:' frontiers ‘ Frontiers in Physiology

ORIGINAL RESEARCH
published: 28 June 2022
doi: 10.3389/fphys.2022.904648

OPEN ACCESS

Edited by:
Krasimira Tsaneva-Atanasova,
University of Exeter, United Kingdom

Reviewed by:

Luca Franco Pavarino,
University of Pavia, Italy

Mark Endrei,

The University of Queensland,
Australia

*Correspondence:
Kristian Gregorius Hustad
kghustad@simula.no

Specialty section:

This article was submitted to
Computational Physiology and
Medicine,

a section of the journal
Frontiers in Physiology

Received: 25 March 2022
Accepted: 27 April 2022
Published: 28 June 2022

Citation:

Hustad KG and Cai X (2022)
Resource-Efficient Use of Modern
Processor Architectures For
Numerically Solving Cardiac lonic
Cell Models.

Front. Physiol. 13:904648.

doi: 10.3389/fphys.2022.904648

®

Check for
updates

Resource-Efficient Use of Modern
Processor Architectures For
Numerically Solving Cardiac lonic Cell
Models

Kristian Gregorius Hustad'* and Xing Cai ™2

Simula Research Laboratory, Oslo, Norway, 2Depan‘ment of Informatics, University of Oslo, Oslo, Norway

A central component in simulating cardiac electrophysiology is the numerical solution of
nonlinear ordinary differential equations, also called cardiac ionic cell models, that
describe cross-cell-membrane ion transport. Biophysically detailed cell models often
require a considerable amount of computation, including calls to special mathematical
functions. This paper systematically studies how to efficiently use modern multicore
CPUs for this costly computational task. We start by investigating the code
restructurings needed to effectively enable compiler-supported SIMD vectorisation,
which is the most important performance booster in this context. It is found that
suitable OpenMP directives are sufficient for achieving both vectorisation and
parallelisation. We then continue with an evaluation of the performance optimisation
technique of using lookup tables. Due to increased challenges for automated
vectorisation, the obtainable benefits of lookup tables are dependent on the
hardware platforms chosen. Throughout the study, we report detailed time
measurements obtained on Intel Xeon, Xeon Phi, AMD Epyc and two ARM
processors including Fujitsu A64FX, while attention is also paid to the impact of
SIMD vectorisation and lookup tables on the computational accuracy. As a realistic
example, the benefits of performance enhancement are demonstrated by a 10%-run
ensemble on the Oakforest-PACS system, where code restructurings and SIMD
vectorisation yield an 84% reduction in computing time, corresponding to 63,270
node hours.

Keywords: cardiac electrophysiogy, ionic cell models, multicore CPUs, lookup tables (LUTs), SIMD vectorisation

1 INTRODUCTION

Computer simulation has firmly established itself as an important approach to studying cardiac
electrophysiology, see e.g. Vigmond et al. (2009); Trayanova (2011). One essential component of any
heart simulator is the computation of the total transmembrane ionic current density, conventionally
denoted by I,,. The importance of I, is due to its close interaction with the transmembrane
potential v, ie., the difference between the intra- and extracellular potentials. A coordinated
evolvement of v(x,t) in space and time is a prerequisite for the proper functioning of the heart.
Physiologically, I, is intricately determined by various transmembrane currents through ionic
channels, pumps and exchangers, even subcellular calcium handling. Thus, mathematical modeling
of Iy, is challenging and still remains an active research field. Many cell models have been developed

Frontiers in Physiology | www.frontiersin.org 1

June 2022 | Volume 13 | Article 904648

http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.904648&domain=pdf&date_stamp=2022-06-28
https://www.frontiersin.org/articles/10.3389/fphys.2022.904648/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.904648/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.904648/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.904648/full
http://creativecommons.org/licenses/by/4.0/
mailto:kghustad@simula.no
https://doi.org/10.3389/fphys.2022.904648
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.904648

Hustad and Cai

over the years, where two examples of widely used cell models are
the ten Tusscher-Panfilov model (see ten Tusscher and Panfilov
(2006)) and the Grandi-Pasqualini-Bers model (see Grandi et al.
(2010)).

The majority of the cell models take the form of a system of
nonlinear first-order ordinary differential equations (ODEs) with
initial conditions:

?:f(t,?(t)), $(0) = so, (1)

t

where ;(t) is a vector of so-called state variables including the
transmembrane potential itself, a set of individual ionic
concentrations, and a set of gating variables, see e.g. Alonso et al.
(2016) for a review. The evolution of ;(t) determines the total
transmembrane jonic current density I, which in turn contributes
to the dynamic change of v. The particular ODE inside the system in
Eq. (1) that describes the dynamics of v has its simplest form as
follows:

dv 1
E - _aI ion>» (2)
where C,, denotes the membrane capacitance. If electrophysiology
is simulated over a cardiac tissue or the entire heart, then Eq. (2)
can be incorporated into a partial differential equation (PDE) of the
reaction-diffusion type, such as in the monodomain and bidomain
models, see e.g. Colli Franzone et al. (2014).

1.1 Need for Huge Amounts of Computation
Many of the right-hand side functions in Eq. (1), i.e,, f1, f2, - - > fa
where N denotes the number of state variables of a cell model, are
nonlinear and involve special mathematical functions such as the
exponential, logarithmic and power functions. For example, the ten
Tusscher-Panfilov model [see ten Tusscher and Panfilov (2006)]
adopts N = 19 state variables and the authors’ own C++ source
code [see ten Tusscher (2021)] counts 77 calls to the exponential
function and 4 calls to the logarithmic function. On a computer,
these calls to the special mathematical functions will be translated
into a large number of basic floating-point operations (FLOPs). For
example, profiling tools have revealed that typical compilers will
generate in total around 1500 FLOPs each time the 19 right-
hand side functions of the ten Tusscher-Panfilov model are
evaluated on a computer (see Section 3.2).

ODE computations can use substantial time of a heart simulator.
Inside a monodomain or bidomain simulator of a cardiac tissue or
an entire heart, an ODE system of form Eq. (1) exists “everywhere”,
i.e., with the same spatial resolution as for the intra- and extracellular
potential fields. For the latest simulation strategy based on the EMI
(extracellular-membrane-intracellular) approach, see e.g., Tveito
et al. (2017); Jaeger et al. (2021a), a high spatial resolution is still
needed to resolve the cell membrane surfaces, resulting in
considerable computational effort needed to solve the individual
ODE systems. Multiple studies have investigated how simulations
using the monodomain model or the bidomain model can be scaled
to thousands of compute nodes [see e.g., Niederer et al. (2011); Mirin
et al. (2012); Colli Franzone et al. (2018)]. Operator splitting is
typically used with the monodomain, bidomain, and EMI models

Solving Cardiac lonic Cell Models

such that the non-linear ODE part is decoupled from the linear PDE
part [see Clayton et al. (2011); Tveito et al. (2017)]. Thus, the
performance of the ODE part, which does not require any
communication, may be studied independently of the PDE part.
For whole-heart simulations using the monodomain or bidomain
model with reasonably accurate meshes, the number of ODE
systems is in the millions, even ranging as high as 370 million
[see Mirin et al. (2012)], whereas the time step is typically limited to
around 25 ps [see Niederer et al. (2011)]. In other words, 40,000 time
steps must be solved for each second of simulated time.

Besides the above simulation scenario, an ensemble scenario can
also require solving many instances of a cell model. This is needed to
study the sensitivity of a cell model with respect to its internal
parameters, or to fit the model parameters with real-word cellular
measurements [see e.g., Jaeger et al. (2021b)]. The number of
instances can easily be colossal, if the number of parameters of
interest is large and/or the resolution needed to study each
parameter is high.

No matter which scenario, when the required temporal/
spatial/parameter resolution is high, there arises the need for
numerically solving a large number of ODE system instances over
a large number of time steps. This can lead to a gargantuan
amount of computing time even on a supercomputer. The present
paper thus aims to investigate how the modern multicore CPU
architectures can be efficiently used for this purpose.

1.2 Need for Effective Use of Modern

Processor Architectures

The primary design goal of a modern multicore CPU is to execute
FLOPs fast. This is in principle a good match with numerically solving
cardiac ionic cell models, which typically have a high computational
intensity, ie., the number of FLOPs executed per byte of memory
traffic. Effective utilisation of the floating-point capability of a
multicore CPU requires employing all the processor cores while
each delivers a sizeable portion of its theoretical peak floating-point
performance. Achieving the latter is not straightforward, because it
requires each processor core to execute, most of the time, in a single-
instruction-multiple-data (SIMD) style. The individual ODE system
instances, in both simulation and ensemble scenarios, can be
computed independently and thus readily offer parallelisation
across the processor cores. However, inappropriate data structures,
memory access patterns and/or code structure can seriously limit or
even prohibit SIMD vectorisation. This important topic will be
addressed in Section 2.3.

Executing FLOPs using SIMD vectorisation alone does not
necessarily lead to the best computing speed. Another concern is
the necessity of the FLOPs. Modern compilers are good at
common subexpression elimination, thus avoiding unnecessary
repetitions of FLOPs, but they are unable to decide the most
economical way of evaluating the special mathematical functions.
A classical method is to pre-evaluate a costly function for a certain
value range and resolution, and store these pre-computed values
in a lookup table. Later evaluations of the function are then
replaced by reading (approximate) values from the table. The
number of arithmetic operations is reduced at the cost of extra
memory usage by the lookup table itself and extra memory traffic

Frontiers in Physiology | www.frontiersin.org

June 2022 | Volume 13 | Article 904648

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Hustad and Cai

due to repeatedly accessing the lookup table. Moreover, using
lookup tables may prohibit a compiler from vectorising the other
parts of the computation. Section 2.4 will thus discuss the
considerations and programming details about lookup tables.

The contribution of this paper is not about devising new ODE
solvers with lower algorithmic complexity, higher accuracy or
better stability. Instead, our approach to getting fast computing
speed is rooted in a resource-efficient usage of modern multicore
processor architectures. We discuss the code restructurings that are
needed to help modern compilers automatically enable SIMD
vectorisation. The speed improvement due to vectorisation is
thoroughly investigated by both time measurements and
profiling. To our knowledge, these aspects have not been
systematically studied in the literature.

Another novelty of this paper is a deep dive into the pros and
cons of using lookup tables, where we also study some related
programming nuances. Although a number of choices
concerning the trade-off between accuracy and speed may be
considered when using lookup tables, we have devoted our
attention to the programming details. We report accuracy
results to verify the correctness of our implementation and
contrast with the error associated with the use of SIMD
vectorisation.

