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Sirtuins are an evolutionarily conserved family of regulatory proteins that

function in an NAD+ -dependent manner. The mammalian family of sirtuins

is composed of seven histone deacetylase and ADP-ribosyltransferase proteins

(SIRT1-SIRT7) that are found throughout the different cellular compartments of

the cell. Sirtuins in the brain have received considerable attention in cognition

due to their role in a plethora of metabolic and age-related diseases and their

ability to induce neuroprotection. More recently, sirtuins have been shown to

play a role in normal physiological cognitive function, and aberrant sirtuin

function is seen in pathological cellular states. Sirtuins are believed to play a

role in cognition through enhancing synaptic plasticity, influencing epigenetic

regulation, and playing key roles in molecular pathways involved with oxidative

stress affecting mitochondrial function. This review aims to discuss recent

advances in the understanding of the role of mammalian sirtuins in cognitive

function and the therapeutic potential of targeting sirtuins to ameliorate

cognitive deficits in neurological disorders.
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1 Introduction

Cognitive function, including memory, attention, decision making, perception, and

language comprehension, is important in daily life at any age (Frith, 1981). Due to the

umbrella coverage of cognition over many areas, proper cognitive function serves a crucial

role in basic behaviors and social interactions. Cognitive function declines with age and

causes significant impairments in the quality of life in millions of patients. While cognitive

function declines with age, neurological disorders can also contribute to cognitive

deterioration.

Sirtuins have generated significant attention since the discovery that silent

information regulator 2 (Sir2) proteins not only acted as genetic silencing factors in

Saccharomyces cerevisiae (Klar et al., 1979; Rine et al., 1979) but also were found to
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modulate lifespan (Kaeberlein et al., 1999; Kim et al., 1999).

Sirtuins are an evolutionarily conserved family of NAD+-

dependent class III histone deacetylases (HDACs) due to their

ability to remove acetyl groups from lysine residues on histone

proteins; however, they are also known to act on nonhistone

proteins as well as to remove additional acyl groups from lysine

residues (Frye, 1999; Shirakawa et al., 2013). Thus, it has become

apparent that sirtuins act as energy sensors as well as

transcriptional effectors due to the NAD+-dependent

regulation of the acetylation state of histones and other

transcriptional regulators.

In mammals, the sirtuin family consists of seven proteins

(SIRT1-7), which all share an evolutionarily conserved catalytic

domain of 200-275 amino acids with variable N- and C-terminal

domains (Canto et al., 2015) (Figure 1). These different sirtuin

proteins vary in subcellular localization, tissue specificity,

enzymatic activity, and targets for interaction. SIRT1 is mainly

localized in the nucleus, but it is also present in lower levels in

the cytosol due to nuclear export shuttling under specific conditions,

such as when the insulin pathway is inhibited or oxidative stress is

induced (Tanno et al., 2007; Yanagisawa et al., 2018). SIRT2 is a

cytosolic protein that is present in the nucleus during the G2 to M

phase transition of the cell cycle, and it is suggested to play a role in

chromatin condensation (Vaquero et al., 2006). SIRT3, SIRT4, and

SIRT5 are mitochondrial sirtuins with mitochondrial targeting

sequences (Haigis et al., 2006; Schwer et al., 2006; Hallows et al.,

2008; Nakagawa et al., 2009). While both SIRT6 and SIRT7 are

nuclear sirtuins, SIRT7 is reported to reside in the nucleolus (Liszt

et al., 2005; Kiran et al., 2013) (Figure 1).

In this review, we present our current understanding of the

sirtuin family concerning contribution to the brain and cognitive

function. We focus on the role sirtuins play in both physiological

and pathophysiological conditions to elucidate the importance of

targeting sirtuins as a therapeutic avenue to relieve cognitive

deficits from neurological conditions, primarily cerebral

ischemia (CI) and Alzheimer’s disease (AD).

2 Understanding cognitive deficits
after cerebral ischemia in clinical
cases

While the brain only constitutes about 2% of total body

weight, it consumes around 20% of total body energy (Clarke and

Sokoloff, 1999). Due to the high energy requirements of the

brain, it is highly susceptible to ischemic injuries such as cardiac

arrest (CA) and ischemic or hemorrhagic stroke (Clarke and

Sokoloff, 1999; Sims and Muyderman, 2010; Rundek and Sacco,

2015). Even with decades of studies and research, CI remains a

leading cause of death and disability worldwide (Avan and

Hachinski, 2021). Following CI, surviving patients may

develop dysfunction to one or more cognitive domains, with

executive function, attention, and memory being the domains

most commonly affected (Carlson et al., 2009; Moulaert et al.,

FIGURE 1
Mammalian sirtuins share a conserved catalytic core domain comprising between 200 and 275 amino acids. This catalytic domain requires
NAD+ to be present for catalytic function. Each member of the sirtuin family is classified by their localization within cells. Amino acids (aa).
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2009; Perez et al., 2016). Recombinant tissue plasminogen

activator, which is a thrombolytic agent, remains the only

FDA-approved treatment for ischemic stroke; however, it is

administered to less than 5% of stroke patients due to an

administrative window within 3 h, or 4.5 h in certain eligible

cases, of the onset of clotting symptoms (Lansberg et al., 2009;

Jilani and Siddiqui, 2021). No true prophylactics are currently

available to prevent CI or post-CI cognitive decline (van der

Velden, 1988). Thus, new avenues of research are needed to focus

on pursuing novel drug targets to combat CI.

The assessment of post-CI cognitive impairment is typically

based on neuropsychological evaluations, which are limited in terms

of accuracy and objectivity. Additionally, they are prone to the

influence of age and education. Therefore, the selection of which

neuropsychological test to use is important. For example, the

Cerebral Performance Category Scale and the Modified Rankin

Scale are designed to test gross neurological function and overall

functional disability respectively, but they are not able to distinguish

between patients with differing degrees of cognitive impairments.

Thus, other assessments have been designed and employed to assess

the various degrees of cognitive impairments following CI. The

Mini-Mental State Examination (MMSE)was developed to ascertain

a patient’s cognitive state, but it can only detect more moderate to

severe cognitive deficits in patients (Folstein et al., 1975; Jokinen

et al., 2015). The Montreal Cognitive Assessment (MCoA) is

designed to be more sensitive than the MMSE. Therefore, both

the MMSE and MCoA are commonly used in assessing cognition

post-CI (Godefroy et al., 2011; Chiti and Pantoni, 2014; Shen et al.,

2016; van Gils et al., 2022).

2.1 Clinical evidence of cognitive
impairments following ischemic stroke

Cognitive impairments are common among patients after

ischemic stroke. Following a patient’s first ischemic stroke, the

prevalence of dementia within the first-year ranges from 9 to 30%

in hospital-based studies (Srikanth et al., 2004). However, the

prevalence of post-stroke cognitive impairment with no

dementia is likely much higher. In a study that recruited

patients with different subtypes of stroke, MMSE performance

was significantly worse compared to the non-stroke control

group 6 months following the stroke event (Kase et al., 1998).

