
A Glimpse of Inflammation and
Anti-Inflammation Therapy in Diabetic
Kidney Disease
Chongbin Liu1,2†, Ming Yang1,2†, Li Li 1,2, Shilu Luo1, Jinfei Yang1, Chenrui Li 1, Huafeng Liu3*
and Lin Sun1,2*

1Department of Nephrology, The Second Xiangya Hospital, Central South Unibersity, Changsha, China, 2Hunan Key Laboratory
of kidney Disease and Blood Purification, Changsha, China, 3Guangdong Provincial Key Laboratory of Autophagy and Major
Chronic Non-communicable Diseases & Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang,
China,

Diabetic kidney disease (DKD) is a common complication of diabetes mellitus and a major
cause of end-stage kidney disease (ESKD). The pathogenesis of DKD is very complex and
not completely understood. Recently, accumulated evidence from in vitro and in vivo
studies has demonstrated that inflammation plays an important role in the pathogenesis
and the development of DKD. It has been well known that a variety of pro-inflammatory
cytokines and related signaling pathways are involved in the procession of DKD.
Additionally, some anti-hyperglycemic agents and mineralocorticoid receptor
antagonists (MRAs) that are effective in alleviating the progression of DKD have anti-
inflammatory properties, which might have beneficial effects on delaying the progression of
DKD. However, there is currently a lack of systematic overviews. In this review, we focus on
the novel pro-inflammatory signaling pathways in the development of DKD, including the
nuclear factor kappa B (NF-κB) signaling pathway, toll-like receptors (TLRs) and myeloid
differentiation primary response 88 (TLRs/MyD88) signaling pathway, adenosine 5′-
monophosphate-activated protein kinase (AMPK) signaling pathways, inflammasome
activation, mitochondrial DNA (mtDNA) release as well as hypoxia-inducible factor-
1(HIF-1) signaling pathway. We also discuss the related anti-inflammation mechanisms
of metformin, finerenone, sodium-dependent glucose transporters 2 (SGLT2) inhibitors,
Dipeptidyl peptidase-4 (DPP-4) inhibitors, Glucagon-like peptide-1 (GLP-1) receptor
agonist and traditional Chinese medicines (TCM).

Keywords: diabetic kidney disease, inflammation, signaling pathway, anti-Inflammation, anti-hyperglycemic,
mineralocorticoid receptor antagonists, traditional Chinese medicine

INTRODUCTION

Diabetic kidney disease (DKD), which is also known as diabetic nephropathy before, is the most
commonmicrovascular complication of diabetes mellitus (Thomas et al., 2015; Doshi and Friedman,
2017; Sun et al., 2022). The number of DKD patients has increased year by year, which has led to a
huge burden on global public health. Recent studies show that 21.8%–40% of diabetic patients may
progress to DKD, which is the main cause of end-stage renal disease (ESRD) (Zhang J. et al., 2020;
Mottl et al., 2022). In addition, nearly 38.8% of ESRD in 2018 was attributable to DKD in America
(Johansen et al., 2021). In China and India, the proportion of ESRD in DKD patients was about 1/5
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(23%) and 1/3 (31.2%), respectively (Hussain et al., 2019; Zhang
L. et al., 2019). On the other hand, treatment of DKD mainly
includes lifestyle interventions, such as exercise, weight loss,
smoking cessation and sodium restriction, and medication to
control hyperglycemia as well as blood pressure (Doshi and
Friedman, 2017; Anders et al., 2018). However, current
treatments cannot completely delay the progression to ESRD.
Therefore, it is still necessary to further explore the pathogenesis
of DKD and find new therapeutic targets.

Previous studies demonstrate that many factors are implicated
in the progression of DKD, such as metabolic abnormalities and
hemodynamic changes caused by hyperglycemia and insulin
resistance, etc (Forbes and Thorburn, 2018). It has been well-
known that overproduction of reactive oxygen species (ROS),
abnormal autophagy, senescence are also involved in the
development of DKD (Ren et al., 2020; Sun et al., 2022).
Recently, accumulated evidence suggested that inflammation
plays a key role in the pathophysiology of DKD. For example,
oxidative stress (Huang W. et al., 2020), abnormal autophagy
(Han et al., 2021), and senescence (Xiong and Zhou, 2019) could
lead to the abnormal immune-inflammation in DKD.
Furthermore, several clinical trials found that non-steroidal
selective mineralocorticoid receptor antagonists (MRA) could
delay the progression of DKD by inhibiting inflammation
(Donath, 2014; Komada and Muruve, 2019). These data
strongly suggest that inflammation plays an important role in
the development of DKD.

Inflammation is a biologically conserved immune defense
mechanism (Cronkite and Strutt, 2018). In human,
inflammation plays a dual role in various disease. Early
inflammatory responses may promote tissue repair. However,
severe inflammation would lead to secondary injury resulting in
tissue damage or fibrosis (Nathan and Ding, 2010; Rathinam and
Chan, 2018). In addition, increasing evidence indicates that in
chronic non-infectious diseases, such as diabetes and its
complications including DKD and atherosclerosis, persistent
systemic or local inflammation plays a critical role in the
progression of disease (Pichler et al., 2017; Tang and Yiu,
2020; Engelen et al., 2022; Rohm et al., 2022). A large number
of infiltrated macrophages were observed in the renal biopsy
specimens in patients with DKD, and the expression of
inflammatory cytokines such as Interleukin 6 (IL-6),
Interleukin 1 beta (IL-1β), and tumor necrosis factor alpha
(TNF-α) were increased (Navarro-Gonzalez et al., 2011;
Araujo et al., 2020). In recent years, the microarray analysis
has also showed that the expression of pro-inflammatory genes
and fibrosis-related genes were significantly increased in patients
with DKD or animal models, which was accompanied with
increased levels of inflammatory cytokines in peripheral blood
specimens (Wilson et al., 2019; Levin et al., 2020; Sur et al., 2021).
These data further indicate that there is a notable association
between inflammation and the development of DKD.