The ODE models used in this paper for performance study in
Section 3 are realistic cardiac ionic cell models (see Table 1),
whereas we have only adopted the simplest ODE solvers. The
rationale is that more sophisticated ODE solvers often use simple
ODE solvers as the building blocks. Thus, a thorough
understanding of how to obtain hardware resource efficiency
for simple ODE solvers is readily extended to the wealth of
advanced ODE solvers.

The remainder of this paper is organised as follows. Section 2.1
briefly explains the basic steps of implementing ODE solvers,
including directive-based parallelisation. Section 2.2 points out the
inefficiency of naively implemented ODE solvers. Section 2.3 carefully
examines the topic of SIMD vectorisation on modern multicore
processors. Section 2.4 is devoted to the details of using lookup
tables as an alternative to getting fast computing speed. Section 2.5
demonstrates how SIMD vectorisation and lookup tables can be
combined. Thereafter, Section 3 contains an extensive set of
numerical experiments about the benefits due to, respectively,
SIMD vectorisation and lookup tables. The topic of accuracy also
receives close attention in Section 3. Finally, Section 4 comments on
the related work and provides some concluding remarks.

2 SIMD VECTORISATION AND LOOKUP
TABLES FOR DELIVERING PERFORMANCE

As argued in Section 1.1, huge amounts of computation may arise
from numerically solving many instances of a cell model, in both
simulation and ensemble scenarios. At the same time, as discussed in
Section 1.2, utilising the computational potential of modern
processors can be non-trivial. This section thus aims to
investigate two strategies for enhancing the performance of
typical solvers of a cell model, specifically, use of SIMD

Solving Cardiac lonic Cell Models

vectorisation and lookup tables. We will start with explaining the
basic steps of implementing an ODE solver, for the purpose of
setting the programming scene needed to dive into the two strategies.

2.1 Basic Steps of Implementing an ODE

Solver
The basic steps of implementing an ODE solver are largely
generic, such that automated code generation can allow an
easy plug-and-play of the solution strategy and cell model,
while keeping manual coding to a minimum level. We will use
as an illustrating example the simplest ODE solver, namely, the
forward Euler method. This choice is motivated by both its
simplicity and its relevance as building blocks in many
advanced ODE solvers. Simplicity is also the reason for
choosing, later in this section, the FitzHugh-Nagumo cell
model [see FitzHugh (1961); Nagumo et al. (1962)] that has
only two state variables, for the ease of presentation. We remark
that the same (automated) programming process applies to other
ODE solvers and cell models.

Specifically, to numerically solve a system of ODEs in the form
of Eq. (1), the computational work per time step of the forward
Euler (FE) method is as follows:

s(te) = s(t) + At - f(te 5 (t2)). (3)

This simple numerical scheme only requires evaluating the
right-hand functions]f with the latest state variables. The
downside of FE is that it may require a very small time step
size At = tp, — t,, and thereby a tremendous number of steps, to
produce a stable solution of a stiff ODE system.

2.1.1 Algorithmic Skeletons

The algorithmic skeleton for solving individual ODE system
instances in a simulation scenario will differ from that in an
ensemble scenario (see Section 1.1). Suppose the computational
work of an ODE solver (e.g., FE) per time step is coded as a
subroutine named COMPUTE_ODE_STEP(;, t,At), these two
algorithmic skeletons can be found, respectively, in Algorithm 1
and Algorithm 2. Moreover, a realistic simulation scenario can
also have a PDE component per time step, due to operator splitting
used for solving e.g. the monodomain or bidomain equations. This
is shown in Algorithm 3 where the v values from all the cells are
jointly updated per time step additionally to accommodate the
PDE contribution.

Algorithm 1. Simple skeleton for the simulation scenario (outer
loop over time).

1: t <+ Tyart

2: while t < Tpq do

3: for each cell 7 do

4 call COMPUTE_ODE _STEP(S, t, At)
5 end for

6: t <« t+ At

7: end while

Frontiers in Physiology | www.frontiersin.org

June 2022 | Volume 13 | Article 904648

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Hustad and Cai

Algorithm 2. Simple skeleton for the ensemble scenario (outer
loop over cells).

1: for each cell ¢ do

2 t < Tytart

3 while ¢t < Tipq do

4: call COMPUTE_ODE_STEP(S, t, At)
5 t«—t+ At

6 end while

7: end for

Algorithm 3. Operator-splitting skeleton for the simulation
scenario (outer loop over time).

10t <= Ttare

2. while ¢ < Tipq do

3 for each cell i do

4: call COMPUTE_ODE_STEP(S, t, At)

5 end for

6: Gather the v value from each cell to form a vector ¥

7: call COMPUTE_PDE _STEP(U, Upew, t, At)

8 t+t+ At

9: Scatter the values of vector Upey to the corresponding cells
10: end while

2.1.2 Automated Code Generation

Mathematical models of the ionic current density are typically very
complex, involving many parameters and internal variables. Manual
coding of COMPUTE ODE STEP, which is needed in any of the
algorithmic skeletons, can therefore be nontrivial and error-
prone. Here, two factors support an approach of automated code
generation. First, most ODE solution strategies are generic and
independent of a specific cell model. Second, the research
community has developed several domain-specific standards to
facilitate sharing of the existing cell models, thus offering
standardised input to automated code generators. One such open
standard is the CellML language [see Cuellar et al. (2003)] based on
XML. The benefits of automation include avoidance of human
programming errors, a flexible choice of the programming
language for the generated code, and easy experimentation with
different cell models.

As an example, we will show in Listing 2 a piece of auto-
generated code that implements a single FE step for the two-
variable FitzHugh-Nagumo (FHN) cell model [see FitzHugh
(1961); Nagumo et al. (1962)]:

Y @ —weI
—=v(v-a)(1-v) —w+ Ly,
dr ! -80 0<t<0.5,
Istim .

dw 0 otherwise,
— =&\V—yw),
3 —cv-ww)

(4)

where v and w are state variables, and «, € and y are model
parameters. Correspondingly, Listing 1 contains two assisting
enum types that are used instead of integer literals when indexing
arrays in order to improve readability. The FHN model is used in
code listings in this section due to its simplicity. The results
presented in Section 3 use the more realistic models listed in
Table 1.

Solving Cardiac lonic Cell Models

Listing 1: Auto-generated enum declarations for the FHN model.

enum state {
STATE_V, // =0
STATE_w, // =1
NUM_STATES, // 2
bi

enum parameter {

PARAM_alpha, /) =
PARAM_epsilon, // =
PARAM_gamma, // =
NUM_PARAMS, /) =

bi

Listing 2: Auto-generated code of one FE step applied to the
FHN model.

void FHN_step_FE_single(double *__restrict states, const double t,

const double dt, const double *__restrict parameters)

{
// Assign states
const double V = states[STATE_V];
const double w = states[STATE_w];
// Assign parameters
const double alpha = parameters[PARAM_alphal;
const double epsilon = parameters[PARAM_epsilon];
const double gamma = parameters[PARAM_gamma] ;
// Ezpressions for the Main component
const double I = (t <= 0.5 & t >= 0. ? -80. : 0.);
const double dV_dt = -w + (1. - V) * (-alpha + V) * V + I;
states[STATE_V] = dt * dv_dt + V;
const double dw_dt = epsilon * (-gamma * w + V);
states[STATE_w] = dt * dw_dt + w;

}

The C code in Listing 2 is auto-generated by Gotran [see
Hake et al. (2020)]: a code generation framework for cell models
and the associated ODE solvers. The input format of the
FHN model can be found at the CellML website [see CellML
(2022)].

2.1.3 Shared-Memory Parallelisation Using OpenMP
The need for parallelisation arises when the number of ODE
system instances involved in a simulation or ensemble
scenario is large. For both cases, parallelisation is
straightforward because the ODE system instances can be
computed independently. An automated code generator, such
as Gotran, can easily create a subroutine that uses OpenMP
directives for this purpose. Listing 3 is such an example,
which loops over a collection of cells and invokes
FHN step FE single (implemented in Listing 2) for
each cell. The code in Listing 3 is typically used in a
simulation scenario, wrapped within an outer loop over time.

Listing 3: Example of OpenMP parallelisation (simulation scenario).

void FHN_step_FE_naive(double *__restrict states, const double t,
const double dt, const double *__restrict parameters,
int num_cells)

#pragma omp parallel for

for (int 1 = 0; i < num_cells; i++) {
/* use pointer arithmetic to pass disjoint parts of the states
* array for each cell */
FHN_step_FE_single(states + i * NUM_STATES, t, dt, parameters);

Frontiers in Physiology | www.frontiersin.org

June 2022 | Volume 13 | Article 904648

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Hustad and Cai

2.2 Issues of Inefficiency
The auto-generated code shown in Listings 2 and 3 can be

readily used in any simulation scenario. A corresponding
version of Listing 3 for an ensemble scenario can also easily
be auto-generated. Switching to another cell model and/or a
different explicit ODE solver will in general pose no challenge.
Thanks to the automated insertion of OpenMP directives, the
generated code can use all the CPU cores of a shared-memory
system. Listings 2 and 3 can also be used without change inside
a distributed-memory parallel monodomain or bidomain
simulator. (Here, we assume that each MPI process is
assigned with a partition of the cells.)

However, we can only label the above auto-generated code
as naive, because the obtained performance will be
considerably lower than the ideally achievable level. The
main reason is the inability of compilers to enable SIMD
vectorisation for this code. Specifically, the first argument to
function FHN step FE single in Listing 2 assumes that
the N state variables for each cell are stored contiguously in
memory. This means that the state variables of all the cells are
stored logically as an “array of structs”, as used by Listing 3.
Although such a data structure makes sense by grouping the
state variables of each cell, the downside is that compiler-
supported SIMD vectorisation will fail completely. Code
restructuring needed for auto-vectorisation will be
addressed in Section 2.3, whereas the potential
performance benefits of using lookup tables will be the
topic of Section 2.4.

2.3 SIMD Vectorisation
2.3.1 Computing with Vectors
Modern CPUs use special registers and instructions for SIMD
vectorised operations. For example, the AVX-512 vector
instruction set provides 512-bit vectors, so that eight
double-precision (64-bit) floating-point numbers may be
stored together in a vector register, and arithmetic
operations such as addition and multiplication can be
performed simultaneously to all the numbers stored in these
vectors. To efficiently read and store vector registers, the
content of a vector should lie contiguously and aligned in
memory. The latter means that the start address of the
vector in memory is a multiple of the vector width.
Conceptually, simultaneous solution of multiple instances
of the same cell model suits perfectly for SIMD vectorisation.
This is because the identical computation takes place in the
different cells, i.e., the same operations are applied to different
values. The rare situation of conditional branching (e.g., the
outcome of an 1f test depends on the actual value of a state
variable) can also be vectorised through masking. In the
following, we will discuss how to restructure the auto-
generated naive code, so that compilers can automatically

Solving Cardiac lonic Cell Models

carry out the SIMD vectorisation, by using suitable compiler
options/hints and vectorised math libraries.

