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In order to determine the site of origin (SOO) in outflow tract ventricular

arrhythmias (OTVAs) before an ablation procedure, several algorithms

based on manual identification of electrocardiogram (ECG) features,

have been developed. However, the reported accuracy decreases when

tested with different datasets. Machine learning algorithms can automatize

the process and improve generalization, but their performance is hampered

by the lack of large enough OTVA databases. We propose the use of detailed

electrophysiological simulations of OTVAs to train a machine learning

classification model to predict the ventricular origin of the SOO of

ectopic beats. We generated a synthetic database of 12-lead ECGs

(2,496 signals) by running multiple simulations from the most typical

OTVA SOO in 16 patient-specific geometries. Two types of input data

were considered in the classification, raw and feature ECG signals. From

the simulated raw 12-lead ECG, we analyzed the contribution of each lead

in the predictions, keeping the best ones for the training process. For

feature-based analysis, we used entropy-based methods to rank the

obtained features. A cross-validation process was included to evaluate

the machine learning model. Following, two clinical OTVA databases

from different hospitals, including ECGs from 365 patients, were used as

test-sets to assess the generalization of the proposed approach. The results

show that V2 was the best lead for classification. Prediction of the SOO in

OTVA, using both raw signals or features for classification, presented high

accuracy values (>0.96). Generalization of the network trained on simulated

data was good for both patient datasets (accuracy of 0.86 and 0.84,

respectively) and presented better values than using exclusively real

ECGs for classification (accuracy of 0.84 and 0.76 for each dataset). The

use of simulated ECG data for training machine learning-based

classification algorithms is critical to obtain good SOO predictions in
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OTVA compared to real data alone. The fast implementation and

generalization of the proposed methodology may contribute towards its

application to a clinical routine.

KEYWORDS

machine learning, electrophysiological simulations, outflow tract ventricular
arrhythmias, synthetic databases, virtual population, digital twin

1 Introduction

In structurally healthy hearts, ventricular tachycardia (VT)

occurs primarily as a consequence of abnormal ectopic foci in the

ventricles, overtaking sino-atrial activation and leading to

premature ventricular complexes. The most common type of

idiopathic ventricular arrhythmias originates from the outflow

tract, and shows a high incidence in young population (Sirichand

et al., 2017). For this group of patients, a catheter ablation of the

tissue that triggers the ectopic focus is indicated, which shows low

procedural complications and a high success rate. However, it is

key to previously determine the site of origin (SOO) of the

outflow tract ventricular arrhythmia (OTVA) to plan the

intervention and the catheter approach. In particular, the

differentiation between left and right ventricular (LV and RV,

respectively) origin is crucial for the electrophysiologist, being

the involved risk and time greatly different.

It is common to obtain recordings of the focal VT in the form

of an electrocardiogram (ECG) prior to a radiofrequency ablation

(RFA) procedure, which contain important information related

to the OTVA and its origin. It is known that the majority of

OTVAs originates from the RVOT (70–80%) (Srivathsan et al.,

2005). Clinicians have developed several algorithms based on

manual feature detection from ECGs (Lerman, 2015) to help

determine the SOO. For a review on the classical ECG signatures

proposed to determine the SOO of OTVAs, see Anderson et al.

(2019). One of the main drawbacks of traditional ECG features is

that they are complex to implement in daily clinical practice due

to the large number of specific rules that have to be checked,

which entail detailed measurements and visual comparison

between precordial transitions, signal notches, and other

features. In addition, they are usually based on observations

on small cohorts of patients from a single-center study. In

consequence, the whole process is too dependent on the

clinician’s experience. We recently showed that patient-

specific simulations can reproduce the ECG signatures of

OTVA, being able to predict the SOO in a small cohort of

patients from a single center (Doste et al., 2020). However,

processing patient data and performing patient-specific

simulations requires very specific expertise and it is very time

consuming, limiting its implementation in clinical routine.

We propose the application of machine learning (ML)

techniques on ECGs from OTVA patients to guide their

treatment. The use of ML and deep learning (DL) algorithms

to learn from ECG data and provide predictions is becoming very

popular in the medical field (Attia et al., 2021; Nagarajan et al.,

2021). One particularly successful application is the use of ML for

ECG analysis of cardiac arrhythmias, as recently reviewed in

Minchole et al. (2019). For instance, ML was applied to classify

different types of ventricular arrhythmias by a combination of

support vector machine (SVM), with the help of grid search, and

waveform morphological analysis (Li et al., 2022). ML has also

being used to predict the LVOT versus RVOT SOO of VT in a

clinical database of 420 patients with a high accuracy (Zheng

et al., 2021), and to localize premature ventricular complexes

from ECG using simulated databases (Yang et al., 2017; Alawad

andWang, 2019). Beyond patient stratification, DL has also been

used for risk prediction of drug-induced arrhythmias and

diagnosis of long QT syndrome (Prifti et al., 2021), or for

finding an optimal lead subset of the 12-lead ECG to

eliminate the redundancy, improving the generalizability of

DL-based models (Lai et al., 2021).