In this review, we discuss the role of some novel and key pro-
inflammatory signaling pathways in the progression of DKD,
such as the nuclear factor kappa B (NF-κB) signaling pathway,
toll-like receptors (TLRs) and myeloid differentiation primary
response 88 (TLRs/MyD88) signaling pathway, adenosine 5′-

monophosphate-activated protein kinase (AMPK) signaling
pathways, inflammasome activation, mitochondrial DNA
(mtDNA) release and hypoxia-inducible factor-1(HIF)
signaling pathway. We also introduce the role of anti-
hyperglycemic drugs, non-steroidal selective MRA and
traditional Chinese medicine in anti-inflammation during the
treatment of DKD.

HYPERGLYCEMIA-INDUCED
INFLAMMATION IN DKD

Hyperglycemia and insulin resistance are the most common
pathological characteristics in patients with DKD and can lead
to systemic low-grade inflammation (Saraheimo et al., 2003;
Leehey, 2020). Hyperglycemia can lead to overproduction of
ROS and mitochondrial DNA release, which further cause
inflammation in renal parenchymal cells by different signaling
pathways (Sun et al., 2022).

NF-κB Signaling
The transcription factor NF-κB is a key mediator of inflammation
and NF-κB remains inactive while binding to the proteins of the
IkappaB (IκB) family (mainly IκBα) (Sun, 2011, 2017; Zhang Q.
et al., 2017). There are two pathways for the activation of NF-κB:
the canonical pathway and the non-canonical pathway (Zhang S.
et al., 2017). Under the stimulation of various immune receptors,
such as pattern recognition receptors (PRR), TNF receptors
(TNFR), T cell receptors (TCR) and B-cell receptors,
intracellular IκBα is degraded and the canonical NF-κB
pathway is activated (Sun, 2017). The non-canonical NF-κB
activation is primarily associated with ligands of a subset of
TNFR superfamily members, such as the lymphotoxin beta
receptor (LTβR), B-cell activating factor receptor (BAFFR),
Cluster of differentiation 40 (CD40), and Receptor activator of
nuclear factor κ B (RANK) (Sun, 2017; Hou et al., 2018). NF-κB
mediates the activation of downstream signaling pathways
including inflammasome activation, HIF signaling pathways
and AMPK signaling pathways (Rius et al., 2008; Afonina
et al., 2017). In addition, the activation of NF-kB signaling
pathway inhibits the anti-inflammatory pathway, Sirtuin 1
(SIRT1) signaling pathway, which is closely related to the
development of non-infectious chronic diseases such as
atherosclerosis and DKD (Stein et al., 2010; Kauppinen et al.,
2013; Sun et al., 2021). Overall, the NF-kB signaling pathway
plays a key role in the inflammatory response.

It has been observed that activated NF-κB signaling pathway is
associated with inflammation and fibrosis in DKD (Mezzano
et al., 2004; Schmid et al., 2006; Liu P. et al., 2014). Foresto-Neto
et al. found that the activation of NF-κB signaling pathway
increased the expression of the inflammatory cytokines IL-6,
which preceded the kidney damage in the db/db mice
(Foresto-Neto et al., 2020). Microarray analysis of renal
biopsies in patients with DKD also suggested that a number of
NF-κB targets were significantly upregulated (Schmid et al.,
2006). These data suggest the key role of abnormal activation
of NF-κB in the progression of DKD. A recent study found that
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delivery of Smad7 siRNA to the kidney through ultrasound
microbubbles could reduce the production of IL-1β and
monocyte chemoattractant protein 1 (MCP1) in the renal
tissue of db/db mice by inhibiting NF-κB signaling pathway
(Ka et al., 2012). Sun et al. demonstrated that
dephosphorylated P65 NF-κB could attenuate renal
inflammation-related damage in STZ-induced diabetic mice by
downregulating the expression levels of TNF-α, IL-1β, and
cyclooxygenase 2 (COX-2). (Zhang M. et al., 2019). These data
further confirm that the NF-κB signaling pathway plays a critical
role in the development of DKD and targeting NF-κB signaling
pathway might be a potential therapeutic strategy for DKD.

TLRs-MyD88 Signaling Pathway
Toll-like receptors (TLRs) is an evolutionarily ancient family of
pattern recognition receptors and an important component of
innate immunity (Tang and Yiu, 2020). Activation of TLRs in
response to pathogen-associated molecular patterns (PAMPs) or
danger-associated molecular patterns (DAMPs) could lead to
inflammation in injured tissue (Fitzgerald and Kagan, 2020; Tang
and Yiu, 2020). Myeloid differentiation factor 88 (MyD88) is a
critical adaptor protein in innate immunity and central hub in
inflammatory response (Xu et al., 2000; Deguine and Barton,
2014), which could respond to the activation of TLRs. The
activation of TLRs-MyD88 signaling pathway might initiate
the translocation of NF-κB into the nucleus, thus promoting
the transcription of pro-inflammatory factors and chemokines,
such as IL-1β, IL-6, MCP-1 etc. (Warner and Nunez, 2013;
Fitzgerald and Kagan, 2020). These studies suggest that TLRs-
MyD88 signaling pathway plays a key role in the inflammatory
response.