Another study utilizing a battery of neuropsychological tests

showed that 3 months following a stroke, 83% of patients showed

impairment in one or more cognitive realms, and 50% of patients

were impaired in 3 or more domains (Jokinen et al., 2015).

Cognitive recovery after stroke may occur spontaneously

following stroke. It may take weeks, months, or even years if it

occurs at all (Cramer, 2018). In cases where there is post-stroke

cognitive impairment with no dementia, only 10% of the stroke

patients recovered cognitive function within 1 year (Rasquin et al.,

2005). However, clinical studies suggest that the yearly rate of

developing dementia following a stroke is about twice as high as

the general population and has a rate that is 3.83 times higher when

compared to healthy controls (Kokmen et al., 1996; Desmond et al.,

2002).

Among surviving stroke patients, the risk of stroke

recurrence is reported to range from 7.0 to 20.6% over the

first year (Kokmen et al., 1996; Salgado et al., 1996; Kase

et al., 1998; Desmond et al., 2002; Srikanth et al., 2004;

Rasquin et al., 2005; Xu et al., 2007; Mohan et al., 2011;

Cramer, 2018) and from 16.2 to 35.3% over the first 5 years

(Hata et al., 2005; Mohan et al., 2009; Mohan et al., 2011). Having

recurrent strokes greatly increases the risk of dementia, with an

estimated incidence of over 40% in patients that experience

recurrent strokes (Pendlebury and Rothwell, 2009). Thus, the

short- and long-term impacts of ischemic stroke plague a

significant portion of surviving stroke patients.

2.2 Clinical evidence of cognitive
impairments following cardiac arrest

CA is characterized by a cessation of blood flow resulting from a

sudden stoppage of the heart from beating. CA is also associated

with cognitive deficits, and the prevalence of cognitive impairments

in survivors of CA is nearly 50% (Perez et al., 2016). Longer episodes

of cardiac arrest lead to greater risks of cognitive impairment.

Common impairments after CA include dysfunction of short-

term memory, attention, immediate and delayed recall, and

executive function (Medrzycka-Dabrowska et al., 2018).

Moderate or severe memory impairments between in-

hospital and out-of-hospital patients differed when utilizing

the Rivermead Behavioral Memory Test for episodic memory.

Cognitive deficits were found in 26% of in-hospital and 38% of

out-of-hospital patients 8 months following CA (O’Reilly et al.,

2003). A recent study showed that compared to patients that

experienced a myocardial infarction, CA patients have 6 times

the likelihood of developing cognitive impairments (Byron-

Alhassan et al., 2021). The incidence of dementia in surviving

patients is also significantly higher after sudden CA according to

the MMSE (Jaszke-Psonka et al., 2016).

In a longitudinal study that followed patients for 4 years

following CA, 29% of patients displayed cognitive impairments

on the Cambridge Neuropsychological Test Automated Battery

(Buanes et al., 2015). This battery of tests is a computer

assessment that indicated damage to the medial temporal

lobe, which is utilized in short-term memory and executive

function (Buanes et al., 2015). Additional computerized

assessment utilizing the Computerized Assessment for Mild

Cognitive injury also found cognitive deficits in CA patients

(Sabedra et al., 2015). Computerized testing for cognitive

impairments following CI may provide a more detailed

assessment of cognitive impairments that could improve

testing in a fast, sensitive, and more reliable manner.

Frontiers in Physiology frontiersin.org03

Fagerli et al. 10.3389/fphys.2022.908689

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.908689


Computer assessments may prove to be more consistent and

more cost-effective in long-term cognitive studies following CI.

3 Understanding cognitive deficits in
dementia

Dementia is characterized by progressive deterioration in two or

more cognitive domains, thus causing lower quality of life through

increased difficulty of basic daily function. AD is the most common

cause of dementia worldwide, accounting for up to 80% of all

dementia cases (Crous-Bou et al., 2017). The prevalence of AD is

continuing to grow as the population ages. Due to the increasing

prevalence of AD, direct and indirect healthcare costs are estimated

upwards of $500 billion annually (Takizawa et al., 2015). While AD

plays amassive role in disrupting normal life due to cognitive decline,

this review will focus on the contributions of CI to AD and vascular

cognitive impairment (VCI). For a thorough discussion ofAD studies

on cognitive impairment, the readers are guided to the following

reviews, among others, that further elaborate on the contributions of

AD in cognitive impairment (Corey-Bloom, 2002; Lyketsos et al.,

2011; Kirova et al., 2015; Takizawa et al., 2015; Bondi et al., 2017;

Crous-Bou et al., 2017; Kivipelto et al., 2018; Weller and Budson,

2018; Cummings et al., 2019; Knopman et al., 2021).

Following a CI event such as stroke or CA, disruption of

blood flow can persist in surviving patients due to damaged and

weakened cerebrovasculature, resulting in subsequent

hypoperfusion. VCI may be used to describe any cognitive

impairments that are associated with cerebrovascular disease,

and hypoperfusion has been identified as one of the main culprits

of VCI. VCI ranges from mild cognitive impairments to vascular

dementia that is caused by ischemic or hemorrhagic stroke and

vascular factors alone or in a combination with

neurodegeneration such as that from AD (Roman, 2002;

Rundek et al., 2021). Cerebral hypoperfusion will lead to

blood-barrier disruption, microglial activation, matrix

metalloproteinase activation, white matter lesions, and

ultimately, cognitive impairment due to chronic glucose and

oxygen deficiency in parenchymal tissue (Swartz et al., 2003;

Kitamura et al., 2012; Liu and Zhang, 2012; Zietemann et al.,

2016; Duncombe et al., 2017; Zilberter and Zilberter, 2017).

Clinically, VCI is best diagnosed and characterized by

identifying the presence and quantifying the extent of

progressive cognitive or functional deficits and the

identification of vascular brain injury through neuroimaging

(Seshadri et al., 2015).