2.3.2 Restructuring for Optimal Memory Layout

As discussed in Section 2.2, the auto-generated naive code (as shown
in Listings 2 and 3) adopts a natural but vectorisation-unfriendly
data structure, where the state variables of each cell are stored
contiguously in memory. For effective use of the vector registers, a
vectorisation-friendly data structure should let the same state
variable from all the cells be stored contiguously. The entire data
structure thus has the layout of a “struct of arrays”. To guarantee
memory alignment, each state-variable array may need to be padded.
Suppose the number of cells is C, the number of no-use 64-bit values
padded at the end of each array can be calculated as 8 -
modulo(C,8) for the case of 512-bit vector width. In
practice, all the state-variable arrays (with padding) are
concatenated into a very long 1D array. This can be seen in
Listing 4.

2.3.3 Compiler-Supported Auto Vectorisation for the
Simulation Scenario

When the memory-related code restructuring is done, SIMD
vectorisation can be automatically enabled by a compiler. There
are multiple ways of providing vectorisation hints to a C compiler,
but we will focus on the simd construct of OpenMP as it is
supported by all the major compilers. (The code examples given in
this paper require OpenMP version 4.5 or newer.) In Listing 3, we
used the compiler directive of #pragma omp parallel for to
parallelise the for loop. Listing 4 shows a modified version based
on a restructured SIMD-friendly data layout, where we have also
added the necessary compiler hints to enable auto-vectorisation.
Specifically, the additional simd clause suggests to the compiler
that multiple iterations of the loop could be computed together as a
vector.

The simd clause may be followed by additional clauses: The
simdlen clause specifies the preferred number of lanes per
SIMD vector. In the following code listings, we assume that the
user has defined the constant VECTOR LENGTH which is
passed as the argument to simdlen. The aligned clause
can be used to provide information about the alignment of
arrays, so that the compiler can employ aligned vector load/
store instructions.

When using the Clang compiler, however, specifying only
OpenMP pragmas does not lead to successful vectorisation,
because Clang is unable to prove that vectorisation can safely
be applied. We therefore specify an additional Clang-specific
pragma, see Listing 4, where we instruct the compiler to
assume memory safety, relieving Clang of the requirement to
prove that there are no overlapping memory accesses. For the
sake of brevity, we only show the vectorisation hints based on
OpenMP in the remaining listings.

Frontiers in Physiology | www.frontiersin.org

June 2022 | Volume 13 | Article 904648

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Hustad and Cai

Listing 4: Step function for the FitzHugh-Nagumo model
(simulation scenario) with SIMD-friendly data layout restructuring.

void FHN_step_FE(double *__restrict states, const double t,
const double dt, const double *__restrict parameters,
const long num_cells, const long padded_num_cells)

#pragma omp parallel

{
// Assign parameters
const double alpha = parameters[PARAM_alpha] ;
const double epsilon = parameters[PARAM_epsilon];
const double gamma = parameters[PARAM_gamma] ;

#if defined (HINT_CLANG_SIMD)
#pragma omp for
#pragma clang loop vectorize(assume_safety)
#elif defined(HINT_OMP_SIMD)
#pragma omp for simd aligned(states : ALIGNMENT_BYTES) \
simdlen (VECTOR_LENGTH)
#else
#pragma omp for
#endif
for (long i = 0; i < num_cells; i++) {
// Assign states
const double V = states[STATE_V * padded_num_cells + i];
const double w = states[STATE_w * padded_num_cells + i];

// Compute FE step
const double I = (t <= 0.5 & t >= 0. 7 -80. : 0.);
const double dV_dt = -w + (1. - V) * (-alpha + V) * V + I;
states[STATE_V * padded_num_cells + i] = dt * dV_dt + V;
const double dw_dt = epsilon * (-gamma * w + V);
states[STATE_w * padded_num_cells + i] = dt * dw_dt + w;
}
} // end of parallel region

2.3.4 Compiler-Supported Auto Vectorisation for the
Ensemble Scenario

The simd OpenMP clause works best when applied to the inner
loop. In case the outer loop is over the cells, vectorisation becomes
more complicated as the compiler will have to perform outer loop
vectorisation. Listing 5 shows how to restructure the code in the
ensemble scenario to enable auto vectorisation. When the loops are
structured in this manner with cells in the outer loop and time in
the inner loop (we refer to this loop structure as Cell-Time), we
minimise memory traffic, as the parameters and state variables can
easily fit in cache between two time steps. Furthermore, expressions
that are not a function of the state variables or time will not change
between time steps and can therefore be reused such that the total
amount of computation is reduced. Since the number of iterations
in the inner loop over time (i.e., the number of time steps) is the
same for all cells, outer loop vectorisation can safely be applied in
this scenario. However, we observed that only the Intel compiler
was able to perform vectorisation for the function in Listing 5. We
therefore investigated two alternative loop structures in order to
achieve vectorisation with the other compilers.

Listing 6 uses a Time-Cell loop structure similar to the
simulation scenario, with the difference being that the
parameters are no longer shared between all cells. This loop
structure can lead to very high memory traffic, because all
parameters must be read and all state variables read and written
for each inner iteration in the loop. The three code blocks following
the comments “Assign parameters”, “Assign states”, and “Compute
FE step” are the same as in Listing 5 and were omitted for brevity.

If we solve the model for smaller batches of cells, we facilitate
caching of both arrays and reduce the memory traffic. Listing 7

Solving Cardiac lonic Cell Models

shows a Cell-Time-Cell loop structure where the outermost loop
divides the work into batches that are mapped to different
OpenMP threads with the “parallel for” directive, and then the
middle loop iterates over time, whereas the innermost loop iterates
over the elements in a batch. We should choose the batch size to be
a multiple of the hardware SIMD vector length, and the batch size
is here controlled via a compile-time defined constant
VECTOR_LENGTH. In practice, all vector lengths are a power
of 2, 50 2° = 32 would be a reasonable choice of batch size that
would work well on any CPU. Note that some extra bookkeeping is
needed to handle the case where the total number of cells does not
evenly divide the batch size. The performance of the different loop
structures is discussed in Section 3.4.

Listing 5: Cell-Time loop structure in FE solution of the FitzHugh-
Nagumo model (ensemble scenario) with SIMD-friendly data layout
restructuring.

void FHN_solve_FE_ensemble_CT(double *__restrict states,
const double t_start, const double dt,
const double *__restrict parameters, const long num_cells,
const long padded_num_cells, const int num_timesteps)

{
#pragma omp parallel for simd aligned(states : ALIGNMENT_BYTES) \
simdlen(VECTOR_LENGTH)
for (long i = 0; i < num_cells; i++) {
// Assign parameters
const double alpha =
parameters[PARAM_alpha * padded_num_cells + il;
const double epsilon =
parameters [PARAM_epsilon * padded_num_cells + i];
const double gamma =
parameters [PARAM_gamma * padded_num_cells + il;
double t = t_start;
for (int ti = 0; ti < num_timesteps; ti++) {
// Assign states
const double V = states[STATE_V * padded_num_cells + il;
const double w = states[STATE_w * padded_num_cells + il;
// Compute FE step
const double I = (t <= 0.5 && t >= 0. ? -80. : 0.);
const double dV_dt = -w + (1. - V) * (-alpha + V) * V + I;
states[STATE_V * padded_num_cells + i] = dt * dV_dt + V;
const double dw_dt = epsilon * (-gamma * w + V);
states[STATE_w * padded_num_cells + i] = dt * dw_dt + w;
t += dt;
} // end of for loop over time
} // end of for loop over cells
¥

Listing 6: Time—Cell loop structure in FE solution of the FitzHugh-
Nagumo model (ensemble scenario) with SIMD-friendly data layout
restructuring.

void FHN_solve_FE_ensemble_TC(double *__restrict states,
const double t_start, const double dt,
const double *__restrict parameters, const long num_cells,
const long padded_num_cells, const int num_timesteps)

{
double t = t_start;
for (int ti = 0; ti < num_timesteps; ti++) {
#pragma omp parallel for simd aligned(states:ALIGNMENT_BYTES) \
simdlen(VECTOR_LENGTH)
for (long i = 0; i < num_cells; i++) {
// Assign parameters (code block omitted, see Listing 5)
// Assign states (code block omitted, see Listing 5)
// Compute FE step (code block omitted, see Listing 5)
} // end of for loop over cells
t += dt;
} // end of for loop over time
}

Frontiers in Physiology | www.frontiersin.org

June 2022 | Volume 13 | Article 904648

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Hustad and Cai

Listing 7: Cell-Time-Cell loop structure in FE solution of the
FitzHugh-Nagumo model (ensemble scenario).

void FHN_solve_FE_ensemble_CTC(double *__restrict states,
const double t_start, const double dt,
const double *__restrict parameters, const long num_cells,
const long padded_num_cells, const int num_timesteps)

// spread work across threads in outer loop over (chunks of) cells
#pragma omp parallel for
for (long v = 0; v < num_cells; v += VECTOR_LENGTH) {
long v_len = VECTOR_LENGTH;
// ensure that v + u_len <= num_cells
if (v + v_len > num_cells)
v_len = num_cells - v;
double t = t_start;
for (int ti = 0; ti < num_timesteps; ti++) {
// annotate inner loop over chunk/vector with simd hints
#pragma omp simd aligned(states : ALIGNMENT_BYTES) \
simdlen(VECTOR_LENGTH)
for (long i = v; i < v + v_len; i++) {
// Assign parameters (code block omitted, see Listing 5)
// Assign states (code block omitted, see Listing 5)
// Compute FE step (code block omitted, see Listing 5)
} // end of wvectorised for loop over cells
t += dt;
} // end of for loop over time
} // end of for loop over cells

2.3.5 Using Vectorised Math Libraries

The cell models often involve calls to the exponential function
(exp), the logarithmic function (1og), and the power function
(pow). The expml function is also relevant in the context of
some numerical schemes that require evaluating e* — 1 where x
may be close to zero, in which case exp (x) -1 is prone to
rounding errors and expml (x) produces more accurate
results. In the standard C library, these are defined as
functions with a scalar input and output, but we need to
evaluate these functions on all the elements in a vector
simultaneously to achieve SIMD. Fortunately, there are
vectorised math libraries that provide C functions that use
SIMD instructions to evaluate these math functions for
selected vector lengths.

Intel’s Short Vector Math Library (SVML) and the GNU C
library, glibc, both provide vectorised versions of the relevant
math functions for the x86 instruction set. Shibata and
Petrogalli [see Shibata and Petrogalli (2020)] developed a
vector math library, SLEEF, that supports the ARMV8
instruction set in addition to x86. There are also other
vector math libraries, but these three libraries all integrate
with compiler auto-vectorisation when used with a compatible
compiler.