It has been demonstrated that the high glucose (HG) could
activate TLRs-MyD88 signaling pathway in the kidneys of DKD,
which is the initiator of renal interstitial fibrosis (Lin and Tang,
2014; Liu and Zen, 2021). Liu et al. found that the mRNA and
protein levels of TLR4 and MyD88 increased in renal tubular
epithelial cells treated with HG, which was accompanied with the
activation of NF-κB and increased expression of chemokine
MCP-1 (Liu R. et al., 2014). Zhang et al. found that
pharmacological inhibition of MyD88 by LM8, a new small-
molecule inhibitor of MyD88, could alleviate the progression of
renal fibrosis by inhibiting the activation of NF-kB and reducing
the expression of TNF-α and IL-1β in both streptozotocin (STZ)-
induced diabetic mice and db/db mice (Zhang et al., 2022). These
data indicate that targeting TLRs-MyD88 might be a potential
therapeutic option to reduce renal fibrosis in DKD. In addition,
there are a series of Chinese herbal medicines to reduce renal
fibrosis by inhibiting TLRs-MyD88 signaling-mediated
inflammation (Lu et al., 2019; Arigela et al., 2021; Guo et al.,
2021).

Inflammasome Activation
Inflammasome was first proposed by Tschopp et al., in 2002,
which could modulate inflammation by the activation of caspases
(Martinon et al., 2002; Schroder and Tschopp, 2010; Guo et al.,
2015). There are canonical inflammasomes and non-canonical
inflammasomes. The former are caspase-1-dependent

inflammasomes and the non-canonical inflammasomes depend
on caspase-11 in mouse and caspase-4 or caspase-5 (the
homologue of caspase-11) in humans (Stowe et al., 2015; Van
Opdenbosch and Lamkanfi, 2019). It is well known that the
activation of the inflammasome is associated with a series of
pattern recognition receptors (PRRs) in the membrane and
cytoplasm, which include nucleotide-binding oligomerization
domain (NOD)-like receptors (NLRs), Toll-like receptors
(TLRs), C-type lectin receptors (CLRs), Rig-I-like receptors
(RLRs), and absent in melanoma 2 (AIM2)-like receptors
(ALRs) (Schroder and Tschopp, 2010; Strowig et al., 2012;
Evavold and Kagan, 2019). This series of PRRs could rapidly
respond to danger signals such as PAMPs or DAMPs to activate
inflammasomes (Guo et al., 2015).

Accumulated data suggests that the inflammasome
contributes to the progression of DKD (Strowig et al., 2012;
Masood et al., 2015). Upregulated expression of IL-1β and
Interleukin 18 (IL-18) was observed in the peripheral blood or
renal tissue of DKD patients (Uzu et al., 2011; Lei et al., 2019). In
addition, the activation of the NLRP3 inflammasome was not
only present in the renal infiltrating macrophages (Shahzad et al.,
2015; Zhang J. et al., 2021), but also in podocytes (Xiong et al.,
2020; Wu et al., 2021), tubular epithelial cells (Han et al., 2019;
Xie et al., 2019) and mesangial cells (Yi et al., 2017; Tung et al.,
2018). Inhibition or knockout of NLRP3 has also been shown to
be effective in delaying the progression of DKD. It has been
reported that the NLRP3-specific small molecule inhibitor
MCC950 could alleviate renal damage and fibrosis in db/db
mice (Wang et al., 2017; Zhang W. et al., 2019; Ding et al.,
2021) and knockdown of NLRP3 has a significant reno-protective
effect in STZ-induced diabetic mice (Wu et al., 2018). In addition
to the NLRP3 inflammasome, NLRP1 and NLRC4
inflammasome were also activated in the kidneys of DKD
mice and associated with increased urinary albumin excretion
and renal damage (Yuan et al., 2016; Soares et al., 2018).
Furthermore, Luan et al. demonstrated that NLRC5 gene
deficiency also reduced the inflammation and renal damage
and delayed the progression of renal fibrosis in STZ-induced
diabetic mice (Luan et al., 2018).

Other novel inflammasomes such as NLRP2, NLRP6,
NLRP10, NLRP12, and AIM2 are also found to be involved in
the regulation of inflammation and their expressions are
upregulated in various kidney diseases (Yuan et al., 2016; Luan
et al., 2018; Wu et al., 2018). It has been shown that the above
inflammasomes participate in the pathogenesis of non-diabetic
kidney diseases (Lech et al., 2010; Komada et al., 2018; Valino-
Rivas et al., 2020). Valiño-Rivas et al. found that NLRP6
deficiency aggravated ischemia-reperfusion (I/R) induced acute
kidney injury (Valino-Rivas et al., 2020). The AIM2
inflammasome is a sensor for endogenous Double Stranded
DNA (dsDNA) that mediates canonical and non-canonical
inflammasome activation. The expression level of AIM2
inflammasome is also associated with the progression of
hepatitis B-related glomerulonephritis and lupus nephritis
(Zhang et al., 2013; Zhen et al., 2014; Komada et al., 2018).
These data suggested that the inflammasomes might also have
potential role in the pathogenesis of chronic kidney disease
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(CKD). However, there is currently a lack of studies on
investigating the effect of inflammasomes above in DKD, thus
it needs to be further explored in future.