3.1 Contribution of cerebral ischemia to
dementia

Stroke has been shown to significantly increase the risk of

developing dementia. Studies suggest stroke doubles the risk for

dementia (Pendlebury and Rothwell, 2009), and approximately

30% of stroke patients develop cognitive impairments within

3 years of the event (Savva et al., 2010). There is an estimated

1.59 times increased risk for AD following stroke (Zhou et al.,

2015), and the increased risk is 1.5 times the general population

risk in the first year alone (Kokmen et al., 1996). With regard to

AD, clinical evidence suggests that following stroke, there are

pathological changes that have AD-like pathology. Abnormal

amyloid-β (Aβ) deposition and hyperphosphorylated tau are

prominent features of AD. Increased Aβ deposition is

clinically linked to patients that experience ischemic stroke

(Lee et al., 2005; Goulay et al., 2020). Cerebral Aβ deposition

was determined to be significantly associated with post-stroke

cognitive impairments in a 3-year longitudinal study that utilized

the MMSE and MCoA annually following the ischemic event

(Liu W. et al., 2015). Memory, visuospatial, and executive

function domains were all significantly disrupted and had a

significant relation to the level of Aβ deposition (Liu W. et al.,

2015). Levels of total tau were found to increase in patient blood

(De Vos et al., 2017) and cerebrospinal fluid samples after acute

ischemic stroke (Hesse et al., 2001; De Vos et al., 2017). Detection

of the presence and level of tau protein is negatively associated

with the long-term outcome of stroke patients (Bielewicz et al.,

2011; De Vos et al., 2017). Deposition of both proteins has been

observed at higher levels in postmortem hippocampal tissue of

stroke patients (Akinyemi et al., 2017).

Additionally, studies have shown that there was an average

elevation in serum Aβ levels by 7-fold at 10 h after CA compared

to control patients, and the magnitude of the increase correlates with

decreased cognitive outcome when cognition was assessed 6 months

later (Zetterberg et al., 2011). Postmortem hippocampal tissue shows

increased deposition of Aβ plaques in patients that experienced CA

compared to non-CA controls (Wisniewski and Maslinska, 1996; Qi

et al., 2007). Increased cerebrospinal fluid tau and serum tau were

observed in CA patients as well (Randall et al., 2013; Rosen et al.,

2014). A study that measured serum tau up to 72 h following CA

found that the increased serum tau was associated with increased

cognitive impairment 6months following CA (Mattsson et al., 2017).

Findings in ischemic stroke patients are similar to the

findings in CA patients concerning the development of AD-

like pathology following the CI event. There are likely similar

pathological mechanisms that occur resulting in neuronal loss,

Aβ deposition, and tau hyperphosphorylation that occurs in

these disease states, but further research is needed to provide

evidence confirming this relationship.

4 Implications of sirtuins in cognition

All seven members of the sirtuin family are known to be

expressed in the brain, and neurological conditions including CI

and AD differentially regulate the expression and activation of

different sirtuins. Given that SIRT1 is the best-studiedmember of
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the mammalian sirtuins, the majority of published literature on

this topic focuses on SIRT1. However, in recent years, there has

been increasing evidence through the use of animal models of

neurological disorders that other sirtuins - namely SIRT2, SIRT3,

and SIRT6 - also play a critical role in regulating cognitive

function.

4.1 Sirtuin regulation of synaptic plasticity

Synaptic plasticity refers to structural and functional

alterations within synapses that result in the strengthening or

weakening of synaptic contacts. The synapse’s ability to undergo

such changes is critical for information processing, learning, and

memory encoding. Notably, studies have highlighted a role for

sirtuins in modulating synaptic plasticity under basal conditions

as well as pathological states.

Sirt1 was first implicated as an important mediator of

synaptic plasticity from genetic deletion studies investigating

long-term potentiation (LTP)—a form of long-term synaptic

plasticity associated with an increase in synaptic strength/

efficacy. LTP at the hippocampal CA3-CA1 synapse was

significantly impaired in germline whole-body

SIRT1 knockout (KO) mice carrying two null alleles of Sirt1

(Michan et al., 2010) and in brain-specific conditional knockout

mice lacking SIRT1 catalytic activity (Gao et al., 2010).

Findings from the latter study also demonstrated that

brain-specific SIRT1 loss-of-function decreased the

expression of synaptic plasticity-related markers and spine

density within the hippocampus (Gao et al., 2010). Further

investigation revealed that synaptic deficits were mediated, in

part, by post-transcriptional regulation of cAMP response

binding protein (CREB) via miR-134, which resulted in the

translational block and downregulation of CREB protein

expression (Gao et al., 2010). Recent evidence suggests

SIRT2 and SIRT3 also function as key players for maintaining

synaptic plasticity under basal conditions. SIRT2 has previously

been shown to deacetylate AMPA receptors, in turn promoting their

internalization and subsequent degradation via the ubiquitin-

proteasome pathway (Wang G. et al., 2017). Interestingly,

inhibition of SIRT2 increases cell-surface expression of AMPARs,

and SIRT2 deficient mice exhibit impairments in hippocampal LTP

and long-term depression (LTD), which indicates SIRT2-mediated

regulation of AMPARs is necessary for synaptic plasticity (Wang G.

et al., 2017). Under inflammatory conditions, microglial-specific

SIRT2 deficient mice also exhibit LTP impairments (Sa de Almeida

et al., 2020). Furthermore, a recent study showed that Sirt3 deletion

significantly reduced LTP in the anterior cingulate cortex and the

deficit was attributed to neuronal cell loss in this region (Kim et al.,

2019).

Numerous studies have identified alterations in the

expression/activity of sirtuins in several neurological disorders

characterized by synaptic dysfunction (Julien et al., 2009;

Hernandez-Jimenez et al., 2013; Kumar et al., 2013; Han

et al., 2014; Kalaivani et al., 2014; Lutz et al., 2014; Erburu

et al., 2015; Shimizu et al., 2016; Yin et al., 2018; Zhang Z.

et al., 2019; Wang et al., 2019). While the extent to which

alterations in sirtuin expression contribute to synaptic deficits

has not been fully deduced under pathological conditions, studies

utilizing pharmacological or genetic approaches to manipulate

sirtuin activity/expression suggest they play key roles in either

driving or attenuating synaptic pathology in disease states. In the

case of AD, pretreatment with resveratrol - an activator of SIRT1

- was shown to reverse Aβ1–42-induced impairment of LTP

(Wang R. et al., 2017). In an AppNL-G-F mouse model of AD,

an intermittent fasting diet rescued LTP deficits in the

hippocampus, which was dependent on SIRT3 expression (Liu

Y. et al., 2019). The same study also demonstrated that

knockdown of Sirt3 in AppNL-G-F mice significantly reduced

hippocampal CA1 pyramidal neuron spine density (Liu Y.

et al., 2019). Furthermore, increased expression of Sirt3 and/

or Sirt6 induced by treatment with nicotinamide riboside or an

analog 3-iodothyronamine was associated with improved LTP in

different AD mouse models (Hou et al., 2018; Bellusci et al.,

2020).