ML and DL techniques rely on the quality of training

datasets, which should represent the target population and be

balanced. In the particular case of OTVAs, there are different

locations for the SOOs (transmurally distributed in several

anatomical regions of the LV and RV), and other co-variables

such as the ventricular anatomy, its orientation, or the presence

of pathological tissue (scar) that affect the ECG morphology.

Since there are not large public labelled databases of OTVA

patients available (largest in the order of 350 cases), the solution

could be the use of computational models, e.g., digital twins

(Corral-Acero et al., 2020) to build large virtual datasets where all

the variables are under control. These virtual hearts are

electrophysiological twins to the patient’s heart on which

various stimulation protocols can be applied to, for instance,

in our case induce OTVAs from different SOO. Such an

approach has been successfully applied to several medical

applications, such as drug screening (Costabal et al., 2019),

anatomical modelling of pathological populations (Romero

et al., 2021; O’Hara et al., 2022), therapy planning of catheter

ablation (Ferrer et al., 2015; Ferrer-Albero et al., 2017; Prakosa

et al., 2018; Lopez-Perez et al., 2019), or ECG simulation

(Cardone-Noott et al., 2016).

In this paper, we propose the use of ML models trained with

large synthetic datasets of simulated ECG data obtained from

biophysical electrophysiology simulations of OTVAs on digital

twins. We present results on the prediction of SOO using

different approaches in which we train ML models with a

virtual population of synthetic simulated data, validating them
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FIGURE 1
Scheme of the proposed methodology. Patient data was used to build ventricular digital twins for the 16 patients. Biophysical simulations were
run in the different anatomies, using 12 different sites of origin (SOO), to generate a database of 12-lead electrocardiograms (ECGs). The database of
simulated ECGs was finally used to train a ML algorithm to predict the SOO (Right ventricle outflow tract (RVOT) vs. Left ventricle outflow tract
(LVOT)) of real patients ECGs from two different clinical datasets (DS-334 and DS-31). Abbreviations used in the image: CT: computed
tomography; EAM: electroanatomical mapping; ML: machine learning; SVM: support vector machine.
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with real clinical datasets from different centers, also evaluating

combinations of synthetic and real data for training and

validation. We also evaluated the best precordial leads and the

signal features that produced a better LVOT/RVOT

classification. This approach in which all the simulations have

been performed beforehand and only ML models are used to

predict the SOO of new patients permits its translation to daily

clinical routine.

2 Materials and methods

We have developed a computational pipeline to build and

validate our approach, from clinical data to final ML-based

predictions, summarized in Figure 1. It starts with the

generation of ventricular digital twins, built with patient-

specific heart meshes together with their cellular and tissue

electrical properties. All the digital twins include outflow

tracts from both ventricles up to the valve planes, with the

estimated myocardial fiber orientation as in Doste et al.

(2019), and no structural disease. Biophysical simulations of

ventricular cardiac electrophysiology were run from different

SOO to compute the ECGs. Subsequently, simulated ECGs were

compared and validated against the available patient data and

used to generate a database of synthetic ECGs. This database was

later used to perform a supervised training of a ML model to

predict the SOO of an ectopic beat, and was tested against two

clinical OTVA ECG databases from different hospitals. In the

following subsections we describe the different clinical datasets

and the methodology used for simulating the ECGs. The next

subsection is then focused on the data pre-processing and

homogenization for both clinical and simulated signals. Final

subsection contains all the information about the support vector

machine used for classification between RV and LV SOO. Two

different strategies for reducing the dimensionality of the data

(downsampling the raw ECG signal and extracting ECG-based

features) are introduced. We also applied a data augmentation

algorithm to improve the performance of the classification.

Finally, the different scenarios used for the signal classification

are described.

2.1 Clinical datasets for testing

We included two different clinical ECG datasets from OTVA

patients for the validation of the proposed approach. The first

dataset consisted of 31 ECGs (DS-31) that were prescribed for

catheter ablation procedure at the Hospital Clinic, Barcelona. All

patients underwent a electro-anatomical mapping study by

CARTO three navigation system (Biosense Webster, Diamond

Bar, CA, United States ) with a 3.5 mm irrigated tip catheter

(NaviStar, Biosense Webster). During the procedure, 12-lead

surface ECG and intracardiac recordings were obtained and

displayed by an electrophysiology data acquisition system

(Bard LabSystem, CR Bard Inc., Lowell, MA, United States ;

or EP-Tracer, CardioTek, Maastricht, Netherlands). Ablation

was considered successful if the targeted OTVA was

eliminated and it was noninducible after isoproterenol

infusion. The site where RFA application eliminated the

OTVA was considered the SOO and was labelled and saved in

the electroanatomical mapping data for validation purposes. The

study was approved by the local ethics committee and written

informed consent was obtained from all participants. The second

dataset was an open-source 12-lead ECG database of 334 OTVA

patients (DS-334) published by Zheng et al. (2020). The database

was composed of 257 patients that had arrhythmias originated in

the RVOT and 77 patients with an LVOT origin, which were

treated at the Ningbo First Hospital of Zhejiang University

(China). ECG signals were obtained at a sampling rate of

2 kHz. Details about the RFA procedure, ECG acquisition or

ethical committee can be found in the original study (Zheng et al.,

2020).

