitivity

of IBS, and IBS patients experience nociceptive responses that are

induced by 5-HT (Keszthelyi et al., 2015). Piezo2 affects visceral

nociception by modulating the release of 5-HT (Bai et al., 2017).

Yang et al. (2016) injected Piezo2 short hairpin RNA (shRNA)

into the sheath to reduce the expression of Piezo2 in the lumbar

DRG. They revealed that control group rats showed significantly

increased nociceptive sensation to non-noxious stimuli, while
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injected rats exhibited significantly reduced visceral sensation

with both noxious and non-noxious stimuli (Yang et al., 2016).

These findings suggest that Piezo2 inhibitors could be effective

drugs for treating IBS.

Secondly, studies have shown that TRPV4 may be associated

with pain and hyperalgesia (Balemans et al., 2017). Within this

framework, biopsies of patients with IBS showed a significant

increase in their number of nerve fibers expressing TRPV4 in the

colon, which was correlated with their pain severity. Moreover, the

expression of TRPV4 was found to be increased in preclinical

models of VH (Jones et al., 2005; Fuentes and Christianson,

2016). TRPV4 is expressed by primary spinal afferent neurons

innervating the colon. PAR2 activation increases currents in

these neurons, evokes discharge of action potentials from colonic

afferent fibers, and induces mechanical hyperalgesia. Furthermore,

TRPV4 antagonists have been shown to reduce sensitivity to

colorectal pain, and sensitivity to colorectal pain also decreases in

TRPV4-knockout mice (Winston et al., 2007). Studies have shown

that the upregulation and sensitization of TRPV4, which cause

hyperalgesia, are partially affected by endocrine and inflammatory

factors (Blackshaw et al., 2010). Taken together, these studies

demonstrate the interconnected role of TRPV4 channels in the

formation and maintenance of VH in IBS. The level of

TRPV4 agonist 5,6-EET has been shown to be increased in

biopsy samples from IBS patients. Therefore, the properties of

over-generated TPRV4 channel agonists in IBS disease may

represent new therapeutic opportunities to reduce channel

activation (Cenac et al., 2015). Additionally, TRPV1 is also

involved in VH in the GI tract and IBS pathogenesis (Blackshaw

et al., 2010). Their activation causes pain, but it is followed by

desensitization, which in turn results in analgesia. TRPV1 fast-

desensitizing compounds may be promising agents in the treatment

of IBS. One example is palvanil, which regulates intestinal motility

and reduces visceral pain (Szymaszkiewicz et al., 2020).

Thirdly, under both normal and pathological conditions,

the Nav1.1, Nav1.3, and Nav1.6 to Nav1.9 channels are related

to nociceptor function (de Carvalho Rocha et al., 2014).

However, Nav1.7 and Nav1.8 are more likely to play a role

in VH regulation than other channels. Nav1.7 immunoreactive

nerve fibers have been found to be higher in biopsy samples

from patients with idiopathic rectal hypersensitivity than in

those from healthy controls (Yiangou et al., 2007). Qu et al.

demonstrated that neonatal colonic inflammation caused a

significant increase in Nav channel activity in colon-specific

DRG neurons in visceral hypersensitive adult rats. This activity

was manifested by the upregulated expression of Nav1.7 and

Nav1.8, and by an enhancement of the total Nav channel

current density. In an in vivo rat study, blocking

Nav1.8 alleviated mechanical hyperalgesia in the visceral

cells of inflammatory pain models (Jarvis et al., 2007). In an

experimental study of patients with IBS, the intra-rectal

administration of lidocaine, which blocks Nav channels, was

found to decrease abdominal pain and visceral hyperalgesia,

highlighting a promising treatment target for IBS patients (de

Carvalho Rocha et al., 2014).

Further studies into the exact mechanism of VH are needed.

Moreover, a better understanding of the homeostatic and

pathophysiological functions of VH will surely provide

promising prospects for new IBS treatments.

4.2 Mechanosensitive ion channels and
gastrointestinal tumors

In GI tumors, tumor tissues tend to be stiffer than the

adjacent normal tissues. Tumor cells within a dilated tumor

are exposed to intense mechanical forces, due to the increased

extracellular matrix stiffness. Such forces could facilitate their

malignant progression through mechanosensitive ion channels

(Chin et al., 2016; Chaudhuri et al., 2018; Mohammadi and Sahai,

2018). Therefore, we mainly discuss the relationship between

mechanosensitive ion channels and GI tumors.

By serving as a proto-oncogene, Piezo1 plays a crucial role in

the development of many tumors in the GI tract. A germ-line

dysfunctional mutation of Piezo1 has been found in some

patients with colorectal adenomatous polyps (Spier et al.,

2016). Immunohistochemical analysis of samples from

patients with colon cancer revealed that Piezo1 expression was

upregulated in cancer colon tissues and cells, compared with that

in adjoining normal tissues (Sun et al., 2020). High levels of

Piezo1 can reduce the survival rate of colon cancer patients.

Furthermore, the upregulation of Piezo1 expression has been

shown to facilitate the invasion and proliferation of colorectal

cancer cells (Yu and Liao, 2021). Moreover, an in vitro study

revealed that Piezo1 gene knockdown can reduce the invasion of

colorectal cancer cells, highlighting the regulatory function of

Piezo1 in colorectal cancer. Furthermore, these findings suggest

potential biomarkers and therapeutic targets for colorectal cancer

treatment (Sun et al., 2020).