In terms of neuropsychiatric disorders, both SIRT1 and

SIRT2 have been implicated in the epigenetic regulation of

synaptic-plasticity related genes associated with depression

and chronic stress; however, their exact roles remain

controversial. While studies have indicated that SIRT1 induces

positive effects on depressive-like behaviors as well as general

synaptic function and ultrastructure in chronic unpredictable

stress models (Abe-Higuchi et al., 2016; Shen et al., 2019; Lei

et al., 2020), inhibition of SIRT1 expression reversed decreases in

spine density within the ventral hippocampal CA1 region in a

model of post-traumatic stress disorder (Li et al., 2019). Likewise,

previous studies found that downregulation of SIRT2 induces

anti-depressant-like effects and is associated with enhanced

expression of synaptic plasticity-related markers (Erburu et al.,

2017; Munoz-Cobo et al., 2018). In contrast, a separate study

reported that reductions in SIRT2 expression induce depressive-

like behaviors and concomitant downregulation of synaptic

plasticity-related genes in mice (Wang et al., 2019). Aside

from psychiatric disorders, SIRT1 has also been shown to

mediate synaptic ultrastructural changes in addiction (Xia

et al., 2018), alleviate neuropathic pain by modulating

structural synaptic plasticity and LTP in spinal dorsal horn

neurons (Zhang Z. et al., 2019; Zhong et al., 2019; Mei et al.,

2020), and rescue aberrant changes in spine density induced by

ischemia/reperfusion injury (Jokinen et al., 2015) or propofol

exposure in neonatal rats (Ma et al., 2022). SIRT2 and

SIRT3 have also been implicated in regulating synaptic

plasticity following ischemia (Shimizu et al., 2016) as well as

in rodent models of scopolamine- and anesthesia-induced

memory impairment (Liu et al., 2021; Lu et al., 2021). It is

clear that sirtuins play key roles in modulating different synaptic
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plasticity processes including synaptic remodeling, signaling, and

neurotransmission. As such, sirtuins are emerging as promising

targets to preserve synaptic function in various neurological

diseases.

4.2 Sirtuin regulation of gene expression

Gene expression is the biological process of translating coded

instructions from the genome into functional molecules that

influence specific cell processes. Epigenetic modifications may

affect gene function and expression and may also facilitate

crosstalk between genes and the environment. SIRT1-7 have

broad action roles in the epigenetic regulation in the cell. They

have the potential to change gene expression and pathways

utilizing a mechanism of lysine deacetylation, by which they

are able to modify histones or nonhistone proteins to alter

structure and functionality (Smith and Boeke, 1997). Among

the sirtuin family, SIRT1, SIRT2, SIRT6, and SIRT7 are the most

related to the process of chromatin remodeling and interaction

with transcriptional related factors (Gupta et al., 2022). SIRT3-5

localize in mitochondria, and they target the mitochondrial

genetic material or proteins related to cell metabolism and

energy response (Gupta et al., 2022).

The epigenetic regulation of a transcriptional pathway could

occur by direct or indirect interactions with histones.

SIRT1 regulates genetic expression by deacetylating histone

H3 in lysine 9 and 14 (H3K9ac, H3K14) and H4 in lysine 16

(H4K16ac), thus allowing the chromatin to open for

transcription (Imai et al., 2000; Suka et al., 2002; Corpas et al.,

2017). Overexpression of SIRT1 in the 3xTg-SIRT1 mice model

for AD showed decreased symptoms of impairments in learning

andmemory, thus preserving cognition (Corpas et al., 2017). One

possibility of this is that SIRT1 regulates protein expression in a

similar strategy as it does in models of Huntington’s disease using

transgenic BSKO-R6/2 mice. Expression of SIRT1 promoted

BDNF expression by targeting the promoter region and

consequently enhanced the CREB-TORC1 pathway activity

(Jeong et al., 2011). However, another suggested mechanism

for this model is related to the modification of the R3 and

R7 regions upstream of the transcription frame for miRNA-

134 (Gao et al., 2010). miRNA-134 is a transcriptional regulator

of CREB and BDNF, and it is related to protecting cognition in

3xTg-SIRT1 mice (Wang G. et al., 2017). Another regulatory

function of SIRT1 involves the direct interaction with other

regulatory proteins. High concentrations of SIRT1 in serum

are correlated to better cognition in Parkinson’s disease (PD)

patients (Chen et al., 2021; Zhu et al., 2021). It has been described

that SIRT1 deacetylates peroxisome proliferator-activated

receptor γ coactivator-1α (PGC-1α), a key regulator of

mitochondrial biogenesis and potential target for therapy in

PD patients (Nemoto et al., 2005; Zheng et al., 2010; Wang

et al., 2015). SIRT3 has also been shown to have a role in this

particular pathway and is related to the quality control system of

mitochondria during degenerative diseases (Meng et al., 2019).

SIRT3 is reported to promote mitochondrial biogenesis by

promoting PGC-1α expression (Fu et al., 2012).

There is evidence of SIRT2 regulation of genes related to

memory and plasticity as well. Known targets of SIRT2 include

histone H3 lysine 18 and 56 (H3K18ac) and histone H4K16ac

(Vaquero et al., 2006; Das et al., 2009). Previous models associate

SIRT2 with cognition, memory, and synaptic plasticity by the

stabilization of AMPA receptors (Wang G. et al., 2017).

Corepressor of RE1 silencing transcription (CoREST) factor

may recruit SIRT2 to deacetylate H4K16ac to induce

downregulation of GluA1 and GluA2 AMPA receptor

subunits, thus decreasing synaptic plasticity and potentially

cognition in a methamphetamine addiction model (Cadet and

Jayanthi, 2013). A model with downregulation of SIRT2 in stress

stimulus showed increased transcription of Ehtm2 and

accompanying reduced expression of crucial synaptic plasticity

genes that encode proteins including Egr1, Synaptophysin, and

Synapsin1 (Wang et al., 2019). Furthermore, inhibition of

EHMT1/2 in the late-stage familial Alzheimer’s disease (FAD)

mouse model has shown positive results in the recovery from

cognitive impairment and synaptic functionality (Zheng et al.,

2019). Therefore, there is the possibility that SIRT2 may have an

important role as an epigenetic regulator of these genes in

neurodegenerative diseases (Zheng et al., 2019).

SIRT6 also plays an important role in epigenetic regulation.