2.2 Virtual electrocardiogram generation

In this work, we constructed ventricular digital twins from

16 different biventricular geometries built from patient-specific

computed tomography (CT) scans. Each model was represented

by a volumetric 3D mesh made of hexahedral elements with an

average resolution of 400 μm. Every element was labeled

according to its cellular properties as, endocardial,

midmyocardial or epicardial cells. As described in Doste et al.

(2020), for each digital twin, we simulated OTVAs from

12 different SOOs (see Figure 1, digital twins, spheres on

biventricular geometry) chosen following clinical observations

(Anderson et al., 2019), seven from the LVOT and five from the

RVOT.To perform the simulations at the organ level, we used the

software ELVIRA (Heidenreich et al., 2010), which solves the

anisotropic reaction-diffusion equation of the monodomain

model for cardiac EP using finite element methods. For the

numerical solution of our simulations, we applied the conjugate

gradient method with an integration time step of 0.02 ms, using

implicit integration for the parabolic partial differential equation

of monodomain model and explicit integration with adaptive

time stepping for ordinary differential equation of the ionic

model (ten Tusscher et al., 2004). Each simulation consisted

in a train of four beats with a cycle length of 800 ms followed by

an ectopic focus simulated during a time window of 300 ms.

Extracellular potentials at the heart were approximated from

transmembrane potentials previously computed, and propagated

by using the finite element method to solve a Laplace equation

over the volume mesh of a generic 3D torso model (Lopez-Perez

et al., 2019). Torso anatomy included the lungs, ribs, liver, atria

and a cavity where each biventricular model was fitted. To add

extra variability on the simulated ECG that can be produced by
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different lead placement or heart orientation, we shifted

precordial leads around the standard position to have

13 different lead configurations. Consequently, we built a

database of a total of 2,496 12-lead simulated ECGs

(16 patients, with 12 different SOO and with 13 different

electrode placements). ECGs were validated against patient

data using the 12 lead correlation coefficient and the LV/RV

ratio (Doste et al., 2020). This ratio was calculated by dividing the

mean of the 12 lead correlation coefficient values of all the SOO

simulations with origin in the LVOT by the one corresponding to

the SOO simulations originated in the RVOT. A LV/RV ratio

larger and smaller than one will indicate a LVOT and RVOT

origins, respectively.

2.3 Data pre-processing

We performed data homogenization to facilitate the data

processing by the ML algorithm and a better comparison of the

results. In particular, we classified all the ECGs (real and

simulated) according to the SOO provided in the work by

Zheng et al. (2020). All the OTVA ECGs were divided in two

main groups as a function of the origin: LVOT or RVOT. The

SOO were also distributed in different sublocations. LVOT cases

were classified into six regions: Left coronary cusp (LCC), right

coronary cusp (RCC), LCC-RCC commissure, non-coronary

cusp (NCC), aortomitral continuity (AMC) and LV epicardial

summit. RVOT cases were divided in anteroseptal RV,

posteroseptal RV and right ventricular free wall (RFW). These

regions can be visualized in the geometry shown in Figure 4. Only

the QRS complex of the ECGs was evaluated. To standardize the

input to the ML models, each 12-lead ECG amplitude was max-

abs normalized (i.e., normalized in the range [-1, 1]) and the

onset and offset of the QRS complexes were obtained using a DL-

based ECG delineator (Jimenez-Perez et al., 2021a; Jimenez-

Perez et al., 2021b) for posteriorly using them in raw- and

feature-based approaches (Section 2.4). In feature-based

approaches, the signal was further zero-corrected to remove

baseline wander, and transformed using the wavelet transform

(Martinez et al., 2004) and Welch’s periodogram (Welch, 1967)

for the feature extraction pipeline.

2.4 Machine learning model

We chose support vector machines (SVM) to classify patient

arrhythmias as a function of the SOO. An SVM is a well-known

learning algorithm (Cristianini and Shawe-Taylor, 2000) that has

extensively been used in many clinical areas, such as ECG

classification (Attia et al., 2021), due to a remarkably robust

performance when working with sparse and noisy data. SVMs

tries to separate a given labeled training set (LVOT vs. RVOT

origin) with a hyper-plane that is maximally distant from them.

In our case, we use radial basis function kernels that will produce

non-linear decision boundaries. We have applied two strategies

for reducing the dimensionality of the data used for model

training, since high dimensionality directly affects the

classification performance by introducing unwanted noise.