AMPK Signaling Pathways
AMP-activated protein kinase (AMPK) is a serine/threonine
kinase that is involved in regulating cellular metabolism by
activating energy-producing pathways (Cordero et al., 2018;
Lyons and Roche, 2018; Larabi et al., 2020) (Wang et al.,
2018), In addition, AMPK plays a key role in regulating
autophagy (Li and Chen, 2019) and other biological functions.
Recent studies have also suggested that AMPK is involved in
inflammation, particularly the activation of NLRP3
inflammasome (Youm et al., 2015; Xian et al., 2021). It is
wellknown that the AMPK dysfunction is associated with a
variety of diseases including diabetes mellitus (Chen et al.,
2021) and cancers (Wang et al., 2016).

Interestingly, AMPK signaling pathway was related to the
renal inflammation (Garcia and Shaw, 2017). Previous study by
our group showed that DsbA-L could inhibit the activation of
NLRP3 by activating AMPK phosphorylation in the kidney of
DKD mice, while the expression levels of IL-18 and IL-1β were
increased in that of DKD mice treated with compound C (an
AMPK inhibitor) (Yang et al., 2021a). AMPK also inhibits the
expression of inducible nitric oxide synthase (iNOS), thereby

inhibiting the activation of NLRP3 inflammasome (Pilon et al.,
2004; Liao et al., 2021). These studies confirmed the reno-
protective and anti-inflammatory effects of AMPK signaling
pathway in DKD. In addition, AMPK activation induced
mitophagy, which could clear damaged mitochondria in cells
and reduce the production of ROS and activation of NLRP3
inflammasome (Seabright et al., 2020; Yang et al., 2021b; Drake
et al., 2021). What’s more, a variety of drugs for the treatments of
DKD such as metformin, could also activate phosphorylation of
AMPK to inhibit renal inflammation (Zhang X.-X. et al., 2020).
Therefore, understanding mechanisms of AMPK signaling
pathway would be critical to improving the strategy of DKD
prevention and treatment.

Mitochondrial DNA Release
When mitochondria are dysfunctional, the mitochondrial DNA
(mtDNA) translocates to cytoplasm and initiates the
inflammation through various signaling pathways (Figure 1)
(Zhang et al., 2010; Fang et al., 2016; Riley and Tait, 2020).
First, mtDNA, as an endogenous DAMPs, could directly activate
the inflammasomes (Nakahira et al., 2011), which conclude
NLRP3 (Shimada et al., 2012; Zhong et al., 2018) and AIM2
(Bae et al., 2019; Xu et al., 2021). In addition, mtDNA could
initiate the cGAS-STING signaling pathway. The mtDNA is
translocated to the cytoplasm and associated with the DNA

FIGURE 1 | Schematic depicting the relationship between dysfunctional mitochondria and inflammation. In DKD, there are serious mitochondrial dysfunction and
mtDNA leakage, which could directly activate NLRP3 inflammasome and AIM2 inflammasome. Additionally, mtDNA could be sensed by cGAS to catalyze ATP and GTP
into the second messenger cyclic GMP-AMP (cGAMP). And then cGAMP binds to STING and translocation of the Golgi apparatus to initiate IRF3 and canonical NF-κB
signaling pathway. Furthermore, mtDNA activates TLR9/NF-κB signaling pathway by binding to TLR9, which results in the production of inflammatory cytokines.
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receptor cyclic GMP-AMP Synthase (cGAS), causing the
activation of cGAS, which catalyzes ATP and GTP into the
second messenger, cyclic GMP-AMP (cGAMP) (Wu et al.,
2013). Stimulator of interferon genes (STING) was localized in
the endoplasmic reticulum and activated by cGAMP. STING then
translocated to the Golgi apparatus to initiate interferon
regulatory factor 3 (IRF3) and canonical NF-κB signaling
pathway (Ishikawa and Barber, 2008; Hopfner and Hornung,
2020). Recently, it has also been found that the hypomethylated
mtDNA is the ligands of TLR9 for regulating inflammation
(Goulopoulou et al., 2012; Rodriguez-Nuevo et al., 2018).
When cells are under stress, TLR9 is translocated to endo-
lysosome from endoplasmic reticulum (Latz et al., 2004; Leifer
et al., 2004; Fang et al., 2016), where hypomethylated mtDNA
binds to TLR9 to activate TLR9/NF-κB and TLR9/MyD88
signaling pathways, finally resulting in increased production of
TNF-α, IL-6, IL-1β, and MCP-1 (Zhang et al., 2014; Wei et al.,
2015; Rodriguez-Nuevo et al., 2018). These data indicat that
mtDNA release after mitochondria damage plays a key role in
the inflammatory response.