In addition to its deacetylation enzymatic activity, SIRT6 also

conveys increased ADP-ribosyltransferase activity compared to

SIRT1 and SIRT2. SIRT6 has been associated with the regulation

of age-related pathologies (Liszt et al., 2005). The main targets for

SIRT6 deacetylation are histone 2B lysine 12 (H2BK12ac) and

histone H3 lysine 9 and 56 (H3K9ac) (Michishita et al., 2008;

Yang et al., 2009). Novel targets relating to the prevention of

errors during mitosis and cell senescence have been identified in

H3K18ac at the pericentric chromatin (Tasselli et al., 2016). In a

SIRT6 conditional KO model in mice, impairment in contextual

fear conditioning has been observed. This suggests a possible role

of SIRT6 in the formation of contextual memory (Kim et al.,

2018). In the 5xFAD transgenic mouse model, memory

impairment and psychoemotional changes worsen with age

(Grinan-Ferre et al., 2016). This model shows that SIRT6 is

the only sirtuin that is downregulated at a relatively early age, and

it may be related to global acetylation of histone H3 as well as

other epigenetic abnormalities found in the AD brain (Kanfi

et al., 2012; Grinan-Ferre et al., 2016). This suggests that SIRT6 is

an important epigenetic regulator in the early degeneration and

progression of the pathology (Kanfi et al., 2012). The role sirtuins

play in epigenetic regulation is evident in a wide array of

pathologies, and further understanding the role they play in

gene modulation is an important avenue for therapeutic

development in the amelioration of cognition in various

neurological disorders.
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4.3 Sirtuins and cognitive behavior in
rodent animal models

Studies in mice have demonstrated that SIRT1 is highly

implicated in modulating cognitive behavior. Mice with global

SIRT1 overexpression displayed elevated anxiety, decreased

exploratory drive, and increased susceptibility to depression

by deacetylating the brain-specific transcription factor

NHLH2, which increased its activity on the MAO-A promoter

and therefore increased degradation of serotonin (Nordquist and

Oreland, 2010; Libert et al., 2011). Furthermore, it was revealed

that hippocampal SIRT1 activity increases in response to chronic

variable stress, a rodent model of depression (Ferland and

Schrader, 2011). However, it was unclear if the

SIRT1 upregulation contributes to transcriptional

dysregulation or acts as a positive-feedback mechanism to

compensate for the stress effect (Ferland and Schrader, 2011).

Experiments in rats have shown that reducing excessive

autophagy in a hippocampal SIRT1-dependent mechanism

ameliorated cognitive impairments induced by sleep

deprivation (Gao et al., 2021). SIRT1 has been shown to

modulate the transcription of TFEB genes to promote

autophagy (Huang et al., 2019). Autophagy is an essential

homeostatic process in the clearance of protein aggregates

involved in neurodegenerative diseases such as AD (Lashuel

et al., 2002; Martini-Stoica et al., 2016). Thus, considering the

role of SIRT1 in autophagy regulation, it is reasonable to suggest

SIRT1 dysfunction is a contributing factor to autophagy

dysfunction in these diseases. This is supported by a study

suggesting that, following physical exercise (PE), initiation of

SIRT1 signaling decreases Aβ production (Koo et al., 2017).

4.4 Sirtuins and physical exercise

Several studies have shown that SIRT1 and SIRT3 levels are

regulated by PE. It was recently demonstrated that the known

benefits of PE in cognitive functions and depressive symptoms

involve lactate-dependent increases in BDNF expression when

SIRT1 is activated (El Hayek et al., 2019). Moreover, PE-

regulated SIRT1 activity also offers neuroprotective effects

against the aging brain by suppressing hippocampal apoptosis

and inflammation (Lin et al., 2020), which are known to be major

causes of amnesia and dementia. SIRT1 activation by PE also

modulates the transcription of TFEB genes to regulate autophagy

(Huang et al., 2019). Furthermore, the benefits of SIRT1 caused

by PE are not limited to the brain. Increased levels of

SIRT1 induced by PE also occurred in heart cells to facilitate

the adaptation of cardiac metabolism (Chen W. K. et al., 2018).

SIRT3 is regulated by other types of stimuli such as dieting

and exercise, and it has been demonstrated that exercise produces

an increase in the expression of SIRT3 (Liu Y. et al., 2019). PE

through aerobic interval training has been shown to attenuate

high-fat-diet-associated cognitive dysfunction through

SIRT3 upregulation (Shi et al., 2018). In another model

related to intermittent fasting (IF), SIRT3 activity was a key

factor in the mechanism of synaptic adaptation of GABAergic

synaptic transmission in hippocampus neurons (Cheng et al.,

2016; Liu Y. et al., 2019). Sirt3(−/−) mice suffered low

adaptability to IF, causing increased anxiety and poor memory

retention (Cheng et al., 2016; Liu Y. et al., 2019). Knockout of

SIRT6 using CRISP-Cas9 in cynomolgus monkeys shows SIRT6’s

direct impact in neuronal differentiation, causing retardation in

the development of neurons and the development of smaller

brain sizes due to non-coding RNA H19 (Zhang et al., 2018).

Studies in elderly participants revealed that resistance PE

training increases serum levels of SIRT1, SIRT3, SIRT5, and

SIRT6 proteins after 12-weeks interventions (Hooshmand-

Moghadam et al., 2020; Wasserfurth et al., 2021). Similarly,

increased levels of SIRT3 and SIRT4 have been reported in

many studies involving rats that underwent short-term (Lensu

et al., 2019; Alavi et al., 2021; Heiat et al., 2021) and long-term PE

(Nogueira-Ferreira et al., 2019). In sum, it seems clear that sirtuin

regulation acts as one of the key mechanisms by which PE can

improve cognitive functions, under both normal and

pathological conditions.

5Oxidative stress in cerebral ischemia
and Alzheimer’s disease

As the sirtuin family is class III HDACs, they possess the

ability to act as sensors of metabolism. The overproduction of

reactive oxygen species (ROS) produces a condition known as

oxidative stress (OS), where excessive ROS can damage cellular

constituents and result in death (Sayre et al., 2008). Cell types that

carry high metabolic demands, such as neurons, are more prone

to OS (Pratico, 2008). In conditions such as CI and AD, OS is a

major pathological contributor. Studies of postmortem AD brain

tissue have shown increased ROS, reduced prevalence of

antioxidants, and increased lipid peroxidation (Kopelovich Iu,

1975; Marcus et al., 1998; Beal, 2005; Garcia-Blanco et al., 2017;

Ashraf et al., 2020). Hallmarks of AD such as mitochondrial

dysfunction, metal accumulation, and build-up of neurofibrillary

tangles and beta-amyloid plaques, heavily contribute to ROS

production (Lovell et al., 1998; Pratico, 2008; Chen and Zhong,

2014; Cheignon et al., 2018). For instance, reactive metals in Aβ
plaques enact the Fenton reaction to provide extracellular ROS

while intracellular hyperphosphorylated tau can contribute to

dysfunctional mitochondria, thus amplifying ROS levels (Sheard

and Blair, 1970; Reddy and Oliver, 2019). Regarding CI, multiple

cascading events contribute to an accumulation of ROS. Nutrient

deprivation causes ATP depletion and compromises

homeostasis. The majority of ROS comes from mitochondrial

dysfunction, where reduced ATP and increased intracellular

calcium impacts the mitochondrial membrane potential,
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dysregulates the electron transport chain, and reduces

antioxidant capacity (Sheard and Blair, 1970; Pratico, 2008;

Drose and Brandt, 2012; Sun et al., 2018). Additionally, ROS

production can come from the activation of enzymes such as

NADPH oxidases, which produce superoxides (Kahles and

Brandes, 2012; Shenoda, 2015; Wu et al., 2018). OS is central

to the pathologies of AD, CI, and many other neurological

conditions. Neuroprotectants against OS are currently under

investigation, and the family of sirtuins shows promise for

such a role (Shahgaldi and Kahmini, 2021). In the following

sections, we will detail the ability of sirtuins to protect against OS.