These strategies included downsampling the raw ECG signal

and using this morphology directly (Section 2.4.1) and extracting

ECG-based features (Section 2.4.2). The final number of features

and samples in the down-sampled signal was chosen by

evaluating the cumulative variance against the number of

principal components of the training signals. We also

evaluated the information carried in each lead by analyzing

the classification performance of using specific lead

combinations.

2.4.1 Raw signals
Since all ECG signals were conveniently normalized and

aligned, segmented QRS complexes could be directly treated

as patterns and also as feature vectors, where the pseudo-

features correspond to the ECG amplitude at each time point.

Given that the changes in the voltage convey the most important

information of the ECG, we simply consider that the down-

sampled raw signal (dimensionality reduction) is a set of features

that represent the data at specific time points around the R-peak.

Therefore, after studying the cumulative variance of the principal

components, the signals were down-sampled to 10 samples (see

Figure 2).

We used this down-sampled raw signal representation to

determine the best lead combinations as well as the most

important lead in terms of classification. This exploration was

carried out exhaustively, that is, for each one of the possible lead

combinations (4,095). Therefore, a SVM classification model was

trained with the corresponding lead combinations and then

evaluated with the two test datasets. To obtain the feature

vector of a lead combination we simply concatenate the

corresponding signal leads (increasing the number of

dimensions associated to the classification tasks). Finally, we

computed the accuracy distribution associated to each lead by

considering all the accuracy obtained from any lead combination

that contain that particular lead.

The signal low dimension representation can also be used

to determine what part of the signal is the most important in

terms of classification. To assess this issue, we calculate a

feature importance ranking based on extra − trees classifier

models. In this kind of forests, the importance of the features

are computed as the mean and standard deviation of

accumulation of the impurity decrease within each tree

(entropy based) and it is provided by the fitted model. The

feature importance is specially interesting for raw signals as

each feature covers a short time interval of the beat, so that

the most important features correspond with the time

intervals used by the classifier that better explain its

predictions.
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2.4.2 Feature-based signals
2.4.2.1 Feature extraction

Previous studies have reported a decrease in generality

when using the raw ECG trace as opposed to ECG-derived

features (Minchole et al., 2019). To address this, feature

extraction was performed on the QRS complex as an

alternative representation of its morphology. A total of

356 features were extracted, based on measurements on

the raw ECG, its wavelet transform and its power spectral

density. Some features were computed using single leads (e.g.

maximum of lead V3), whereas other features performed

pairwise comparisons of leads (e.g. area under the curve of

lead II with respect to lead III). To avoid too high

dimensionality, comparative features were only computed

within three subsets of leads: limb leads (I, II and III),

augmented leads (aVR, aVF and aVL) and precordial leads

(V1 to V6), with a total of 21 comparisons per extracted

feature. Finally, some features explored the effect of many

leads (e.g. precordial transition explores the lead where the

polarity changes, taking all precordial leads). Some of the

extracted features were inspired in the methodology

presented by Maršánová et al. (2017), which provided high

accuracy when classifying heartbeat types. A schematic

representation of the extracted features is depicted in

Figure 3.

The signal-based features consisted in the computation of

several markers from the raw ECG. Firstly, two all-lead features

were considered: the QRS′ total activation time (QRSend −

QRSstart) and the localization of the precordial transition. The

precordial transition was computed via retrieving the signed

maximum of each precordial lead and selecting the first lead

where the QRS complex changed polarity, codified as a decimal

point value within zero (V1) and one (V6). Secondly, eight per-

lead features are extracted. These comprise the polarity of the

lead’s signed maximum ({ − 1, 1}), the lead’s maximum and

minimum voltage, its absolute maximum voltage (signed and

unsigned), the lead’s amplitude and its area (both raw and taking

the absolute value). Finally, three comparative features were

computed: the signed maximum voltage of the difference

between the leads, the area of the difference between the leads

and the cross-correlation between the leads.

Wavelet-based features were computed with the mother

wavelet designed by Martinez et al. (2004), which has a

frequency response that is optimal for QRS complexes. The

wavelet transform is used in this work as a robust surrogate

of the original signal’s derivatives, and was employed to locate

FIGURE 2
A set of selected ECG traces from the simulated (DS-2496) and the DS-334 datasets. The extracted QRS of the V2 and V3 precordial leads are
shown in the top row and their corresponding down-sampled traces (10 samples) in the bottom row. Right Ventricle (RV) signals are plotted in blue,
whereas left ventricle (LV) signals are in red.
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different fiducials in the signal (Q, R and S wave peaks) through

the identification of zero crossings across multiple wavelet scales

(Figure 3, bottom-left). This allowed a better characterization of

important clinical markers such as the ratio between the R and S

waves or the maximum signal velocity. Firstly, a single all-lead

feature was extracted, the precordial transition, by estimating the

moment where the precordial leads changed polarity. Secondly,

six per-lead features were computed, comprising the maximum

and minimum amplitude values, the mean amplitude of the

wavelet, its area under the curve, the signal fragmentation

(estimated as the ratio between the wavelet’s area and its

absolute area) and the R/S amplitude ratio. Finally, three

comparative features were extracted, consisting in the area

under the curve, the maximum difference and the cross-

correlation between two leads. Although the identification of

important fiducials was performed by propagating the

information across different wavelet scales, only the first

wavelet scale was employed for the above computations.