As we know that proximal tubular cells of the kidney are rich
in mitochondria and mitochondrial dysfunction and mtDNA
release have been recognized in various kidney disease (Forbes
and Thorburn, 2018; Ahmad et al., 2021). A large amount of
mtDNA was detected in the blood and urine of patients with
DKD, which is also related to the severity of interstitial fibrosis
(Malik et al., 2009; Huang Y. et al., 2020; Jin et al., 2021). The level
of mtDNA was increased in primary mesangial cells treated with
high glucose, which is accompanied with enhanced TLR9
activation (Czajka et al., 2015). Chung et al. confirmed that
STING gene deficiency significantly reduced renal fibrosis and
the expression of TNF-α, IL-1β, IL-6 and MCP1 (Chung et al.,
2019). There is no doubt that the activation of the mtDNA-cGAS-
STING signaling pathway is related to renal fibrosis in DKD.
Meanwhile, Myakala et al. also found that sacubitril/valsartan
could regulate mitochondrial function and alleviate mtDNA
release to inhibit mtDNA-cGAS-STING signaling pathway,
ultimately delaying the progression of DKD. This data

indicated that targeting mtDNA may be a powerful solution
for the treatment of DKD. In addition, it has been reported that
mitophagy inhibits the activation of NLRP3 inflammasome and
the secretion of inflammatory cytokines such as IL-1β in DKD
(Han et al., 2021). These data suggest that mitochondrial
homeostasis disruption and mtDNA release are important
initiator in renal inflammation, and it might be a potential
therapeutic target for the treatment of DKD.

HIF Signaling Pathways
Hypoxia-inducible factor (HIF) is conserved in biological
evolution and is an important mediator of inflammation
(Palazon et al., 2014; McGettrick and O’Neill, 2020). The
structure of HIF contains α and β subunits, which include
three α subunits (HIF-1α, HIF-2α, HIF-3α) and three β
subunits (HIF-1β, HIF-2β, HIF- 3β). It has been reported that
HIF-1α and HIF-2α are related to the inflammation (Keith et al.,
2011). A large amount of evidence shows that the activation of
HIF-1α under hypoxia regulates the transcription level of NF-κB
(Palazon et al., 2014). Additionally, the fatty acid oxidation
(FAO)-mediated NLRP3 inflammasome is activated when the
HIF-2α is deficient in macrophage (Li et al., 2021). Of note,
inflammation also results in the activation of HIF signaling
pathway (Watts and Walmsley, 2019; McGettrick and O’Neill,
2020). Zhang et al. found that SARS-CoV-2 infection induced
nuclear translocation of NF-κB to upregulate the mRNA level of
HIF-1α via IL18/IL18R1 (Zhang L. et al., 2021). In addition,
endogenous DAMPs could upregulate expression of HIF-1α and
induced the production of IL-1β (Tannahill et al., 2013). It could
be seen that the HIF signaling pathway and inflammation are
interdependent in multiple dimensions.

Recent studies have shown that HIF signaling pathway is
closely related to the development of renal interstitial fibrosis
in DKD (Li et al., 2019; Jiang et al., 2020). The activation of HIF
signaling indicates that the kidney is intolerant to hypoxia, which
contributes to the initial adaptive response to hypoxia and tissue
repair (Isoe et al., 2010; Garcia-Pastor et al., 2019). Our team has
found that HIF-1α activation exerts a reno-protective effect by

FIGURE 2 | Inflammation-related signaling pathways in the development of DKD. The abnormal of NF-κB signaling pathways, TLRs-MyD88 signaling pathways,
inflammasome activation, AMPK signaling pathways, mtDNA and HIF signaling pathway activate the renal inflammation, which cause to kidney damage in DKD.
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regulating mitochondrial dynamics through HO-1 in the early
stage of DKD in STZ-induced diabetic mice (Jiang et al., 2020). Yu
et al. also found that HIF-1α/Parkin/PINK1-mediated mitophagy
improved mitochondrial function in renal tubular epithelial cells,
whereas inhibition of HIF-1α by YC-1 (a specific inhibitor of HIF-
1α) promoted inflammation and increased the production of IL-1β
and IL-18 (Yu et al., 2021). These data indicate the reno-protective
effect of HIF in the early stage of DKD. However, HIF signaling
pathway could also promote chronic inflammation and interstitial
fibrosis in CKD including the development of DKD (Wang et al.,
2014; Catrina and Zheng, 2021). Co-treatment of mesangial cells
with HG and HIF-1α siRNA reduce the production of
inflammation and fibrosis factors such as endothelin-1, TGF-β1,
CTGF and VEGF (Shao et al., 2016). It has been reported that high
doses of MK-8617 (hypoxia-inducible factor-prolyl hydroxylase
inhibitor) can promote the tubulointerstitial fibrosis by activating
HIF-1α/KLF5/TGF-β1 axis (Li et al., 2019). These data indicate
that persistent activation of HIF signaling pathway is an important
mediator of the progression of renal interstitial fibrosis and is
closely related to the inflammation of DKD (Figure 2).

In addition to be involved in the pathogenesis of DKD,
inflammation has recently been shown to play a role in
diabetic cardiomyopathy (Quagliariello et al., 2020). Under
hyperglycemia condition, it has been demonstrated that the
heart would be more susceptible to drug damage or ischemia-
reperfusion injury because of hyperglycemia-induced
inflammation (Peng et al., 2015; Quagliariello et al., 2020).
Quagliariello et al. found that hyperglycemia could activate the
NLRP3 inflammasome in cardiomyocytes and enhance the
cardiotoxicity of ipilimumab (an anti-cancer drug for breast
cancer) (Quagliariello et al., 2020). Additionally, diabetic
cardiomyopathy might result in low myocardial reserve (Moir
et al., 2006). Treatment of kaempferol to hyperglycemia-induced
myocardial damage might reduce ROS production and the
expression of TNF-α by inhibiting the NF-κB signaling
pathway (Chen et al., 2018). These data suggest that HG leads
to cardiac damage and decreases myocardial reserve through the
inflammatory signaling pathways.