6 Role of sirtuins in oxidative stress

6.1 Cytosolic sirtuins

SIRT2: SIRT2 is highly expressed in the brain and its primary

enzymatic activity is deacetylation, with mostly cytosolic targets.

However, it has been linked to the deacetylation of certain

histone residues (Khoury et al., 2018). SIRT2’s role in OS and

neurodegeneration is a mixture of exacerbation and alleviation.

SIRT2 expression was reported to increase in models that

produce OS, such as H2O2 exposure, stroke, and normal aging

(Pfister et al., 2008; Singh et al., 2017; Xie et al., 2017; Sarikhani

et al., 2018). In HeLa cells, H2O2 exposure increased

SIRT2 expression, inducing JNK deacetylation,

phosphorylation, and increased activity. SIRT2 knockdown

prevented these effects as well as reduced H2O2-induced cell

death (Sarikhani et al., 2018). In ischemic models of middle

cerebral artery occlusion (MCAO) in vivo and oxygen-glucose

deprivation (OGD) in vitro, the experimental removal of

SIRT2 was neuroprotective against both models. Additionally,

the ischemic models increased SIRT2 levels (Xie et al., 2017).

SIRT2 was increased in the cortex and hippocampus of

experimentally aged rats and these rats also exhibited

increased OS and the death-promoting factor FOXO3a

(Keskin-Aktan et al., 2022). Enhanced SIRT2 activity can also

be detrimental. In an SH-SY5Y model of PD, 6-OHDA treated

cells showed increased SIRT2 phosphorylation and activity.

GSK3β phosphorylated SIRT2 and in phosphorylation-

resistant mutants, 6-OHDA toxicity was blocked (Liu S. et al.,

2019). These studies indicate a relationship between OS and

SIRT2. Moreover, they indicate SIRT2 plays a role in OS-

mediated damage. These studies, however, are disputed by a

collection of publications that indicate a positive role of SIRT2.

SIRT2 has commonly been linked to the regulation of

antioxidants. In SH-SY5Y cells, SIRT2 overexpression

protected against diquat-induced OS through upregulation of

superoxide dismutase (SOD) 2, while this effect was lost when

SIRT2 was inhibited with AGK2 (Singh et al., 2017).

SIRT2 increased nuclear NRF2 and Glutathione in PC12 cells

treated with NADH, an effect lost with inhibition (Cao et al.,

2016). In a similar study, NAD+ treatment-induced ERK

activation and NRF2 expression, while SIRT2 siRNA blocked

ERK activation (Zhang J. et al., 2019). SIRT2’s positive regulation

of NRF2, and its resultant effect on antioxidants, shows a

protective role against ROS directly. The protection of

mitochondria also prevents ROS. Loss of SIRT2 in primary

hippocampal neurons led to fragmented mitochondria and

disrupted autophagy. In similar SIRT2-KO brain samples,

ATP and antioxidants were depleted (Liu et al., 2017). With

protective and deleterious evidence, the definitive role of

SIRT2 in OS remains elusive.

6.2 Mitochondrial sirtuins

SIRT3: SIRT3 is the primary mitochondrial sirtuin, and its

main enzymatic function is deacetylation. As a stress response

enzyme, SIRT3 helps to regulate multiple mitochondrial

functions, mostly through metabolism and ROS regulation.

SIRT3 has been shown to deacetylate multiple protein targets

of oxidative phosphorylation, the TCA cycle, the urea cycle, and

mitochondrial DNA (mtDNA) stability (Gertz and Steegborn,

2016; Osborne et al., 2016; Khoury et al., 2018; Zheng et al., 2018;

Zhang et al., 2020). Perhaps the most established target of

SIRT3 is PGC-1α, which facilitates enhanced antioxidant

enzyme expression and mitochondrial biogenesis (Shinohara

et al., 1989; Shi et al., 2005; Kong et al., 2010; Ding et al.,

2017). Specific targets of SIRT3 include the isocitrate

dehydrogenase 2 (IDH2) enzyme to promote NADPH

production, SOD2 to increase its antioxidant activity, and

CypD to protect against the formation of the mitochondrial

permeability transition pore (mPTP) (Yu et al., 2012; Zhang

et al., 2016; Sun et al., 2017). Perturbations of SIRT3 have been

associated with neurodegeneration and susceptibility to OS. In a

3-NPA mouse model of Huntington’s disease, SIRT3-KO mice

showed reduced survival, increased striatal cell loss, and

increased OS in primary neurons (Cheng et al., 2016).

Postmortem brain tissue of AD patients showed reduced

SIRT3, PGC-1a, and mitofusins 1 and 2, suggesting defective

mitochondrial biogenesis and dynamics (Yin et al., 2020).

ApoE4 AD mice showed significantly reduced SIRT3, PGC-1a,

cognitive function, and ATP production. SIRT3 overexpression

in primary neurons from these mice reversed these effects (Yin

et al., 2019). In certain cases, SIRT3 is upregulated due to OS.

H2O2 exposure in vitro has been shown to induce SIRT3. In such

studies, further overexpression of SIRT3 provided

neuroprotection through 1) prevention of mitochondrial Ca2+

overload 2) protection against intrinsic apoptosis and 3)

maintenance of mitochondrial membrane potential through

increased deacetylation of COX-1 (Dai et al., 2014; Tu et al.,

2019). Similar to H2O2, OGD induces SIRT3 expression and

further SIRT3 overexpression reduced H2O2 production,

increased AMPK phosphorylation, and induced autophagy

Frontiers in Physiology frontiersin.org08

Fagerli et al. 10.3389/fphys.2022.908689

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.908689


markers Beclin-1 and LC3-II (Yin et al., 2019). Studies in vivo

also show increased SIRT3 as protective. In a model of

intracerebral hemorrhage, the SIRT3 agonist Honokiol

increased SIRT3 expression, promoted SOD deacetylation, and

increased TFAM to protect mtDNA (Zheng et al., 2018). Finally,

in an in vivo study of anesthesia/surgery-induced cognitive

dysfunction in aged mice, SIRT3 overexpression in

CA1 neurons protected against cognitive deficits while also

promoting SOD and malondialdehyde antioxidant expression

(Liu et al., 2021). SIRT3 appears to be upregulated or repressed in

different OS contexts. Regardless, the overexpression of SIRT3 in

OS environments produces neuroprotective outcomes.