Finally, seven per-lead spectral features were extracted. For

that purpose, the power spectral density of the QRS complex was

computed with the method proposed by Welch (1967). After

computing the power spectra (Figure 3, red block), the

fundamental frequency was estimated by computing the

frequency with the highest power, and six spectral density

bands were computed by averaging the signal’s power between

(0.3) (3.6) (6.9) (9.12) (12.25) and (25.50) Hz.

2.4.2.2 Feature importance

When working with the 356-featured training set, the

selection of the best features for classification has been carried

out using extra − trees classifier models (Geurts et al., 2006). The

model consists on a meta estimator that fits a number of

unpruned randomized decision trees (extra − trees) on various

sub-samples of the training set. Then, predictions are made by

majority voting from the trees. Similar methods like bagging and

random forest develop each decision tree from a bootstrap

FIGURE 3
Schematic representation of the feature extraction pipeline. The ECG (left, top) and its wavelet transform (left, scales one through 5) are used to
compute signal-based (blue), wavelet-based (green) and spectral-based (red) features. Signal-based features measure the raw ECG, computing
extrema, areas or characteristics computed through pairwise lead comparison. Wavelet-based features also compute said markers, but also identify
important fiducials through zero-crossings (e.g. differentQRSwaves such as the R and Swaves, shown on the left as green and red dotted lines).
Finally, spectral information employs Welch’s periodogram to obtain features based on the signal’s power spectral density.
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sample of the training set, while the extra − trees algorithm fits

each decision tree on the whole training set. Furthermore,

similarly to the random forest method, the extra − trees

model will randomly sample the features at each split point of

a decision tree. However, random forest uses a greedy algorithm

to select an optimal split point, while the extra − trees model

selects a split point at random. All the features extracted from the

simulated dataset (DS-2496) were ranked according with the

results of the extra − trees classifier. A variance analysis was also

conducted to evaluate the minimum number of features that

optimizes the classification performance.

2.4.3 Data augmentation
In order to improve the performance of the classification

task, the simulated dataset was augmented using mixup, as

described by Zhang et al. (2018). This technique allowed for

smoother decision boundaries when training a classifier on

augmented data: augmented samples are generated by

randomly selecting two samples (xi and xj) and performing a

linear combination of the two (x̂ � λxi + (1 − λ)xj), given a

parameter generated by a beta distribution

(λ ~ B(α, β), λ ∈ [0, 1]). In the same signal generation process,

the corresponding label (yi or yj) was fixed through the λ

parameter: yiwas adopted if λ > 0.5, and yjwas selected otherwise.

In this work, we employed single 12-lead QRS complexes as

samples xi, and the labels yi were the ground-truth SOO (either

LVOT vs. RVOT or the nine finer SOO sublocations). For the

purposes of this work, α = 5 and β = 1.5 were selected as

hyperparameters. The λ parameter was saved to be used as

sample weight in the classification process. In the case of the

finer sublocations, and to avoid issues with labels corresponding

to distant sublocalizations (e.g. mixing Anteroseptal and AMC

SOO samples), mixup was only applied when xi and xj were

neighboring segments in a spatial sense, as can be seen in

Figure 4. Finally, the generated QRS complexes were in turn

employed for classification with the raw signal, as described in

Section 2.4.1, and with the feature extraction pipeline explained

in Section 2.4.2. In total, 7,488 augmented QRS complexes were

generated for the virtual ECG population described in Section

2.2. A table with comparison metrics of the different databases,

including the augmented database, can be found in the

Supplementary Material S1.

2.4.4 Classification and validation
To evaluate the degree of generalization achieved by the SVM

models and to exploit the datasets used in this work, we

considered the following scenarios (See Table 1):

As we manage four datasets, namely DS-2496 (simulated

signals), DS-7488 (simulated augmented signals), DS-334 (real

patient signals), and DS-31 (real patient signals), the test-set(s)

used for the assessment of each learning scenario are those not

employed in training. Furthermore, cross validation (CV)

FIGURE 4
Representation of the signal augmentation process. Two samples xi and xj are linearly combinedwith λ ~ B(α, β). The label of xi is adopted, given
that λ >0.5. In the right, markedwith a cross, the approximated location of the augmented sample. LCC: left coronary cusp; RCC: right coronary cusp;
RFW: right free wall; AMC: aortomitral continuity; RVOT: right outflow tract.

Frontiers in Physiology frontiersin.org08

Doste et al. 10.3389/fphys.2022.909372

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.909372


techniques (folds = 5) in the domain of the training set are also

included. Accuracy values obtained for the DS-334 and DS-31

datasets were computed as balanced accuracy. More information

about the classification of the main Scenarios (confusion matrix

and accuracy per class) is attached in the Supplementary

Material S1.