As vectorised implementations of expm1 are not available for
all libraries, we have used a preprocessor macro to control
whether expml (x) or (exp (x)-1) is used. expml (x) is
used in the naive implementations, and (exp (x) -1) is used in
all vectorised code unless otherwise stated.

We should note that the libraries vary slightly in the
accuracy to which the functions are evaluated, and the
instructions used (and thereby the total number of floating
point operations) may also vary. Our goal in this study is not to
compare the vector math libraries, but they are a necessary
component when using auto-vectorisation on cell models that
contain calls to math functions. When studying the

Solving Cardiac lonic Cell Models

performance and accuracy of cell models, we will therefore
have to consider the influence of the math libraries used. Time
measurements of using vectorised math libraries, as well as an
accuracy analysis will be provided in Section 3.3.

2.3.6 Explicit Control of the Vector Length

In some instances, the compiler may generate instructions with a
shorter vector length than the maximal supported vector length,
often resulting in sub-optimal performance. There are mechanisms
that allow the user to instruct the compiler to target a specific vector
length, but the exact mechanism varies for each compiler. For the
Intel compiler on Oakbridge (see Table 2), we observed that 256-
bit vectors would be used by default when targeting the Cascade
Lake CPU, although the hardware vector length is 512 bits. When
we appended simdlen (8) to the simd clause, the compiler
would instead use 512-bit instructions (8 SIMD lanes with 64-bit
floating-point values). For GCC, the flag -mprefer-vector-
width=512 can be used to the same effect.

For the Fujitsu compiler on Wisteria, we pass the flags
-msve-vector-bits=512 and -ffj-interleave-loop-
insns=4. The second flag instructs the compiler to interleave
4 iterations of the loop such that 4 x 8 cells are processed in
parallel in each OpenMP thread. Interleaving loop iterations
increases the amount of instruction-level parallelism at the
cost of an increased register pressure, which seems to be very
beneficial on the A64FX CPU with somewhat higher latencies for
arithmetic instructions than the CPUs found in the other systems.
We found that interleaving 4 loop iterations yielded the best
performance on Wisteria.

2.4 Lookup Tables

The rationale for using lookup tables is to reduce the amount of
computation, by repeatedly referring to tables of pre-
computed values. Most cell models contain a number of
expressions that are functions of the transmembrane
potential v, so these expressions may be pre-evaluated for a
chosen sampling of the expected v values, before the ODE
solution procedure. For instance, we may assume Vv €
[-100 mV, 50 mV] in the healthy heart, and we can thus pre-
evaluate the expressions at equally spaced points in this interval
with a resolution of vgp. Expressions that are a function of more
than one state variable are usually not considered for using lookup
tables, because the memory footprint (and setup cost) of the tables
grows exponentially with the number of input variables.

Let f(v) denote an expression that depends on v and assume
that a lookup table has been pre-computed for the interval [Vinin, Vinax]
with resolution vy.,. When the lookup table is later repeatedly
used, the actual v values may not coincide with the pre-chosen
sampling values. Suppose a particular v value lies between two
consecutive sampling points: v, < v < v, = ¥, + Vgep. The typical
strategy is to use a linear interpolation by computing w, = ';‘:;:
and w, = 1 — w,, and then use w, - f (v;) + wp, - f (v) as the
approximation of f{v). The two values of f (v,) and f (v;) are
fetched from the pre-computed lookup table that is stored in
memory. Note that if multiple expressions use the same input
variable, the weights w, and w; remain the same for all these
expressions. For memory efficiency, the pre-evaluated values of

Frontiers in Physiology | www.frontiersin.org

June 2022 | Volume 13 | Article 904648

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Hustad and Cai

Solving Cardiac lonic Cell Models

TABLE 1| Cell models used in the numerical experiments of this paper. The “FLOPs” column lists the number of floating-point operations required to compute a single time
step for a naive implementation using the Forward Euler scheme. Section 3.2 describes how performance counters were used to obtain the operation counts.

Model Name State variables FLOPs References

ten Tusscher—Panfilov (2006) TPOB 19 1500 ten Tusscher and Panfilov (2006)
Jaeger-Tveito (2021) JT21 25 1322 Jeeger et al. (2020, 2021a)
Grandi-Pasqualini-Bers (2010) GPB 39 2149 Grandi et al. (2010)

TABLE 2 | Hardware specifications (compute node level) of the five target platforms. ISA is an abbreviation of “instruction set architecture”.

Name CPU ISA SIMD width Memory Peak memory bandwidth
(bits)
Oakforest 1 x Intel Xeon Phi 7250 x86-64 512 16 GiB MCDRAM + 96 GiB DDR4 MCDRAM: >400 GB/s DDR4: 125 GB/s
Peak performance: 3 TFLOPS
Oakbridge 2 x Intel Xeon Platinum 8280 x86-64 512 192 GiB DDR4 281 GB/s
Peak performance: 4.8 TFLOPS
Wisteria 1 x Fujitsu AB4FX ARM v8.2-A 512 32 GiB HBM 1024 GB/s
Peak performance: 3.4 TFLOPS
Milan 2 x AMD EPYC 7763 x86-64 256 2 TiB DDR4 410 GB/s
Peak performance: 5.0 TFLOPS
Thunderx2 2 x Cavium ThunderX2 CN9980 ARM v8.1-A 128 1 TiB DDR4 341 GB/s
Peak performance: 1.0 TFLOPS
TABLE 3 | Compiler flags used to enable auto-vectorisation.
Compiler Version System Flags
ARMClang 21.0 ThunderX2 -03 -fopenmp -ffast-math -fsimdmath -fno-math-errno
Fujitsu 4.7.0 Wisteria -Nclang -Ofast -fopenmp
GCC 11.1.0 Milan -03 -fopenmp -ffast-math -march=native
Intel 19.1.3.304 Oakbridge/ Oakforest -03 -gopenmp -fp-model fast=2 -march=native

these expressions can be collected as a large 2D table where each
column corresponds to one expression.

2.4.1 The Rush-Larsen Scheme and Lookup Tables
When solving stiff ODE systems, the forward Euler scheme
may require a very small At in order to maintain stability.
Rush and Larsen [see Rush and Larsen (1978)] proposed the
use of an exponential integrator for the gate variables, which
are governed by quasi-linear equations on the form:

dw w.(v)-w

dt 1,)

where w., and 7,, are functions of the transmembrane potential.
Let v; denote the latest computed transmembrane potential. If v is
assumed to be constant when updating w, Eq. (5) becomes a
linear ODE with an analytical solution:

w(t; + A1) = [w(t) - w. (v)]e ™™ +w. (v). (6

The Rush-Larsen scheme (RL) applies Eq. (6) to all the gating
equations, whereas the FE scheme in Eq. (3) is used for the
remaining equations.

When using lookup tables in the context of RL, it is convenient
to rewrite Eq. (6) on the form:

w(t; +At) =a(v;) - w(t)+b(v), (7)
where a (v;) and b (v;) are two pre-tabulated expressions:

a(v;) = e/, (8
b(vi) = —w. (v) [/ — 1], ©)

Sundnes et al. [see Sundnes et al. (2009)] showed that the RL
scheme can be generalised to equations that are not quasi-linear by
performing an additional linearisation step. This leads to a first-order
accurate generalised Rush-Larsen scheme, which we will simply
refer to as GRL1. Both RL and GRL1 schemes will be used in the
numerical experiments later.

2.4.2 Memory Layout of a Multi-Expression Lookup
Table

A lookup table containing M expressions evaluated at S points,
can be represented as an S x M array in memory. This choice of
memory layout suits well for the row-major storage scheme
used by the C programming language. To find linear
interpolations of the M expressions with the same input

Frontiers in Physiology | www.frontiersin.org

June 2022 | Volume 13 | Article 904648

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Hustad and Cai Solving Cardiac lonic Cell Models

TABLE 4 | Single-threaded performance of scalar and vectorised math library 2_5 Combining SlMD Vectorisation and

calls. The units for the Scalar and SIMD columns is millions of function

evaluations per second. LOOkUp Tables

Svet Functi Seal SIMD Soeed Reconciling the scattered memory access patterns arising from the use
stem nction calar (<1 . .

v fnet PeeduP of lookup tables with the need for contiguous memory accesses for
Oakbridge exp 261.0 760.6 2.91 effective use of SIMD vectorisation is non-trivial. We propose
Oakbridge expm?1 167.4 648.8 3.88 a partitioned method for the TP06 model where lookup tables
gaigr!gge log 28032;14 igg'? 2?2 are used for the 12 gating variables, and the non-gating

aKoriage ow

9 P variables are computed using SIMD vectorisation. The
Oakforest exp 439 260.0 5.92 rationale for this partitioned method is that computing the
Oakforest expm1 23.7 223.4 9.44 gating equations using lookup tables is very effective.
83:20“931 log ?2'2 fg;'; ?'g; Specifically, updating each gating variable requires only

aKlores ow . . B . . oy

P eight FLOPs: two FLOPs for Eq. (7), in addition to the
Milan exp 91.7 743.6 8.11 ree s required for the linear interpolation of eac
th FLOPs required for the 1 terpolat f each
Mitan expm1 151.8 138.3 0.91 of the two pre-tabulated expressions (a and b). Listing 8
Miian log 73.9 5836 7.89 shows the code skeleton with two inner loops.
Milan pow 26.8 169.7 5.96
mz}tz:z zzgm 22'2 62343; g'gg Listing 8: Combined use of SIMD vectorisation and lookup tables
Wisteria log 70.1 534 7 676 when sohflng tl.le ten Tu§scher—Panﬁlov model with the RL
Wisteria pow 16.4 113.4 6.92 scheme (simulation scenario).
void TP06_solve_RL_SIMD_LUT(double *__restrict states, const double t,
Thunderx2 exp 88.4 123.0 1.39 const double dt, const double *__restrict parameters,
Thunderx2 expm1 45.6 271 0.59 const long num_cells, const long padded_num_cells, LUT *lut_V,
Thunderx2 log 64.8 102.9 1.59 LUT *lut_Ca_ss)
Thunderx2 ow 25.6 22.6 0.88 1
P // spread work across threads in outer loop over (chunks of) cells
#pragma omp parallel for
for (long v = 0; v < num_cells; v += VECTOR_LENGTH) {
// declare and initialise v_len (see Listing 7)
variable, we need to extract two consecutively tabulated values // save old values of V and Ca_ss (input variables for LUT)
for each expression. Accessing two consecutive rows of the :Z::;;e,(g_ij[szzgiéﬁ]sqggn]z’vci_::&ij[gfgiiiNiTﬂ;
tabulated values (when the table is S x M) is much more sizeof (double) * v_len);

memcpy (Ca_ss_old, &states[STATE_Ca_ss * padded_num_cells + v],
sizeof (double) * v_len);

efficient than accessing two columns that are not contiguous in
memory (if the table is M x).