SIRT4: SIRT4 shows lower homeostatic activity compared to

the other mitochondrial sirtuins. SIRT4’s enzymatic activity is a

combination of ADP ribosyl transferase, lipoamindase, and

deacetylase functions (Osborne et al., 2016). SIRT4 appears to

play an important role in the regulation of the NAD+/NADH

ratio and NAD+ metabolism (Han Y. et al., 2019; Betsinger and

Cristea, 2019). Additionally, SIRT4 has been connected to the

regulation of gluconeogenesis (Khoury et al., 2018). Limited

studies exist that highlight the potential role of SIRT4 in OS.

SIRT4-KO mice exhibited exacerbated seizures and reduced

GLT-1 expression in a kainic acid-induced seizure model.

Additionally, ATP levels were reduced in primary

hippocampal neurons of these mice (Shih et al., 2014). Shenfu

Qiangxin Drink (SFQXD), a potential therapeutic, was shown to

protect against H2O2 through reduced ROS levels, IL-1β,
apoptosis, and increased FOXO3a phosphorylation. These

effects were shown to be SIRT4-dependent (Zhang S. et al.,

2021). Alternatively, some studies suggest SIRT4 increases

susceptibility to disease. SIRT4 overexpression accelerated

cardiac hypertrophy induced by Angiotensin II, through

MnSOD inhibition (Luo et al., 2017; Betsinger and Cristea,

2019). SIRT4 may dysregulate mitochondrial dynamics by

interacting with the protein OPA1 (Lang et al., 2017). Overall,

SIRT4 appears to have a context-dependent influence on OS and

OS-inducing conditions, presenting either protective or

deleterious effects.

SIRT5: SIRT5 possesses multiple enzymatic activities including

demalonylation, deglutarylation, desuccinylation, and deacetylation.

In homeostasis, SIRT5 enacts regulation of metabolic processes such

as glycolysis, fatty acid oxidation, and ROS detoxification (Khoury

et al., 2018). Our laboratory has previously investigated SIRT5’s role

in ischemic preconditioning and PKCε neuroprotection against

MCAO in SIRT5-KO mice. These protective paradigms were

determined to be SIRT5-dependent. SIRT5-KO mice showed

increased succinylation of mitochondrial proteins, suggesting a

supportive role of SIRT5’s mitochondrial desuccinylation

functions (Morris-Blanco et al., 2016). Evidence suggests

SIRT5 protects against ROS. In HEK292T cells, SIRT5 targeted

SOD1 for desuccinylation, increasing its activity and reducing

ROS levels (Lin et al., 2013). Cell lines deficient in

SIRT5 displayed increased production of ROS following exposure

to OS-inducing agents Sinopharm and paraquat. SIRT5’s

succinylation of IDH2 and deglutarylation of G6PD promoted

NADPH production and increased resilience to ROS (Zhou et al.,

2016). Another desuccinylation target of SIRT5 is acyl-CoA oxidase 1

(ACOX1), which blocks ACOX1 dimerization and ROS production

(Chen X. F. et al., 2018). Finally, SIRT5’s desuccinylation of pyruvate

kinase M2 (PMK2) has been associated with increased resistance to

ROS throughmultiplemechanisms (Hashtroudi et al., 1989;Wang F.

et al., 2017; Qi et al., 2019). These studies indicate SIRT5’s capacity to

protect against OS through its multiple enzymatic activities.

SIRT5 may also be protective against OS-associated

neurodegeneration. In APP/PS1 mice in vivo, and Aβ induced

SH-SY5Y cells in vitro, SIRT5 overexpression protected against

AD-induced OS, Aβ levels, and apoptosis. SIRT5 also induced

SOD activity and reduced TNF-α and IL-6 signaling (Wu et al.,

2021). SIRT5-KOmice in a subarachnoid hemorrhage (SAH) model

highlighted desuccinylation targets of homeostatic metabolism.

211 lysine succinylation sites of 170 proteins, 39% of which were

mitochondrial, were differential in these mice. Loss of

SIRT5 exacerbated SAH, reduced ATP, and increased ROS (Xiao

et al., 2021). Finally, a mouse model using MPTP-induced PD

showed that SIRT5-KO mice exhibited increased motor deficits

and ROS. SIRT5-KO exacerbated the MPTP-induced reduction in

SOD of nigrostriatal dopaminergic neurons (Liu L. et al., 2015).

SIRT5’s wide array of enzymatic activities and involvement in

different OS contexts highlights it as a pivotal neuroprotective target.

6.3 Nuclear sirtuins

SIRT1: SIRT1 is the most heavily investigated member of the

sirtuin family. SIRT1 predominantly enacts deacetylation function

and has multiple enzyme and histone targets (Khoury et al., 2018). A

myriad of neuroprotective effects of SIRT1 have been reported. One

of SIRT1’s most detailed targets is the FOXO family of transcription

factors. SIRT1 was shown to deacetylate these factors to induce the

expression of antioxidants and to protect against OS-induced cell

death (Brunet et al., 2004; Daitoku et al., 2004; van der Horst et al.,

2004; Hori et al., 2013; Wang R. et al., 2017). Such antioxidants

include SOD1, SOD2, catalase, HO-1, and more. SIRT1 can induce

activation of NRF2 as well, promoting antioxidant expression (Ding

et al., 2016; Shah et al., 2017; Han et al., 2018; Zhang X.S.et al., 2021).

Targeting these transcription factors effectively deters OS. Some

miRNAs, including miR-34, miRNA-23b-3p, miR132/212, and

miR-134, target SIRT1 mRNA to limit the expression of the

protein. This targeting of SIRT1 mRNA disrupts other pathways

related to synaptic plasticity and the CREB, BDNF, Nrf2, and PTEN-

PI3Kpathways (Jeong et al., 2011;Wang et al., 2015;Han et al., 2018).

To prevent ROS in the first place, SIRT1 promotes mitochondrial

homeostasis and biogenesis through the deacetylation of PGC-1α,
which in turn promotes expression of mitochondrial genes,

protection of mtDNA, and metabolic function (Lagouge et al.,

2006; Iwabu et al., 2010; Han B. et al., 2019). Inflammation is
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another process that can result in ROS overproduction and

SIRT1 deacetylates the inflammatory factor NF-κB to deter

inflammatory signaling. (Hwang et al., 2013; Bagul et al., 2015;

Xu et al., 2019; Sun et al., 2021). A common result of NF-κB
inhibition is a reduction in NADPH oxidase (NOX) isoforms,

which mediate large amounts of superoxide in response to

inflammatory signaling. Recent studies have highlighted SIRT1’s

protection against OS in similar pathways. In a model of

anesthetic neurotoxicity, sevoflurane administration induced

suppression of SIRT1 expression and activated microglia in

mouse pup hippocampi. Sevoflurane also induced IL-6 and TNF-

α inflammatory signaling. Resveratrol-mediated SIRT1 activation

prevented these effects and reduced NF-κB acetylation (Tang

et al., 2021). SIRT1 was recently reported to be the target of

neuroprotection against traumatic brain injury mediated by the

natural compound astaxanthin. Oxidative stress, apoptosis, and

neurological functions were all protected by the compound

through SIRT1’s interaction with NRF2, however,

SIRT1 inhibition with EX527 blocked these protective effects

(Zhang X. S.et al., 2021). Calyxosin-7-O-beta-D-glucoside (CG), a

promising protectant, protected against OGD in HT22 cells, a

hippocampal line, through reduction of OS and apoptosis. This

protection was associated with an increase in SIRT1, Foxo1, and

PGC-1α (Yan et al., 2019). The wealth of new and old studies of

SIRT1highlight its pleiotropic nature for protection againstOS across

multiple neurodegenerative contexts.