3 Results

3.1 Variance analysis

Figure 5 shows the variance explained by a principal

component analysis (PCA) of the simulated dataset (DS-2496)

according to the number of components, in the two signal

representations handled in this work; raw (a) and featured

(b). In both cases, the number of features required to cover

almost 100% of the variance is low (10 features). Therefore, the

down-sampling of the raw signals allows to easily reduce the

number of features of the dataset in similar way to PCA, although

in this case the new features are directly related with the electrical

potential mean values of time intervals.

3.2 Best lead combination for
classification with raw data

Using the down-sampled simulated raw data (10 equidistant

samples from the voltage ECG traces), we explored which were the

lead combinations that showed a better performance for ECG

classification. A total of 4,095 different models were trained using

all the possible lead combinations. Figure 6A shows the best

24 combinations that presented the highest classification results.

The accuracy distribution associated to each lead is presented in

Figure 6B. Lead V2 is the lead that presents higher accuracy in both

testing sets (followed by lead V3), and is also present in all the best

lead combinations for DS-334. When comparing the different

accuracy obtained with both datasets, DS-31 presents overall

lower accuracy values.To uncover the characteristics of V2 that

might be responsible for the higher classification accuracy, we

evaluated the importance of each samples in the downsampled

raw signal. The results are depicted in Figure 7A. The importance

of each of the 10 samples is represented by the red bars, being the

seventh sample the most important one. Figure 7B depicts a small

subset of V2 traces from the LVOT (red) and RVOT (blue)

simulations overlaid to the down-sampled signal samples (red and

TABLE 1 Description of the different classification scenarios.

Scenario Training Classification Strategy

Scenario 1 (Sc1) SVM model trained with simulated signals (DS-2496) or augmented simulated
signals (DS-7488)

down-sampled raw signal; feature-based ECG signals; 10 best
features

Scenario 2 (Sc2) SVM model trained with real signals (DS-334; DS-31) down-sampled raw signal; feature-based ECG signals

Scenario 3 (Sc3) SVM model trained with a hybrid training set (DS-334) + (DS-2496); (DS-31) +(DS-
2496)

down-sampled raw signal; feature-based ECG signals

FIGURE 5
Variance explained by the principal components from the simulated dataset (DS-2496). (A)Down-sampled raw signals (10 samples or features).
(B) Featured signals (356 features).
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blue dots). Results show that the seventh bin samples, where

differences in voltage between LVOT and RVOT simulated traces

are clearly seen, are the most important for the classification. The

second most important bin is the second, where traces show a

positive or negative slope. The adjacent samples to the second and

seventh bins continue the order of descending sample relevance.

3.3 Feature selection

Figure 8A shows the ten most important features obtained

using the introduced extra − trees model. As can be seen, the

most important features were signal-based features extracted

from the V2 and V3 leads. In addition, the panel on the right

shows the accuracy scores obtained by the SVM-classifier by

varying the number of features used in the training set. The

calculated scores are the accuracy from a cross validation process

(folds = 5) and the predictions of the datasets employed for

model testing (DS-334, DS-31).

3.4 Classification results

Table 2 shows the classification performance of the different

scenarios described in the methodology. The cross-validation

analysis of the classification with each of the datasets, using five

FIGURE 6
(A) Lead combinations that presented the best classification results for both datasets. (B)Distribution of the classification accuracies associated
to each lead for the DS-334 (left) and DS-31 (right) datasets.
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folds, provided high accuracies between 0.82 and 0.96 for the

simulated data, and low accuracies for the clinical datasets,

that were between 0.60 and 0.92. DS-31 was particularly

complex to classify due to its reduced size and high data

variability.

Scenario 1, where only simulated signals were considered for

training, presents the highest accuracy values in the classification. Raw

down-sampled signals were able to classify the clinical signals of the

DS-334 with an accuracy of 0.86, whereas the DS-31 presented lower

values (0.71). Results did not improve significantly whenwemade use

FIGURE 7
(A) Sample importance obtained using raw down-sampled signals; (B) Ten samples (red and blue dots) corresponding to signal time intervals
obtained from a subset of V2 signals, together with their corresponding traces (transparent) so that they could be easily interpreted. Red traces
correspond to LVOT and blue traces to RVOT.

FIGURE 8
Left: Ranking of the 10 most important signal features (out of 356) for signal classification, extracted using the extra-trees classifier method.
Right: Evolution of the accuracy scores vs. the number of features used for training. The accuracy was evaluated in the simulated signals through a
cross validation (CV) process and in the clinical datasets (DS-334 and DS-31).
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of augmented simulated data for training (DS-7488). The use of signal

features also presented good classification values. Although the

accuracy slightly decreased in the DS-334 with respect to the raw

data (0.85 vs. 0.86, featured-based vs. raw data), the accuracy for

dataset DS-31 was considerably higher (0.84 vs. 0.71, featured-based

vs. raw data). As with the case of raw data, augmented feature data

barely increased the accuracy values. Furthermore, as shown in the

cumulative variance plot, classification with only 10 features was also

performed. Results showed that a classification using the best

10 features, determined in Figure 8, provided good accuracy

values, although the cross-validation accuracy values were slightly

lower than the ones obtained using all the features (356).