ANTI-INFLAMMATION TREATMENT
IN DKD

The treatments of DKD mainly include management of
hyperglycemia, hypertension and hyperlipidemia. Actually, these
drugs especially the nonsteroidal selective mineralocorticoid
receptor antagonist (MRA) finerenone and some Chinese
traditional medicine could alleviate the development of DKD by
regulating the inflammation.

Metformin
Metformin has been used for treatment of diabetes mellitus since
1950s, and is now the most widely used anti-hyperglycemic drug
(Flory and Lipska, 2019). There’s a lot of evidence that metformin
has not only anti-hyperglycemic properties, but also reno-
protective effect. A cohort study showed that treatment of
10,426 patients with type 2 diabetes and chronic kidney

disease at stage 3B with metformin significantly reduced the
risk of all-cause mortality and ESRD events (Kwon et al.,
2020). Similar result was observed in metformin treated DKD
animal models, which also showed improved renal function and
alleviated renal tubulointerstitial fibrosis (Zhang Q. et al., 2017).
Recently, studies have shown that the reno-protective effect of
metformin might relate to the mechanisms of anti-inflammation.
Among them, AMPK signaling pathway might be the most
important anti-inflammatory mechanism of metformin.
Recently, Ma et al. found that metformin inhibited v-ATPase
activity by inducing the binding of PEN2 to the ATP6AP1
subunit, and then activated lysosomal AMPK (Ma et al., 2022).
The work of Han et al. suggested that metformin maintained
mitochondrial homeostasis through AMPK-mediated mitophagy
and inhibited the activation of NLRP3 inflammasome in DKD
(Han et al., 2021). In addition to AMPK signaling pathway,
metformin could also regulate renal inflammation by HIF
signaling pathway (Takiyama et al., 2011), intestinal flora
(Induri et al., 2022), and autophagy (Bharath et al., 2020).

Finerenone
Nonsteroidal selective MRA is a novel drug with cardio-renal
protection. Compared with traditional MRAs such as
spironolactone and eplerenone, nonsteroidal selective MRA has
significantly improved efficacy and safety. Finerenone (also
known as BAY 94-8862) is currently approved by FDA for
treatment of DKD. A series of clinical studies confirmed the
reno-protective effect of finerenone in DKD. The phase III
FIDELIO-DKD trial has shown that finerenone significantly
delayed renal failure and eGFR decline. In addition to finerenone,
several nonsteroidal MRAs are currently in development (Patel et al.,
2021), such as AZD9977 (phase I) (Whittaker et al., 2020),
apararenone (phase II) (Wada et al., 2021) and esaxerenone
(phase III) (Ito et al., 2020), which might also have reno-
protective effect in DKD by regulating inflammation.

It has been well known that overactivation of MR is a key event
for chronic inflammation by increasing the recruitment of
neutrophil, macrophage and Th1 & Th17 cells and
upregulating the expression of pro-inflammatory factors and
fibrotic-related factors including TGF-α, endothelin 1, PAI-1,
CTGF (Young and Rickard, 2015). There is sufficient evidence to
suggest that treatment with MRA including finerenone might
alleviate the progression of chronic kidney disease and eliminate
the renal inflammation by reducing the expression of pro-
inflammatory cytokines, such as MCP-1, TNF-α and Matrix
metalloproteinase-12 (MMP-12) (Han et al., 2006; Huang
et al., 2014). Martínez et al. found that finerenone regulated
the activation of NF-kB signaling pathway through neutrophil
gelatinase-associated lipocalin (NGAL) and inhibited the
inflammation in cardiac remodeling after myocardial
infarction (Martinez-Martinez et al., 2017). Bhuiyan et al. also
found that esaxerenone, another nonsteroidal selective,
significantly reduced the expression of MCP-1 and
inflammatory cell infiltration in DKD by inhibiting ROS
(Bhuiyan et al., 2019). These studies suggest that nonsteroidal
selective MRA can alleviate the progression of DKD through
targeting inflammatory factors.
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SGLT2 Inhibitors
Sodium-glucose cotransporter 2 inhibitor (SGLT2i) is a novel
anti-hyperglycemic drug by inhibiting reabsorption of glucose in
the kidney (Ferrannini, 2017). Several clinical trials have
confirmed that SGLT2i have excellent cardio-renal benefit and
low risk of hypoglycemia (Perkovic et al., 2019). Interestingly, the
SGLT2i could reduce the tissue low-grade inflammation (Bonnet
and Scheen, 2018; Packer, 2020). A retrospective study showed
that compared to glimepiride, SGLT2i canagliflozin significantly
reduced the expression levels of inflammatory markers and
fibrosis markers, such as tumor necrosis factor receptor 1
(TNFR1), matrix metalloproteinase-7 (MMP7), Fibronectin
(FN) (Heerspink et al., 2019) and IL-6. The anti-inflammatory
mechanism of SGLT2i might relate to HIF-1α in DKD (Bessho
et al., 2019). In addition, SGLT2i also can regulate mitochondrial
energy metabolism through reducing mitochondrial Ca2+

concentration and activating AMPK signaling pathway (Hawley
et al., 2016; Baartscheer et al., 2017). Recent study demonstrates
that Canagliflozin exerts the anti-inflammatory effect by activating
AMPK-Akt-eNOS pathway (Heerspink et al., 2019). Interestingly,
it has also been reported that SGLT2i could inhibit inflammasome
activation. Kim et al. found that compared to sulfonamide, SGLT2i
significantly inhibited the activation of NLRP3 inflammasome and
reduced the production of IL-1β (Kim et al., 2020). Birnbaum et al.
also found that SGLT2i could inhibit the activation of NLRP3
inflammasome and reduce the mRNA expression of IL-1β, IL-6,
TNF-α in BTBR ob/ob mice (Birnbaum et al., 2018). In conclusion,
the reno-protective effect of SGLT2i in DKD might be related to
anti-inflammation.