/* update non-gating variables with SIMD vectorisation

We have implemented the ten Tusscher-Panfilov (TP06) * (including V and Ca_ss) %/
model [See ten Tusscher and Panfilov (2006)] uSlng 100kup #pragma omp simd angnedEsLaLes : ALIGI)J}IEI]TiBYTES) \
. . . simdlen (VECTOR_LENGTH
tables. Our selection of tabulated expressions is based on the for (long 1 = v; i < v + v len; i+s) {
implementation found in the openCARP cardiac simulator [see // Assign parameters
. // Assign states
Plank et al. (2021)], which also makes use of the RL scheme. In // Compute EL step for non-gating variables
total 12 out of the 19 state variables are gating variables that can ¥
be solved with Eq. (7). Eleven of the gating variables are // update gating variables with LUT
functions of v, and the last one is a function of Ca (free for (long 1 =wv; 1 <w + v len; i++) {
. . A // Assign states (only gating variables)
diadic Subspace calcium Concentratlon). We have therefore /* Use previously saved values of V and Ca_ss to map into
created one lookup table for the 11 expressions related to v ¥ rous in the Lookup table */

. // Compute RL step for gating variables
and another table for Cay. The v table also contains 6 3

expressions that appear on the right hand side of the L/ end o] outer Jor Loop over cetls
equations for the non-gating variables.

TABLE 5 | Maximum error of vectorised math library calls when evaluating input values in the prescribed ranges. The error is reported in units of least precision (ULPS).

Function (value range) exp (-700, 700) expm1 (-700, 700) log (10739, 10,59 pow (—30, 30) x
System (—30, 30)
Oakbridge 2.623 2753 1.496 0.998
Oakforest 1.471 2,008 1.276 1.035

Milan 2,623 0.735 1.343 0.998
Wisteria 1.923 0.753 1.343 1.62x10'®
ThunderX2 2.313 0.992 1.883 0.998

Frontiers in Physiology | www.frontiersin.org 9 June 2022 | Volume 13 | Article 904648

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Hustad and Cai

TABLE 6 | Single-threaded performance of naive and auto-vectorised
implementations. The FE scheme is used; C = 11688851 cells. “SoA” refers to
the “struct of arrays” memory layout discussed in Section 2.3.2.

System Model Throughput (10° . Slistebs) Speedup
Naive =~ SoA SIMD SMD simo
Oakbridge TPO6 2.917 3.039 156.070 52 5.0
Oakbridge JT21 3.622 3.5659 17.970 5.0 5.0
Oakbridge GPB 2,039 2.047 8.204 4.0 4.0
Oakforest TPO6 0.499 0.525 4.081 8.2 7.8
QOakforest J121 0.645 0.651 5.116 7.9 7.9
Oakforest GPB 0.351 0.406 3.526 10.0 8.7
Milan TPO6 1.186 1.336 5.910 5.0 4.4
Milan JT21 1.590 1.624 6.712 4.2 41
Milan GPB 1.094 1.103 4.073 3.7 3.7
Wisteria TPO6 0.578 0.694 6.604 114 9.5
Wisteria J121 0.5632 0.871 7.649 14.4 8.8
Wisteria GPB 0.413 0.475 4211 10.2 8.9
ThunderX2 TPO6 0.911 0.951 1.509 1.7 1.6
ThunderxX2 J121 1.629 1.080 1.849 1.1 1.7
Thunderx2 GPB 0.747 0.787 1.179 1.6 1.5

TABLE 7 | Multi-threaded performance of naive and auto-vectorised
implementations; The FE scheme is used; C = 11688851 cells. “SoA” refers to
the “struct of arrays” memory layout discussed in Section 2.3.2.

System Model Throughput (10° - % Speedup
Naive SoA SIMD SIMD SIMD
Oakbridge TPO6 127.8 134.0 481.7 3.8 3.6
Oakbridge JT21 148.8 147.2 4447 3.0 3.0
Oakbridge GPB 87.4 91.1 239.4 2.7 2.6
Oakforest TPOB6 55.7 59.8 398.7 7.2 6.7
Oakforest JT21 68.3 66.1 376.6 55 5.7
Oakforest GPB 36.4 39.5 234.2 6.4 5.9
Milan TPO6 199.4 219.8 920.8 4.6 4.2
Milan JT121 250.4 256.0 833.5 3.3 3.3
Milan GPB 170.2 164.5 518.9 3.0 3.2
Wisteria TPO6 27.8 33.2 296.6 10.7 8.9
Wisteria JT21 25.1 41.0 321.0 12.8 7.8
Wisteria GPB 19.5 22.4 167.5 8.6 7.5
Thunderx2 TPO6 941 97.6 137.1 1.5 1.4
ThunderxX2 JT21 142.5 114.2 169.3 1.2 1.5
ThunderxX2 GPB 75.5 83.1 109.1 1.4 1.3

The complete source code for the experiments in this paper is
available online at https://github.com/KGHustad/cell-model-cpu-code.

3 EXPERIMENTS AND PERFORMANCE
MEASUREMENTS

3.1 Overview of Hardware Testbeds
As our aim in this paper is to compare different optimisation
strategies for a wide range of CPU architectures, we have used

Solving Cardiac lonic Cell Models

TABLE 8 | Multi-threaded performance of an ensemble simulation using the JT21
model; C = 11688851 cells. The most performant implementation for each
system is in boldface.

SIMD Time-Cell Cell-Time-Cell

GRL1 FE GRL1

Cell-Time

FE GRL1 FE

System

Oakbridge On 631.1 358.9 154.3 1322 375.2 257.5
Oakbridge Off 150.5 90.0 85.3 57.8 110.1 711

Oakforest On 4224 237.6 108.2 89.1 1141 94.7
Oakforest Off 63.5 37.8 16.1 18.7 16.0 14.1
Milan On 271.8 161.2 2921 2752 7293 499.0
Milan Off 269.2 168.7 161.2 105.9 167.4 116.8
Wisteria On 41.4 19.4 104.5 70.3 125.1 7941
Wisteria Off 40.8 19.6 17.8 12.0 17.5 11.9

Thunderx2 On 103.5 58.6 83.5 60.9 112.2 76.6
Thunderx2 Off 111.4 62.6 64.1 40.6 79.6 47.9

five different hardware testbeds. The first three testbeds are using the
supercomputers Oakforest-PACS, Oakbridge-CX and Wisteria-O
operated by the Information Technology Center at the University of
Tokyo, whereas the “Milan” and “ThunderX2” testbeds are part of
the eX3 infrastructure hosted at Simula Research Laboratory. Each
testbed consists of a single compute node with one or two multicore
CPUs. An overview of the CPU and memory specifications for the
testbeds is given in Table 2.

Table 3 lists the compiler flags we used to enable auto-
vectorisation. Since Listing 4 makes use of preprocessor
conditionals, we have provided additional flags to define
constants controlling which code path is compiled. With
ARMClang and the Fujitsu compiler (running in Clang mode)
we pass the flag -DHINT CLANG SIMD, and with the other
compilers we pass the flag -DHINT OMP_SIMD).

3.2 Counting Floating-Point Operations with

Performance Counters

Some CPU architectures provide performance counters that enable
the programmer to count the number of floating-point instructions
executed for each vector length. The set of performance counters
available is highly architecture-dependent, and we will limit our
discussion here to the Intel Cascade Lake CPU architecture found on
the “Oakbridge” system in Table 2. Listing 9 demonstrates how the
perf command in Linux can be used to count number of floating-
point operations (FLOPs). Note that the performance counters must
be multiplied by the number of SIMD lanes and summed up in order
to obtain the total FLOP count. Written out, the total number of
floating-point operations is computed as

floating — point operations

= 8- FP_ARITH_INST_RETIRED.512B_PACKED_DOUBLE
+4 . FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE
+2-FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE
+1.FP_ARITH_INST RETIRED.SCALAR_DOUBLE.

Frontiers in Physiology | www.frontiersin.org

June 2022 | Volume 13 | Article 904648

https://github.com/KGHustad/cell-model-cpu-code
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Hustad and Cai

TABLE 9 | RRMS error when solving the TP06 model using SIMD and vectorised
math functions. For each ODE solver scheme a reference solution is
computed on Milan using scalar math functions and with compiler optimisations
disabled. The model is solved for 1 s with a time step At = 1 ps.

System FE RL GRL1

Oakbridge (with expm1) 211 x 107'® 1.34 x 10716 9.47 x 1077
Oakbridge 2.00 x 107'° 1.48 x 107 1.29 x 10712
Oakforest 3.40 x 107'® 2.40 x 107" 117 x 107"
Milan 2.67 x 107'° 2.48 x 107 1.07 x 107"2
Wisteria 2.33 x 107'° 2.49 x 1074 8.43 x 107'®
ThunderX2 1.85 x 10718 2.48 x 107 7.94 x 10713

Listing 9: Command used to count number of floating point
operations on Intel Cascade Lake CPUs.

perf stat \
—e FP_ARITH_INST_RETIRED.
—e FP_ARITH_INST_RETIRED.
—e FP_ARITH_INST_RETIRED.
—e FP_ARITH_INST_RETIRED.
./bin/bench_FHN_naive

SCALAR_DOUBLE \

128B_PACKED_DOUBLE \
256B_PACKED_DOUBLE \
512B_PACKED_DOUBLE \

In Table 1 we have used performance counters to count the
number of floating-point operations required to solve a single
step with a naive FE implementation for each of the three cell
models that are used in this section.

3.3 Speed and Accuracy of Vectorised Math

Libraries

We measured the performance of selected scalar and vectorised
math functions for each of the testbeds. The math function is
called for every element in an array of length 30,000, and then this
is repeated 20,000 times in an outer loop. We annotate the inner
loop with #pragma omp for simd to enable vectorisation via
OpenMP. We have selected the exp (), expml (), log(),
pow () functions for this benchmark, as these are the only
math functions that are used when solving the cell models in
this paper. The benchmark is single-threaded, and the number of
function evaluations per second is reported in Table 4.

The Intel-based systems (Oakbridge and Oakforest) both
see a speedup when using SIMD, and although the speedup is
more pronounced on Oakforest, the absolute performance is
2.5-4 times higher on Oakbridge, despite having only 1.6 times
the theoretical peak performance. The last x86 system, Milan,
achieves speedup that exceeds expectations, considering that
its 256-bit vector length would allow it to perform arithmetic
at 4 times the rate of a scalar implementation. The theoretical
peak performance of Milan and Oakbridge are comparable,
and it seems likely that the high speedup is explained by the
scalar implementations performing poorly on Milan. As there
is no vectorised implementation of expml () in libmvec
version 2.27, we see no speedup for that function.