SIRT6: SIRT6 possesses deacetylase, ADP ribosylase, and

demyrisotylase activity. SIRT6 plays a major role in genomic

stability through the protection of telomeres, facilitation of DNA

damage repair, and cellular senescence (Khoury et al., 2018). Similar

to SIRT2, the role of SIRT6 in neuronal injury has produced mixed

results. SH-SY5Y cells overexpressing SIRT6 exhibited increased ROS

production and necrotic cell death following OGD. SIRT6 inhibition

provided protection against OGD through reduced autophagy (Shao

et al., 2016). In primary mouse hippocampal neurons,

SIRT6 overexpression exacerbated H2O2 induced neuronal death

(Cardinale et al., 2015). These examples suggest exacerbation;

however, most studies show SIRT6 plays a role to protect DNA

from OS. SIRT6-deficient mice manifest genomic instability, while

SIRT6-knockdown mouse embryonic fibroblasts present increased

double-strand DNA breaks (Mao et al., 2011). Additionally,

SIRT6 interacts with the Rad9-Rad1-Hus1 DNA repair enzymes,

in an OS-dependent manner, to protect DNA telomeres from

oxidative damage (Hwang et al., 2015). Additionally, SIRT6 has

been associated with telomere mobility in response to oxidative

damage (Gao Y. et al., 2018). SIRT6 activation is linked with

NRF2 to protect against OS. Through repression of KEAP1, the

NRF2 repressor protein, SIRT6 promotesNRF2 (Kanwal et al., 2019).

Additionally, SIRT6 deacetylates H3K56 to help facilitate

NRF2 binding to gene promoter regions (Pan et al., 2016).

Finally, SIRT6 can bind to the NRF2 nuclear suppressor Bach1,

which promotes detachment of Bach1 from NRF2 genomic targets

(Ka et al., 2017; Yu et al., 2019). In both OGD, in N2a cells, and

MCAO, in the mouse, SIRT6 overexpression protected against OS

and ischemic injury through increased NRF2 levels (Zhang et al.,

2017). In a D-gal and NaNO2 accelerated aging mouse model, the

natural compound BaZiBuShen (BZBS) reversed aging-like OS

through NRF2-induced increases in the antioxidant HO-1. This

compound also increased mitochondrial oxygen consumption rate

and Complex IV activity. Finally, BZBS preserved SIRT6 expression

in the aging model (Li et al., 2022). There are some examples of

SIRT6 playing a deleterious role inOS, however, most of the evidence

suggests SIRT6 protects against OS through enhancing genomic

stability and facilitating NRF2.

SIRT7: SIRT7 is the least investigated member of the sirtuin

family. SIRT7 is localized to the nucleolus and exerts deacetylation

and desuccinylase activity. A known histone target of

SIRT7 deacetylation is H3K18ac and the reduction in this

acetylation mark has been linked to tumor progression (Barber

et al., 2012). SIRT7 has been linked to the positive regulation of

ribosomal RNA transcription and regulation of RNA polymerase

1 via deacetylation. In addition to rRNA, SIRT7 has been linked with

the regulation of tRNA transcription through indirect activation of

RNA Polymerase III (Khoury et al., 2018). SIRT7’s role in OS in the

CNS requires further investigation. Studies have suggested

SIRT7 may promote tolerance to OS. SIRT7-KO mice exhibited

perturbed oxidative phosphorylation, likely due to the loss of SIRT7’s

regulation of NRF2 protein subunit GABPβ1 (Ryu et al., 2014).

SIRT7-deficient mice presented a reduction in mean lifespans,

increased heart hypertrophy, and increased inflammatory

cardiomyopathy. Primary cardiomyocytes from these mice

showed increased acetylation of p35 and increased susceptibility

to OS (Vakhrusheva et al., 2008). Loss of SIRT7 was also shown

to produce mitochondrial dysfunction and reduce ATP levels in

primary mouse oocytes (Gao M. et al., 2018). Finally,

SIRT7 desuccinylase activity at the H3K122 residue has been

shown to promote chromatin condensation, which may protect

against oxidative damage to the DNA in the event of OS (Li

et al., 2016). Though evidence of SIRT7’s role in OS is limited, its

involvement in mitochondrial function insinuates that there is more

to be discovered.

7 Conclusion

Many neurological disorders have debilitating

consequences and promote cognitive impairments that

cause suffering and lower quality of life for those affected.

The damage these disorders create is complicated and

multifaceted, and further investigation is required to

elucidate effective potential therapies. In spite of evidence

supporting the importance of sirtuins in cognition, their

precise functions and mechanisms of action in the brain

remain largely unknown. The general activity and role of

sirtuins in memory in the absence of disease states remain

largely unknown, but their aberrant function in disease states
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suggests that they play a crucial role in physiological memory

function. The contribution of sirtuins in the epigenetic

regulation of synaptic protein expression and dendritic

density offers insight into the role sirtuins play in

enhancing the strength and/or efficacy of synaptic

plasticity. When compounded with the role sirtuins play in

molecular pathways involved with oxidative stress affecting

mitochondrial function, the importance of targeting sirtuins

as a therapeutic avenue for enhancing cognition becomes

clear. However, further data on integrating the disruption of

the many cellular physiological processes of sirtuins in

neurological disorders is needed. Although we primarily

focus on CI and AD in this review, it is likely that other

neurological disorders cause or increase the risk of dementia

through similar dysfunction of sirtuin activity (Figure 2).

Thus, the more we understand the underlying mechanisms of

sirtuins and their role in cognition in physiological and

pathophysiological conditions, the more we will be able to

manipulate and correct imbalances in cellular homeostasis to

provide protection from and/or the amelioration of cognitive

deficits.
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FIGURE 2
The role of members of the sirtuin family in in vivo models of various neurological disorders. The figure represents how individual sirtuins are
affected in a variety of neurological disorders and how the disruption of sirtuin function causes disruptions in normal brain function. Long-term
potentiation (LTP), long-term depression (LTD), dendritic spinal density (DSD), mitochondria (mito.).
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