DPP-4 Inhibitor and GLP-1 Receptor
Agonist
Glucagon-like peptide 1 (GLP-1) is an incretin hormone that
stimulates insulin secretion in response to food intake (Baggio
and Drucker, 2007). GLP-1 binds to the GLP-1 receptor in the
pancreas and then regulates blood sugar by promoting insulin
secretion. The half-life of natural GLP-1 is very short (1–2 min)
because it is rapidly degraded by the ubiquitous proteolytic
enzyme DPP-4 (Bell et al., 1983; Hansen et al., 1999).
Recently, dipeptidyl peptidase-4 inhibitor (DDP-4i) and GLP-1
receptor agonists (GLP1RA) have been widely used in anti-
hyperglycemic medications by interfering with GLP-1
expression (McGuire et al., 2019; Shaman et al., 2022). Recent
studies demonstrated that DDP-4i and GLP-1RA could not only
control blood sugar by regulating the secretion of insulin, but also
exert anti-inflammatory and reno-protective effects in DKD
(Gangadharan et al., 2016; Coppolino et al., 2018; Shaman
et al., 2022). Many studies have suggested that DDP-4i could
reduce the secretion of MCP-1 from renal parenchymal cells and
inhibit the chemotaxis and activation of mono-macrophages
(Ishibashi et al., 2011; Shah et al., 2011; Coppolino et al.,
2018). DDP-4i could also inhibit the activity of NF-κB
signaling pathway in renal tissue and reduce the expression of
TNF-α in STZ-induced diabetic mice (Kodera et al., 2014;
Gangadharan et al., 2016). Additionally, supplementation of
exendin-4 (a GLP-1 analog) could reduce the secretion of pro-

inflammatory factors in the kidney of diabetic mouse, including
TNF-α, IL-1β, MCP-1, Intercellular Adhesion Molecule 1 (ICAM-
1), etc. and alleviate the progression of DKD (Hendarto et al., 2012;
Sancar-Bas et al., 2015). Furthermore, Hasan et al. found that in
GLP-1R-deficient mice with 5/6 nephrectomy, linagliptin (a DDP-
4 inhibitor) also significantly inhibited the expression of TGF-β,
Collagen I, and Phospho-Mothers against decapentaplegic
homolog 3 (pSMAD3) and reduced renal fibrosis (Hasan et al.,
2019). These studies suggest that DPP-4i and GLP-1RAmight have
a reno-protective role inDKD through anti-inflammation, which is
independent of the anti-hyperglycemia effect. The role of GLP-1
and DDP-4i on anti-inflammation have been confirmed, as well.
Zobel el al. found liraglutide treatment (1.8 mg/day) could reduce
the gene expression of TNF-α, IL-1β in the peripheral blood
mononuclear cells (PBMC) of patients with type 2 diabetes
(Zobel et al., 2021). The study of Tremblay et al. also indicated
that the treatment with sitagliptin significantly reduced the plasma
levels of C-reactive protein (CRP), IL-6, IL-18, secreted
phospholipase-A2 (sPLA2), soluble intercellular adhesion
molecule-1 and E-selectin (Tremblay et al., 2014).

Traditional Chinese Medicine
Traditional Chinese medicines (TCM) such as Astragalus,
Cordyceps sinensis, Tripterygium wilfordii, Fructus arctii, Panax
notoginseng, Berberine, etc. are also powerful weapons against
DKD (Wen et al., 2017; Zhong et al., 2019). A systematic review
and meta-analysis including 29 trials suggested that TCM
significantly reduced urinary protein excretion rate and urinary
protein (Xiao et al., 2013). Furthermore, Chinese herbal medicines
combined with ACEI or ARB have a better effect in reducing
urinary protein in patients with DKD compared to ACEI or ARB
therapy alone? (Xiao et al., 2013). Some studies indicate that the
mechanism of TCM in DKD might be related to anti-
inflammation. The study by Zhong et al. suggested that
arctigenin, an extract of burdock, reduced proteinuria in
diabetic mice through inhibiting NF-κB-mediated inflammation
by binding to protein phosphatase 2 A (PP2A) in podocytes
exposed to HG ambiance (Zhong et al., 2019). The Tripterygium
wilfordii Hook. f (GTW) could inhibit the activation of NF-κB
signaling pathway and reduce inflammatory cell infiltration as well
as the mRNA expression of IL-1β and TNF-α in STZ-induced
diabetic mice combined with unilateral nephrectomy (Wu et al.,
2017). Guo et al. found that maackiain could reduce renal
inflammation and the expression of MCP-1 and TNF-α by
inhibiting TLRs-MyD88 signaling pathway in STZ-induced
diabetic rat (Guo et al., 2021). In addition, the anti-
inflammatory effect of TCM is also related to reducing ROS,
regulating autophagy and inhibiting epithelial-mesenchymal
transition (Li et al., 2017; Zhang et al., 2021a; Zhang et al.,
2021b). All of these researches demonstrate that TCM might be
a potential weapon for the treatment of DKD by anti-inflammation.