Scenario 2, which was calculated using only real data for training,

served as a good comparison of the classification performance of the

simulated data versus the real data. It can be seen that, when using

signals from different clinical datasets for training and classification,

the accuracy in the prediction of the SOO decreases significantly,

being inferior to the values of Scenario one in all cases. Scenario 3, on

its behalf, used a mix of simulated and real data for training. All the

accuracies (using raw data and featured data) surpassed the values of

the Scenario 2, showing that the use of simulated data in the training

can considerably improve the classification results.

4 Discussion

In this work, we have presented a methodology to

automatically classify ECGs from patients that suffer

OTVAs by a ML model purely trained with synthetic data

from biophysical simulations carried out on ventricular

digital twins. To this end, we trained SVMs classifiers that

were able to determine the SOO of the arrhythmia,

differentiating between LVOT and RVOT. We have

validated the method with two clinical datasets acquired in

different clinical centers. In particular, we show that this

method can predict the SOO with an accuracy of 0.86 in a

clinical database of 334 patients, and 0.84 in a second clinical

database of 31 patients, without the need of performing any

manual analysis on the ECG signals. This is key, since other

algorithms in the literature require an electrophysiologist to

extract a considerable number of the features from the 12-

lead ECG signals and perform several calculations on them to

predict the SOO (Anderson et al., 2019). Further, we have

been able to show that a ML model for ECG classification can

be trained on virtual ECGs, eliminating the need to collect

and curate large clinical databases (Zheng et al., 2020).

Another advantage of this simulation strategy is that the

signals are noise free, and the location of the SOO is

determined without any error in position. Finally, the

dataset built to train the ML model can include a balanced

number of samples that represent properly all the SOOs, and

possible variations of the heart with respect to the torso, such

as rotations, which is really complex to achieve with clinical

data due to the incidence of the pathology in the population

(70% of cases correspond to RVOT SOO) (Srivathsan et al.,

2005).

TABLE 2 SVM accuracy results.

Scenario Training Set Accuracy

CV (folds = 5) Test (DS-334) Test (DS-31)

Sc1 Simulated Raw Signals (DS-2496) 0.96 0.86 0.71

Sc1 Augmented Simulated Raw Signals (DS-7488) 0.98 0.86 0.71

Sc1 Featured Simulated Signals (DS-2496) 0.97 0.85 0.84

Sc1 Featured Augmented Simulated Signals (DS-7488) 0.98 0.86 0.84

Sc1 10 Best Features Simulated Signals (DS-2496) 0.82 0.88 0.77

Sc1 10 Best Features Augmented Simulated Signals (DS-7488) 0.87 0.86 0.77

Sc2 Real Raw Signal (DS-334) 0.88 - 0.57

Sc2 Real Featured Signal (DS-334) 0.92 - 0.76

Sc2 Real Raw Signal (DS-31) 0.62 0.84 -

Sc2 Real Featured Signal (DS-31) 0.60 0.74 -

Sc3 Hybrid: Simulated + Real Raw Signals (DS-334)+(DS-2496) 0.90 - 0.71

Sc3 Hybrid: Simulated + Real Featured Signals (DS-334)+(DS-2496) 0.96 - 0.81

Sc3 Hybrid: Simulated + Real Raw Signals (DS-31)+(DS-2496) 0.95 0.86 -

Sc3 Hybrid: Simulated + Real Featured Signals (DS-31)+(DS-2496) 0.97 0.85 -
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Our analysis on the use of different combinations of signals to

train the model and predict the SOO pointed out that V2 was the

signal that convey more information followed by V3. This is in

agreement with the results already reported in a few clinical studies

(Hayashi et al., 2017; Kaypakli et al., 2018). A more exhaustive

evaluation of the down-sampled version of the V2 lead, showed the

most important signal samples used for the classification by the

SVM. In particular, these positions, usually located after the R

peak, corresponded with the signal parts that presented higher

variability in voltage between RVOT and LVOT (once these signals

have been aligned and normalized).

The obtained classification results had a similar level of

accuracy than clinical algorithms used in the SOO prediction

(Anderson et al., 2019; Mariani et al., 2021). From these results, we

have been able to conclude that, although extracting signal features

from ECG seems to be the best approach, there is not a large

improvement with respect to simply use raw data as features (the

potential of the signal at ten equally spaced time points), provided

that all signals are aligned. That means that, if necessary, signals do

not have to be processed, which could introduce errors and

requires supervision during the feature extraction phase.