On Wisteria, we observe a reasonable 6-8 times speedup for all
functions except expml (). ThunderX2 achieves a modest
speedup only for the exp () and log () functions, whereas
the vectorised expml () function sees a substantial
degradation in performance.

Solving Cardiac lonic Cell Models

We also measured the accuracy of the vectorised math libraries
by calling each function with 1 million different input values,
and then comparing the result with reference solutions with
the MPER library [see Fousse et al. (2007)] computed using
120 bits of accuracy. Table 5 reports the maximum error in
units of least precision (ULPs). If the true, infinite-precision
value is located on the midpoint between two floating-point
values of similar magnitude, the error would be 0.5 ULPs. The
input values were generated by interpreting randomly
generated bytes as a double-precision floats, and then we
discarded values outside the desired domain (the input
domains are listed in Table 5) and subnormal values (that
are too small to represent in full precision). For the pow ()
function, we also omit values where the answer would have
been subnormal.

pow () on Wisteria has very poor accuracy for two input
values where the correct answers (6.11 x 107°%%, 2.48 x 1073%)
are small but not subnormal (as they are greater than 2.23 x
107°%®%). If those two values are ignored, the maximum error
was 36.206 ULPs, which is still significantly greater than the
other systems. The remaining errors reported in Table 5 are all
below 3 ULPs, which should be well within the accuracy
requirements for the solution of cell models.

3.4 Performance of Vectorised ODE Solvers
In our performance measurements of the ODE solver, we use the
throughput metric “cell steps per second”, which is simply
defined as

number of cells x number of time steps

cell steps per second =
PSP solution time in seconds

(10)

The advantage of a such a throughput metric is that it
simplifies the comparison of results with differing numbers of
cells or time steps, and it can easily be used to estimate the
solution time for a problem with a given number of cells and
time steps.

Table 6 and Table 7 show the single-threaded and multi-
threaded performance of the naive and auto-vectorised
implementations using the FE scheme, where we have used
it to solve three realistic ODE models as shown in Table 1. We
set OMP_NUM_THREADS=1 in the environment when
measuring single-threaded performance, and we set it to
the number of logical cores when measuring the multi-
threaded performance. The “SoA” column uses a “struct of
arrays” memory layout, as discussed in Section 2.3.2, but it
does not provide any SIMD hints to the compiler. The
“SIMD” column adds SIMD hints to the SoA
implementation. We also report speedup factors
comparing the SIMD implementation to both the naive
and the SoA implementation. The CPU clock speed is
typically somewhat lower when executing vector
instructions than when execution scalar instructions,
especially when all cores are under heavy load, and this is
one of the reasons why the speedup is generally higher in the
single-threaded case. The other reason would be that we are
more likely to encounter a memory bandwidth bottleneck

Frontiers in Physiology | www.frontiersin.org

June 2022 | Volume 13 | Article 904648

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Hustad and Cai

Solving Cardiac lonic Cell Models

TABLE 10 | Multi-threaded performance of naive, auto-vectorised and LUT implementations for the TPO6 model in a simulation scenario. The Rush-Larsen scheme is used
with At = 0.1pus, C = 11688851 cells. “SoA” refers to the “struct of arrays” memory layout discussed in Section 2.3.2. The most performant implementation is in

boldface.
System Throughput (108 . &elistens) Speedup
Naiive SoA SIMD LuT SIMD & LUT SIMD Lur SIMD&LUT

Oakbridge 96.0 96.3 374.3 393.4 552.4 3.9 41 58
Oakforest 46.9 47.8 354.3 196.3 423.5 7.6 4.2 9.0
Milan 163.2 170.9 754.5 762.3 1198.0 4.6 4.7 7.3
Wisteria 17.5 21.3 245.0 74.3 206.5 14.0 4.2 11.8
Thunderx2 71.8 79.7 116.0 250.1 199.3 1.6 3.5 2.8

when using all threads. For the JT21 model on the

ThunderX2, we see a pronounced reduction in
performance for the SoA implementation compared to the
naive implementation, but the other system-model

combinations generally show a slight improvement for
SoA over naive.

Table 8 shows the multi-threaded performance in an
ensemble simulation with the JT21 model using the FE and
GRL1 schemes. The three loop-structures discussed in Section
2.3.4 are shown in separate columns, and we also report the
performance when vectorisation is disabled. When the Cell-Time
loop structure is successfully auto-vectorised, it outperforms the
other two loop structures, as we observe for Oakbridge and
Oakforest. Both of the other loop structures are successfully
auto-vectorised on all systems, but the Cell-Time-Cell loop
structure is more cache friendly and performs better than the
Time-Cell loop structure.

To quantify the error of the vectorised code relative to the
scalar code, we use the relative root-mean-square (RRMS) norm
given by

11)

llellrras =

where N is the number of time steps. We have solved the TP06
model for one second using a time step At = 1 s for the FE, RL
and GRL1 schemes. The RRMS error for the transmembrane
potential is reported in Table 9. The RL and GRLI schemes
exhibit a larger error when (exp(x)-1) is used instead of
expml (X).

3.5 Speed and Accuracy Related to Using
Lookup Tables

Table 10 reports the multi-threaded performance of naive, auto-
vectorised and lookup table (LUT) implementations for the TP06
model. Across all systems the LUT implementation is
3.5-4.7 times faster than naive. ThunderX2 clearly favours
LUT, which we attribute to its 128-bit vector length. Oakforest
and Wisteria, on the other hand, clearly favour SIMD with their
512-bit vector length. On Oakbridge, which also has 512-bit
vector units, LUT is marginally faster than SIMD. The fact
that SIMD doesn’t perform better on Oakbridge is likely due

to the somewhat low speedup of the vectorised math library (see
Table 4). On Milan, SIMD and LUT perform very similarly,
which is roughly in line with expectations.

When solving the non-gating equations with SIMD
vectorisation and the gating equations with LUT, we see an
improvement over only SIMD or LUT on the three x86-based
systems. As ThunderX2 has a very limited speedup from the use of
SIMD vectorisation, the combination of SIMD and LUT performs
worse than the LUT implementation. On Wisteria, the use of
SIMD vectorisation leads to much greater speedups than the use of
LUT, and shifting parts of the computation from SIMD to LUT
leads to a loss in performance compared to the pure SIMD variant.

Whereas the speedup of the LUT implementation is largely
insensitive to the CPU vector width and depends more on the
model formulation, the speedup of the SIMD implementation
strongly depends on the vector width. For the TP06 model, it
seems that we need more than 4 SIMD lanes for the SIMD
implementation to outperform the LUT implementation.
However, the observations we have made regarding the
speedup solving the TP06 model with a LUT does not
generalise to all cell models, and other models may see smaller
or larger gains from using a LUT.

Figure 1 compares the accuracy of the LUT implementation
to the naive implementation. The two solutions are plotted
together in the top panel, and the difference is plotted in the
bottom panel. The error introduced by the LUT is greatest
during the upstroke, but the absolute error does not exceed 5 x
10°mV at any point.

3.6 Speeding up a 10°-Ensemble

Computation
Recent studies [see e.g., Tveito et al. (2018); Jeeger et al. (2020,
2021a)] have used cardiac cell models to decode the observed
effect of a drug on a chip of human induced pluripotent stem cell-
derived cardiomyocytes. In these studies, the assumption is that
there is a set of model parameters corresponding to the drug
effect, and the computational problem consists of searching
through the higher-dimensional parameter space. The
optimisation problem is particularly expensive because one has
to solve the cell model for a long time period until steady state is
reached.

In this section, we have set up an ensemble simulation where
we try to optimise 11 parameters by pre-computing solutions for

Frontiers in Physiology | www.frontiersin.org

June 2022 | Volume 13 | Article 904648

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Hustad and Cai

Solving Cardiac lonic Cell Models

— LUT
—— No LUT

S

E 20
]
EEE
3

(=

A —20 A
()

a

& 40 4
~Q

g

Z -60
12

=}

8 —80 -
[_‘ T T T T

le-5

S

B 4-
=

-

g

2 27
o

[}

a

£ 07
g

Q

©

—~

H

— Difference: (LUT) - (No LUT)

0 50 100 150

Time (ms)

FIGURE 1 | Comparison of the TP06 model solved with and without the use of lookup tables. The RL scheme is used with At = 1 ps. In the upper plot, the two
numerical solutions cannot be distinguished by eye. The RRMS error of the LUT solution compared with the non-LUT solution is 1.36 x 107,

200 250 300 350 400

—-20 1

_40 4

—60 4

—-80 4

Transmembrane potential (mV)

~ 0.00018
2

E 0.00016 -
=}

10!

0.00014 1

trat;i

0.00012
0.00010

1um concen

0.00008 -

0.00006

Calc

100000 100200

100400
Time (ms)

FIGURE 2 | Traces of the transmembrane potential and calcium concentration for 1000 different sets of parameters in an ensemble simulation.

100600 100800 101000

a cartesian grid in the parameter space. Note that we treat the
remaining model parameters as constant, similar to how all
parameters are essentially constant in the simulation scenario.
With 5-12 grid points for each parameter, the total number of
parameter sets was 1,020,937,500. This parameter mesh can be
used directly to solve the optimisation problem by taking the

parameter mesh point that minimises the cost function as the
solution, or it can be used to guide the search of another
optimisation algorithm.

Each parameter set is solved for 102 seconds using a GRL1
scheme with a time step At = 10 ps. The model is paced at 1 Hz,
and the 100 first seconds are intended to allow the model to reach

Frontiers in Physiology | www.frontiersin.org

13

June 2022 | Volume 13 | Article 904648

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Hustad and Cai

steady state. We then record the solution for the last 2 seconds ata
temporal resolution of 5 ms. By comparing the two last action
potentials, we can determine whether steady state has indeed been
reached. For some choices of parameters, there is no steady state
solution with a period equal to the pacing period. Figure 2 shows
traces of the transmembrane potential for 1000 different sets of
parameters for t € [100s, 101 s).