K2p channels also play a pivotal role in regulating cell

behavior associated with tumor development, including cell

proliferation and migration. The expression of kv11.1 is

altered in the K2p family, which has been shown to affect cell

proliferation and apoptosis in colorectal cancer (Ousingsawat

et al., 2007; Rodriguez-Rasgado et al., 2012). Potassium voltage-

gated channel subfamily Q member 1 (KCNQ1) has been found

to be very prominent in the K2p channels that lead to increased

cancer risk (Liin et al., 2015). Moreover, KCNQ1 has been shown

to serve as a tumor suppressor, as kcnq1 mutant mice develop

increased intestinal tumors, with some tumors progressing to

become invasive adenocarcinomas (Starr et al., 2009; Than et al.,

2014). In human colorectal cancer cells that were transferred to

the liver, low KCNQ1 protein expression was found to be

significantly associated with lower survival, compared with

that in patients who demonstrated high KCNQ1 expression,

whose survival was approximately 2 years longer (Than et al.,
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2014). Therefore, understanding the role of K2p channels in

tumor development could reveal new perspectives regarding

tumor treatments.

Liu et al. (2019) showed that TRPV4 expression was highly

upregulated in colon cancer and related to poor prognosis.

Inhibition of TRPV4 suppressed the growth of colon cancer

cells by blocking the cell cycle in the G1 phase and inducing

apoptosis and autophagic cell death (Liu et al., 2019). Matsumoto

et al. (2020) demonstrated that TRPV4 in both macrophages and

endothelial cells was involved in the regulation of AOM/DSS-

induced colon carcinogenesis in mice. TRPV4 deficiency

significantly reduced colitis-associated tumorigenesis and

improved survival rate, compared with that in WT (Ou-Yang

et al., 2018).

CFTR is a tumor suppressor in CRC. Endoscopic screening

studies of adult CF patients showed that polyps in CF patients are

larger and more aggressive than those in the non-CF population

(Billings et al., 2014; Niccum et al., 2016). As a result of these

studies, the Cystic Fibrosis Foundation has revised the

endoscopic screening guidelines for patients with CF and has

declared CF a hereditary colon cancer syndrome (Hadjiliadis

et al., 2018). In addition, CFTR deficiency is associated with

colorectal cancer. In an experiment including 90 patients with

colorectal cancer, the disease-free survival at 3 years in the 25% of

patients with the lowest CFTR expression was 30% lower than

that in patients with a higher CFTR expression (Than et al.,

2016).

5 Conclusion

Mechanosensitivity is essential for normal GI function. A

variety of cell types in the GI wall are mechanosensitive, ranging

from epithelial cells to both extrinsic and intrinsic neurons.

These cells can transduce mechanical forces into biological

signals through mechanosensitive ion channels. Both

mechanosensitive voltage-gated ion channels and mechano-

gated ion channels are essential for the fundamental function of

the GI tract. Changes associated with mechanical stimuli

accompanying GI inflammation and hypersensitivity, as well

FIGURE 1
Expression of the mechanosensitive ion channels in the gastrointestinal (GI) tract. There are several mechanosensitive ion channels in the GI
tract, namely transient receptor potential (TRP) (Brierley et al., 2008; Nozawa et al., 2009; Balemans et al., 2017; Alaimo and Rubert, 2019), Piezo (Bai
et al., 2017; Mazzuoli-Weber et al., 2019), two-pore domain potassium (K2p) (Alcaino et al., 2017; Ma et al., 2018), voltage-gated ion channels
(Farrugia et al., 1999; Strege et al., 2003b), large-conductance Ca2+-activated K+ (BKCa) channels (Ghatta et al., 2006; Singh et al., 2012), and the
cystic fibrosis transmembrane conductance regulator (CFTR) (Gadsby et al., 2006). These channels are located in many mechanosensitive intestinal
cell types, namely enterochromaffin (EC) epithelial cells (Wang et al., 2017), interstitial cells of Cajal (ICCs) (Ranade et al., 2015), smooth muscle cells
(SMCs) (Joshi et al., 2021), intrinsic neurons [includingmyenteric plexus (MP) and submucosal plexus (SMP)] (Alcaino et al., 2017), and extrinsic enteric
neurons [composed of neurons from the central nervous system (CNS)] (Alcaino et al., 2017). In the intestinal lumen, a variety of mechanical forces
such as shear stress, compression, stretch, and membrane tension can be sensed by mechanosensitive ion channels (Hamill and Martinac, 2001;
Alcaino et al., 2017).
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as the emergence of diseases related to mechanosensitive

channel, have aroused great interest in the applicability of

these molecular entities regarding treatments. Therefore,

mechanosensitive ion channels can be viewed as a new

strategy for drug intervention in GI diseases. Research

regarding the relationship between intrinsic enteric neurons

and mechanosensitive ion channels is limited, so further

exploration is required. It remains puzzling, for example, as

to how mechanical stimuli indirectly activate mechanosensitive

ion channels. Therefore, much research is required to fully

reveal the relevant mechanism of action. Nevertheless, as stated

in this review, we believe that recent developments in this field

mean that such applicability may become possible in the near

future.
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