One of the most remarkable results of this work is that the use

of simulated ECGs for training not only predicts the OTVA SOO

with good accuracy, but it even surpasses the performance of the

databases trained with real data, especially when they are used

with a different database. This is due to the higher variability of

the simulated data, which also presents less bias towards

acquisition instruments or protocol. Consequently, as it is

shown in Scenario 3, the addition of simulated data to real

databases can improve the prediction of the SOO in any

dataset when compared with the results obtained by training

with only real data (Scenario 2). These results support the use of

simulated signals for improving the performance of ML

classifiers, as it has been done previously for atrial fibrillation

(Luongo et al., 2021) or cardiac resynchronization therapy

response (Khamzin et al., 2021). On the other hand, the

inclusion of augmented simulated data (DS-7488) did not had

a significant impact in the classification results, probably due to

the high correlation of the data. We also analyzed why the DS-31

dataset presents lower classification accuracies than DS–334. An

analysis of the classification results (see Supplementary Material

S1) showed that some of the LV SOO were wrongly classified as

RV SOO. This was caused by some LV signals presenting

variability that could not be reproduced by the simulated

ECGs used for training. Furthermore, the reduced sample size

of this dataset negatively affected the computed accuracies.

It is important to note that the designed ML-based pipeline

does not require any further complex and time-consuming

simulations, unless there is a need to update the model with

additional data. That is one of the main limitations of physics-

based approaches, in which the construction of the patient digital

twin, and the computation of electrophysiology simulations is

complex and requires hours to days to produce the results

(Prakosa et al., 2018). This makes the ML-based approach

suitable to be transferred to the clinical routine, since it can

make instantaneous predictions with the only requirement of

accessing the 12-lead ECG. This is a critical step towards the

implantation of computational techniques for therapy planning

of catheter-based ablation, since they can help to reduce

procedure times, improve the risk evaluation or identify

arrhythmias that cannot be treated (e.g. inaccessible SOOs

(Yamada et al., 2010)) before the intervention. There have

been previous works that made use of ML models to predict

the SOO using only clinical data for training with good accuracy

(0.97) at the cost of having a large feature vector of 1.6 million

size (Zheng et al., 2021), which could show problems to

generalize for other databases.

4.1 Limitations

Even though our method shows promising results when

compared to existing solutions, it presents some limitations.

First of all, to build the database, digital twin models must be

faithful representations of patients, and the biophysical

simulations have to be properly calibrated to produce realistic

simulations that provide ECGs comparable to those recorded in

clinical practice (Lopez-Perez et al., 2015). Otherwise, the

training dataset could represent only a subset of the

population and have problems generalizing to other datasets

and patients. We are aware that having a single torso geometry,

where all the personalized ventricular anatomies are registered

could also be a limitation, since it has been reported that changes

in the orientation of the heart or disposition of pericardial fat

could have important effects in the ECG (Bradley et al., 2000;

Gyawali et al., 2020). In our models, we have not considered the

inclusion of a personalized Purkinje system, which could interact

with the electrical sequence of activation (Sebastian et al., 2011;

Cárdenes et al., 2015).

In addition, although we include variability in our

simulations (different electrode location, SOO or digital twin

anatomy), simulated data still is highly dependent on the initial

conditions of the model. Increasing the number of the

simulations, and varying additional parameters (new torso

geometry, SOOs, different ectopic coupling interval,

conduction velocity or heart rate) could reduce the bias that

the simulated data may present. The use of more anatomies could

help to cover a wider range of anatomical variability. In this study

we used 16 patient-specific anatomies that presented

considerable differences in shape and volume, but including a

greater inter-subject variability could also improve the simulated

ECG data. However, the computational time necessary to build

or extend the simulated database can increase considerably.

Finally, we have not explored the classification of the SOO in the

nine sublocations (e.g., LCC, RFW or AMC). The available datasets

did not produced enough well-labeled data, and some of these
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sublocations were underrepresented (e.g., LCC-RCC commissure,

AMC). This same limitation was present in other works that used

similar datasets (Zheng et al., 2021). Richer clinical data for testing

the ML models, together with more accessible OTVA datasets, will

help in the prediction of the SOO with more accuracy.

5 Conclusion

We have shown a computational approach to predict the

SOO of idiopathic ventricular tachycardia originated in the

ventricular outflow tract. The method, that relies in

biophysical simulation and machine learning techniques, is

able to differentiate between LV or RV origin of the ectopic

beat with an accuracy of 0.86 in a clinical database of 334 patients,

and 0.84 in a second clinical database of 31 patients.

Since all the simulated training set was generated offline, the

presented methodology could be transferred to a clinical

environment, avoiding the need of time consuming tasks such as

building computational models of the heart and performing

electrophysiology simulations. Nevertheless, the simulated signals

(DS-2496, DS-7488) achieved high performance in the test sets (DS-

344 and DS-31), demonstrating the viability to produce good

classification models for real data. Moreover, the methodology is

not dependent on the expertise of the electrophysiologist, and it is

consistent between cases, which could provide an additional tool to

electrophysiologist to plan RFA interventions of this type of

tachycardia. Future works will focus on improving the accurate

determination of the exact SOO of the tachycardia within the

ventricles, especially in the outflow tract sublocations.
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