The 1,020,937,500 parameter sets were divided into batches of
size 50,048 so that we could use a batch job in the queue system on
Oakforest to achieve task-level parallelism. Each of the 20,400
batches was solved on a single node, and the resource limits on
Oakforest allowed us to use up to 2048 nodes concurrently. This
job expended 11,990 tokens (and one token equals an hour of
compute time for a single node). We ran one of the batches both
with and without SIMD vectorisation so that we can extrapolate
an estimate for how many tokens we would have needed if we had
run the entire job with a scalar implementation. The codes differ
only in the absence of vectorisation compiler hints for the non-
SIMD version, i.e. the line #pragma omp for simd is replaced
by #pragma omp for. The expml function was used to
evaluate expressions on the form (¢* — 1). Without SIMD, the
solver achieved a throughput of 37.0 million cell steps per second,
whereas the SIMD version reached 232.25 million cell steps per
second, equating to a speedup by a factor of 6.28. If we extrapolate
from this speedup factor, we can estimate the cost of running the
whole simulation without vectorisation to 75,260 node hours. In
other words, the use of vectorisation lead to a reduction in
compute time of approximately 63,270 node hours. Since the
power draw per compute node on Oakforest is approximately
331 W [see TOP500 (2021)], 63,270 node hours translates to an
energy consumption of approximately 20,942 kW h.

4 RELATED WORK AND CONCLUSION
4.1 Related Work

The code vectorisation in this work is automatically enabled by
the compilers, with the help of a few hints that are provided in the
form of compiler directives and additional clauses. Such an
implicit vectorisation approach is programmer-friendly and
portable, except perhaps a few #if defined (XXX)
directives to accommodate compiler-specific details. The
downside is that concerns over safety or efficiency may
prevent the compiler from vectorising more complicated code,
such as a loop body containing scattered memory accesses due to
the use of lookup tables. To handle such situations will require
explicit vectorisation. The first alternative is to directly
program with SIMD intrinsics. The challenge is that
different processor architectures may support different
intrinsic instruction sets. For example, AMD CPUs
currently only support (extended) SSE instructions with
128-bit and 256-bit vector widths [see AMD64
Technology (2021)], whereas high-end Xeon and Xeon Phi
processors also support AVX-512 instructions with 512-bit
vector width [see Intel (2021)]. On Arm processors, the
diversity is even larger with respect to SIMD
vectorisation. There are currently three SIMD instruction

Solving Cardiac lonic Cell Models

set architectures applicable: SVE, Neon and Helium [see
Arm Intrinsics (2022)]. However, a specific Arm processor
may only support one of them. An explicit vectorisation of
the ten Tusscher-Panfilov model for IBM A2 CPUs was
developed as part of the “Cardioid” monodomain
simulator [see Mirin et al. (2012)]. As a second approach
to explicit vectorisation, there are high-level wrapper
libraries that offer portability and improved
programmability. Two such examples are VCL [see Fog
(20175 2022)] and MIPP [see Cassagne et al. (2018); MIPP
(2021)]. Both are implemented using C++ and support
various SSE and AVX/AVX-512 instructions, whereas the
latter also supports Arm Neon instructions. The single-
instruction-multiple-thread (SIMT) execution model found on
graphics processing units (GPUs), which resembles CPU-based
SIMD execution in some respects, has been applied to cardiac cell
models [see e.g., Neic et al. (2012); Sachetto Oliveira et al. (2018)].

Using lookup tables is a widely used approach to saving the
computational cost of directly evaluating mathematical
functions. The different scientific domains that have used
this performance enhancing strategy are summarised in a
recent publication [see Marsh et al. (2021)], which also
discusses a methodology for predicting the speedup due to
using lookup tables. For cardiac simulations in particular, the
topic of using lookup tables has been addressed in e.g. Cooper
et al. (2006); Mirin et al. (2012); Green et al. (2019), where the
latter contains a detailed study about the accuracy loss caused
by lookup tables.

4.2 Conclusion
We have seen that the largest performance improvement of the ODE
solvers arises from using SIMD, and the code vectorisation in this
work has been automatically enabled by the compilers. There are two
conditions for this “easy” approach. First, some restructurings of a
naive implementation are needed. The most important code
restructuring is to re-organise the overall data structure as a
“struct of arrays” with padding, see Section 2.3.2. The other code
restructurings include swapping the cell-time loop ordering or
adding an additional loop level for the ensemble scenario, see
Section 2.3.4. Second, appropriate compiler hints are needed
inside the source code. We have chosen to use the OpenMP
simd construct together with the #pragma omp parallel
for directive, as illustrated in Listings 4, 5, 6 and 7. This choice
has the benefit of simultaneously enabling SIMD vectorisation and
multi-threaded parallelisation, both are essential for achieving the
full potential of multi-core CPUs for the ODE solving procedure.
In connection with the compiler-enabled auto-vectorisation, we
have presented the necessary compiler options for the different
compilers, see Table 3. We have also studied the performance
gain (or even loss) due to vectorisation of four frequently used
mathematical functions on five hardware testbeds (see Table 4),
as well as the appropriate vectorised math libraries to be used.
We have found that the relative benefit of using SIMD is
correlated with the peak SIMD floating-point throughput of
the hardware platform. Moreover, the minor accuracy loss due
to using vectorised math libraries can be found in Table 5. It has
been shown through actual ODE computations, see Table 9,

Frontiers in Physiology | www.frontiersin.org

June 2022 | Volume 13 | Article 904648

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Hustad and Cai

that the slightly inaccurate vectorised math libraries will not
affect the overall accuracy.

The use of lookup tables may interfere with the auto-
vectorisation, but we have demonstrated that the two
techniques can be used to solve different parts of the cell
model, which on some of the target platforms yielded higher
performance than using either technique by itself. The decision
about whether to use lookup tables is hardware specific. On
platforms that only support small vector widths or have no
high-quality vectorised math libraries, the speedup potential
due to lookup tables can be large. The exact performance
benefit, however, depends on the size and resolution of the
lookup tables, which may affect the computational accuracy. A
direction for future work is to investigate whether explicit
vectorisation (using high-level wrapper libraries) can be used
to combine SIMD parallelism with lookup tables without
partitioning the state variables. In particular, such a
combination should be attempted with the help of
automated code generation, e.g., inside the modern cardiac
simulator openCARP [see Plank et al. (2021); openCARP
(2022)].

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

REFERENCES

Alonso, S., Bir, M., and Echebarria, B. (2016). Nonlinear Physics of Electrical Wave
Propagation in the Heart: A Review. Rep. Prog. Phys. 79, 096601. doi:10.1088/
0034-4885/79/9/096601

AMD64 Technology (2021). “AMD64 Architecture Programmer’s Manual, Volume 4:
128-Bit and 256-Bit Media Instructions,” in Tech. Rep. (Santa Clara, California: AMD).

[Dataset] Arm Intrinsics (2022). Arm Developer — SIMD ISAs. Available at:
https://developer.arm.com/architectures/instruction-sets/simd-isas.

Cassagne, A., Aumage, O., Barthou, D., Leroux, C.,, and Jégo, C. (2018). “Mipp,” in
Proceedings of the 2018 4th Workshop on Programming Models for SIMD/Vector
Processing (ACM). doi:10.1145/3178433.3178435

[Dataset] CellML (2022). Model: Nagumo, Arimoto, Yoshizawa, 1962. Available at:
https://models.cellml.org/exposure/7430333335941b3b0130d3a3d983d846.

Clayton, R. H., Bernus, O., Cherry, E. M., Dierckx, H., Fenton, F. H., Mirabella, L.,
et al. (2011). Models of Cardiac Tissue Electrophysiology: Progress, Challenges
and Open Questions. Prog. Biophysics Mol. Biol. 104, 22-48. doi:10.1016/;.
pbiomolbio.2010.05.008

Colli Franzone, P., Pavarino, L. F., and Scacchi, S. (2018). A Numerical Study of
Scalable Cardiac Electro-Mechanical Solvers on Hpc Architectures. Front.
Physiol. 9. doi:10.3389/fphys.2018.00268

Colli Franzone, P., Pavarino, L. F., and Scacchi, S. (2014). Mathematical Cardiac
Electrophysiology, Vol. 13 of Modeling, Simulation and Applications. Berlin,
Germany: Springer.

Cooper, J., McKeever, S., and Garny, A. (2006). “On the Application of Partial Evaluation
to the Optimisation of Cardiac Electrophysiological Simulations,” in Proceedings of
the 2006 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation (ACM), 12-20. doi:10.1145/1111542.1111546

Cuellar, A. A, Lloyd, C. M., Nielsen, P. E., Bullivant, D. P., Nickerson, D. P., and Hunter,
P.J. (2003). An Overview of CellML 1.1, a Biological Model Description Language.
Simulation 79, 740-747. doi:10.1177/0037549703040939

Solving Cardiac lonic Cell Models

AUTHOR CONTRIBUTIONS

KH performed the software development and simulations. Both
authors designed the study, wrote the manuscript, and approved
the submitted version.

FUNDING

This work was partially supported by the European High-
Performance Computing Joint Undertaking EuroHPC under grant
agreement No 955495 (MICROCARD) co-funded by the Horizon
2020 programme of the European Union (EU) and the Research
Council of Norway. The research presented in this paper has also
benefited from the Experimental Infrastructure for Exploration of
Exascale Computing (eX3), which is financially supported by the
Research Council of Norway under contract 270053.

ACKNOWLEDGMENTS

This research was conducted using the Fujitsu PRIMERGY
CX600M1/CX1640M1 (Oakforest-PACS), Fujitsu PRIMERGY
CX400M1/CX2550M5 (Oakbridge-CX), and Fujitsu PRIMEHPC
FX1000 (Wisteria-O) provided by The University of Tokyo
through Joint Usage/Research Center for Interdisciplinary
Large-scale Information Infrastructures and High Performance
Computing Infrastructure in Japan (Project ID: jh210021).

FitzHugh, R. (1961). Impulses and Physiological States in Theoretical Models of Nerve
Membrane. Biophysical J. 1, 445-466. doi:10.1016/S0006-3495(61)86902-6

[Dataset] Fog, A. (2022). GitHub Repositories for Vectorclass. Available at: https://
github.com/vectorclass.

[Dataset] Fog, A. (2017). VCL - C++ Vector Class Library. Available at: https://
www.agner.org/optimize/vectorclass.pdf.

Fousse, L., Hanrot, G., Lefévre, V., Pélissier, P., and Zimmermann, P. (2007).
MPFR: A Multiple-Precision Binary Floating-Point Library With Correct
Rounding. ACM Trans. Math. Softw. 33, 13. doi:10.1145/1236463.1236468

Grandi, E., Pasqualini, F. S., and Bers, D. M. (2010). A Novel Computational Model
of the Human Ventricular Action Potential and Ca Transient. J. Mol. Cell.
Cardiol. 48, 112-121. doi:10.1016/j.yjmcc.2009.09.019

Green, K. R., Bohn, T. A, and Spiteri, R. J. (2019). Direct Function Evaluation
versus Lookup Tables: When to Use Which? SIAM J. Sci. Comput. 41,
C194-C218. doi:10.1137/18M 1201421

[Dataset] Hake, J., Finsberg, H., Hustad, K. G., and Bahij, G. (2020). Gotran — General ODE
TRANGslator. Available https://github.com/ComputationalPhysiology/gotran
(Accessed July 1, 2020).