In addition to TCM, nutraceuticals derived from Chinese herbal
medicines could prevent DKD, for example, boswellic acid,
curcumin and quercetin (Lu et al., 2015; Lu et al., 2017;
Asgharpour and Alirezaei, 2021). A systematic review and Meta-
analysis revealed that curcumin supplementation significantly
improved blood sugar, lipid and blood pressure control and
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decreased the serum creatinine in DKD patients (Jie et al., 2021). Lu
et al. also found that curcumin could delay fibrosis progression in
DKD mice by inhibiting the initiation of NLRP3 inflammasome
and reduce the expression of IL-1β in renal tissue (Lu et al., 2017).
Additionally, the present studies have revealed the protective
effect of quercetin, a natural AMPK activator, in STZ-induced
diabetic rat (Zhang J. et al., 2021). Lu et al. also found that
treatment of quercetin could alleviate the progression of renal
fibrosis in STZ-induced diabetic rat (Lu et al., 2015).

However, TCM has limitations such as low bioavailability,
which greatly limits its broad application in the treatment of DKD
(Liu et al., 2013; Zhang C. et al., 2019). The study of Rosso et al.
suggested that hyaluronic acid (HA-NPs) and sub-micron
particles (a CD44-targeted vector) were effective means to
deliver bio-actives to targeted tissue in a specific and
controlled manner (Rosso et al., 2013). This suggests that
delivering TCM to the kidney might be a potential strategy to
improve the bioavailability. Importantly, the expression of CD44
is low in the normal kidney and would specifically increase during
renal damage (Zhao et al., 2019). The study of Hu et al. confirmed
that CD44-targeted hyaluronic acid-curcumin prodrug could
reduce the ROS in renal tubular epithelial cell. Moreover,
Wang et al. have found the bioavailability and therapeutic
effect of rhein, an active ingredient of TCM, were significantly
improved in STZ-induced diabetic mice through kidney-targeted
rhein-loaded liponanoparticles (Wang et al., 2019). This study
further confirmed the feasibility of kidney-targeted therapies.
Thus, it might be effective to transport TCM to the kidney
through hyaluronic vector, liponanoparticle, etc. However, this
conjecture needs be verified through further experiments.

Mesenchymal Stem Cells and Extracellular
Vesicles
Mesenchymal Stem Cells (MSCs) and extracellular vesicles (EVs)
are current research hotspots and pre-clinical agents for the
treatment of DKD (Tang et al., 2019; Savio-Silva et al., 2020;
Shen et al., 2020). Previous studies suggested that systemic
injection of MSCs improved glycemic control but showing no
renal protection (Savio-Silva et al., 2020). Recent evidence suggests
that proteinuria is decreased after inducing renal homing of MSC
by ultrasound-targeted micro-bubble destruction (UTMD)
(Marquez-Curtis and Janowska-Wieczorek, 2013). Xiang et al.
found that intravenous injection of human umbilical cord-
derived MSCs could reduce the expression of inflammatory
factors such as IL-6, IL-1β and TNF-α in the kidney and blood,
and alleviate the renal interstitial fibrosis in the STZ-induced
diabetic rat (Xiang et al., 2020). These studies suggest that
MSCs treatment might be beneficial to reduce the renal
inflammation and alleviate the progression of DKD.

The EVs include exosomes, microvesicles and apoptotic
bodies. It has been found that the EVs play an important role
in the progression of DKD (Tang et al., 2019). Under the
stimulation of exosomes secreted from HG-treated
macrophages, the mRNA and protein levels of TNF-α, IL-1β
and MCP-1 in renal mesangial cells increased. Furthermore,
intravenous injection of the exosomes into C57BL/6 mice

resulted in the increased expression of TNF-α, pro-IL-1β and
IL-1β and renal interstitial fibrosis (Zhu et al., 2019). This data
suggested that EVs secreted from damaged macrophage or renal
cells could promote renal inflammation and interstitial fibrosis in
DKD. Additionally, Jiang et al. have found that intravenous
injection of the exosomes secreted by human urine-derived
stem cells could inhibit the apoptosis of podocytes and renal
tubular epithelial cells, and reduce urinary microalbumin
excretion in STZ-induced diabetic rat (Jiang et al., 2016). This
suggests that EVs derived from MSCs may be excellent biological
agents to alleviate the progression of interstitial fibrosis in DKD.

DISCUSSION

Inflammation plays an important role in the progression of DKD
(Perez-Morales et al., 2019). In this review, we have discussed and
summarized the role of NF-κB signaling pathways, AMPK
signaling pathways, TLRs-MyD88 signaling pathway,
inflammasome activation, mtDNA release and HIFsignaling
pathway in the inflammation-induced renal damage of DKD.
To date, drugs directly targeting inflammation are limited in
treatment of patients with DKD, but the commonly used anti-
hyperglycemic drugs such as metformin, SGLT2i, DPP-4i, GLP-
1AR and TCM also exhibit excellent anti-inflammatory effect.
Interestingly, finerenone (a reno-protective nonsteroidal selective
MRA) also exhibits strong anti-inflammatory efficacy to protect
the kidney and heart in patients with DKD. This data suggested
that attention should be paid to inflammation and anti-
Inflammation therapy in DKD in future research.

In addition, MSCs and EVs have shown the curative effect and
anti-inflammatory effect in the treatment of DKD animal models
(Tang et al., 2019). However, bothMSCs and EVs are mainly used
for animal experiments currently and their efficacy and safety are
uncertain in human body.
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