[Dataset] Intel (2021). Intel Intrinsics Guide. Available at: https://www.intel.com/
content/www/us/en/docs/intrinsics-guide/index.html.

Jeeger, K. H.,, Charwat, V., Charrez, B., Finsberg, H., Maleckar, M. M., Wall, S,, et al.
(2020). Improved Computational Identification of Drug Response Using Optical
Measurements of Human Stem Cell Derived Cardiomyocytes in Microphysiological
Systems. Front. Pharmacol. 10, 1648. doi:10.3389/fphar.2019.01648

Jaeger, K. H., Charwat, V., Wall, S., Healy, K. E., and Tveito, A. (2021b). Identifying Drug
Response by Combining Measurements of the Membrane Potential, the Cytosolic
Calcium Concentration, and the Extracellular Potential in Microphysiological
Systems. Front. Pharmacol. 11, 2085. doi:10.3389/fphar.2020.569489

Jeeger, K. H., Hustad, K. G., Cai, X,, and Tveito, A. (2021a). Efficient Numerical
Solution of the EMI Model Representing the Extracellular Space (E), Cell
Membrane (M) and Intracellular Space (I) of a Collection of Cardiac Cells.
Front. Phys. 8. doi:10.3389/fphy.2020.579461

at:

Frontiers in Physiology | www.frontiersin.org

June 2022 | Volume 13 | Article 904648

https://doi.org/10.1088/0034-4885/79/9/096601
https://doi.org/10.1088/0034-4885/79/9/096601
https://developer.arm.com/architectures/instruction-sets/simd-isas
https://doi.org/10.1145/3178433.3178435
https://models.cellml.org/exposure/7430333335941b3b0130d3a3d983d846
https://doi.org/10.1016/j.pbiomolbio.2010.05.008
https://doi.org/10.1016/j.pbiomolbio.2010.05.008
https://doi.org/10.3389/fphys.2018.00268
https://doi.org/10.1145/1111542.1111546
https://doi.org/10.1177/0037549703040939
https://doi.org/10.1016/S0006-3495(61)86902-6
https://github.com/vectorclass
https://github.com/vectorclass
https://www.agner.org/optimize/vectorclass.pdf
https://www.agner.org/optimize/vectorclass.pdf
https://doi.org/10.1145/1236463.1236468
https://doi.org/10.1016/j.yjmcc.2009.09.019
https://doi.org/10.1137/18M1201421
https://github.com/ComputationalPhysiology/gotran
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://doi.org/10.3389/fphar.2019.01648
https://doi.org/10.3389/fphar.2020.569489
https://doi.org/10.3389/fphy.2020.579461
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Hustad and Cai

Marsh, C. B, Green, K. R,, Wang, B,, and Spiteri, R. J. (2021). Performance Improvements
to Modern Hydrological Models via Lookup Table Optimizations. Environ. Model.
Softw. 139, 105018. doi:10.1016/j.envsoft.2021.105018

[Dataset] MIPP (2021). GitHub Repository for MyIntrinsics++ (MIPP). Available
at: https://github.com/aff3ct/MIPP.

Mirin, A. A, Richards, D. F., Glosli, J. N., Draeger, E. W., Chan, B., Fattebert, J.-1,
et al. (2012). “Toward Real-Time Modeling of Human Heart Ventricles at
Cellular Resolution: Simulation of Drug-Induced Arrhythmias,” in SC ’12:
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, 1-11. doi:10.1109/SC.2012.108

Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962). An Active Pulse Transmission
Line Simulating Nerve Axon. Proc. IRE 50, 2061-2070. doi:10.1109/JRPROC.
1962.288235

Neic, A, Liebmann, M., Hoetzl, E., Mitchell, L., Vigmond, E. J., Haase, G, et al. (2012).
Accelerating Cardiac Bidomain Simulations Using Graphics Processing Units. IEEE
Trans. Biomed. Eng. 59, 2281-2290. doi:10.1109/TBME.2012.2202661

Niederer, S., Mitchell, L., Smith, N., and Plank, G. (2011). Simulating Human
Cardiac Electrophysiology on Clinical Time-Scales. Front. Physio. 2, 14. doi:10.
3389/fphys.2011.00014

[Dataset] openCARP (2022). openCARP: Cardiac Electrophysiology Simulator.
Available at: https://opencarp.org.

Plank, G., Loewe, A., Neic, A., Augustin, C., Huang, Y.-L., Gsell, M. A. F,, et al. (2021).
The openCARP Simulation Environment for Cardiac Electrophysiology. Comput.
Methods Programs Biomed. 208, 106223. doi:10.1016/j.cmpb.2021.106223

Rush, S., and Larsen, H. (1978). A Practical Algorithm for Solving Dynamic Membrane
Equations. IEEE Trans. Biomed. Eng. 25, 389-392. doi:10.1109/tbme.1978.326270

Sachetto Oliveira, R., Martins Rocha, B., Burgarelli D., Meira, W, Jr,
Constantinides, C., and Weber dos Santos, R. (2018). Performance
Evaluation of GPU Parallelization, Space-Time Adaptive Algorithms, and
Their Combination for Simulating Cardiac Electrophysiology. Int. J. Numer.
Meth Biomed. Engng 34, €2913. doi:10.1002/cnm.2913

Shibata, N., and Petrogalli, F. (2020). SLEEF: A Portable Vectorized Library of C
Standard Mathematical Functions. IEEE Trans. Parallel Distrib. Syst. 31,
1316-1327. doi:10.1109/TPDS.2019.2960333

Sundnes, J., Artebrant, R, Skavhaug, O., and Tveito, A. (2009). A Second-Order
Algorithm for Solving Dynamic Cell Membrane Equations. IEEE Trans.
Biomed. Eng. 56, 2546-2548. doi:10.1109/TBME.2009.2014739

Solving Cardiac lonic Cell Models

[Dataset] ten Tusscher, K. H. W. J. (2021). Source Code Second Version Human
Ventricular Cell Model. Available at: http://www-binf.bio.uu.nl/khwjtuss/
SourceCodes/HVM?2/ (Accessed July 23, 2021).

ten Tusscher, K. H. W. J., and Panfilov, A. V. (2006). Alternans and Spiral Breakup
in a Human Ventricular Tissue Model. Am. J. Physiology-Heart Circulatory
Physiology 291, H1088-H1100. doi:10.1152/ajpheart.00109.2006

[Dataset] TOP500 (2021). Top500: Oakforest-PACS. Available at: https://www.
top500.org/system/178932/.

Trayanova, N. A. (2011). Whole-Heart Modeling. Circ. Res. 108, 113-128. doi:10.
1161/CIRCRESAHA.110.223610

Tveito, A., Jeeger, K. H., Huebsch, N., Charrez, B., Edwards, A. G., Wall, S,, et al.
(2018). Inversion and Computational Maturation of Drug Response Using
Human Stem Cell Derived Cardiomyocytes in Microphysiological Systems. Sci.
Rep. 8, 17626. doi:10.1038/s41598-018-35858-7

Tveito, A., Jaeger, K. H., Kuchta, M., Mardal, K.-A., and Rognes, M. E. (2017). A
Cell-Based Framework for Numerical Modeling of Electrical Conduction in
Cardiac Tissue. Front. Phys. 5. doi:10.3389/fphy.2017.00048

Vigmond, E., Vadakkumpadan, F., Gurev, V., Arevalo, H., Deo, M., Plank, G., et al.
(2009). Towards Predictive Modelling of the Electrophysiology of the Heart.
Exp. Physiol. 94, 563-577. doi:10.1113/expphysiol.2008.044073

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Hustad and Cai. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org

16

June 2022 | Volume 13 | Article 904648

https://doi.org/10.1016/j.envsoft.2021.105018
https://github.com/aff3ct/MIPP
https://doi.org/10.1109/SC.2012.108
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1109/JRPROC.1962.288235
https://doi.org/10.1109/TBME.2012.2202661
https://doi.org/10.3389/fphys.2011.00014
https://doi.org/10.3389/fphys.2011.00014
https://opencarp.org
https://doi.org/10.1016/j.cmpb.2021.106223
https://doi.org/10.1109/tbme.1978.326270
https://doi.org/10.1002/cnm.2913
https://doi.org/10.1109/TPDS.2019.2960333
https://doi.org/10.1109/TBME.2009.2014739
http://www-binf.bio.uu.nl/khwjtuss/SourceCodes/HVM2/
http://www-binf.bio.uu.nl/khwjtuss/SourceCodes/HVM2/
https://doi.org/10.1152/ajpheart.00109.2006
https://www.top500.org/system/178932/
https://www.top500.org/system/178932/
https://doi.org/10.1161/CIRCRESAHA.110.223610
https://doi.org/10.1161/CIRCRESAHA.110.223610
https://doi.org/10.1038/s41598-018-35858-7
https://doi.org/10.3389/fphy.2017.00048
https://doi.org/10.1113/expphysiol.2008.044073
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

	Resource-Efficient Use of Modern Processor Architectures For Numerically Solving Cardiac Ionic Cell Models
	1 Introduction
	1.1 Need for Huge Amounts of Computation
	1.2 Need for Effective Use of Modern Processor Architectures

	2 SIMD Vectorisation and Lookup Tables for Delivering Performance
	2.1 Basic Steps of Implementing an ODE Solver
	2.1.1 Algorithmic Skeletons
	2.1.2 Automated Code Generation
	2.1.3 Shared-Memory Parallelisation Using OpenMP

	2.2 Issues of Inefficiency
	2.3 SIMD Vectorisation
	2.3.1 Computing with Vectors
	2.3.2 Restructuring for Optimal Memory Layout
	2.3.3 Compiler-Supported Auto Vectorisation for the Simulation Scenario
	2.3.4 Compiler-Supported Auto Vectorisation for the Ensemble Scenario
	2.3.5 Using Vectorised Math Libraries
	2.3.6 Explicit Control of the Vector Length

	2.4 Lookup Tables
	2.4.1 The Rush–Larsen Scheme and Lookup Tables
	2.4.2 Memory Layout of a Multi-Expression Lookup Table

	2.5 Combining SIMD Vectorisation and Lookup Tables

	3 Experiments and Performance Measurements
	3.1 Overview of Hardware Testbeds
	3.2 Counting Floating-Point Operations with Performance Counters
	3.3 Speed and Accuracy of Vectorised Math Libraries
	3.4 Performance of Vectorised ODE Solvers
	3.5 Speed and Accuracy Related to Using Lookup Tables
	3.6 Speeding up a 109-Ensemble Computation

	4 Related Work and Conclusion
	4.1 Related Work
	4.2 Conclusion

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

