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Background: The knowledge of factors influencing disease progression in patients with
established coronary heart disease (CHD) is still relatively limited. One potential pathway is
related to peroxisome proliferator–activated receptor gamma coactivator-1 alpha
(PPARGC1A), a transcription factor linked to energy metabolism which may play a role
in the heart function. Thus, its associations with subsequent CHD events remain unclear.
We aimed to investigate the effect of three different SNPs in the PPARGC1A gene on the
risk of subsequent CHD in a population with established CHD.

Methods: We employed an individual-level meta-analysis using 23 studies from the
GENetIcs of sUbSequent Coronary Heart Disease (GENIUS-CHD) consortium, which
included participants (n = 80,900) with either acute coronary syndrome, stable CHD, or a
mixture of both at baseline. Three variants in the PPARGC1A gene (rs8192678, G482S;
rs7672915, intron 2; and rs3755863, T528T) were tested for their associations with
subsequent events during the follow-up using a Cox proportional hazards model adjusted
for age and sex. The primary outcome was subsequent CHD death or myocardial
infarction (CHD death/myocardial infarction). Stratified analyses of the participant or
study characteristics as well as additional analyses for secondary outcomes of specific
cardiovascular disease diagnoses and all-cause death were also performed.

Results: Meta-analysis revealed no significant association between any of the three
variants in the PPARGC1A gene and the primary outcome of CHD death/myocardial
infarction among those with established CHD at baseline: rs8192678, hazard ratio (HR):
1.01, 95% confidence interval (CI) 0.98–1.05 and rs7672915, HR: 0.97, 95% CI
0.94–1.00; rs3755863, HR: 1.02, 95% CI 0.99–1.06. Similarly, no significant
associations were observed for any of the secondary outcomes. The results from
stratified analyses showed null results, except for significant inverse associations
between rs7672915 (intron 2) and the primary outcome among 1) individuals aged
≥65, 2) individuals with renal impairment, and 3) antiplatelet users.

Conclusion:We found no clear associations between polymorphisms in the PPARGC1A
gene and subsequent CHD events in patients with established CHD at baseline.

Keywords: polymorphisms, PPARGC1A, meta-analysis, SNPs, coronary heart disease, cohort studies
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INTRODUCTION

Coronary heart disease (CHD) is a multifactorial disease caused
by a complex interplay between genetic, behavioral, and
environmental factors, with atherosclerosis as the main
underlying component (Tiret, 2002). Several processes
important for atherosclerosis, such as lipid homeostasis
(Zhang et al., 2004; Lin et al., 2005), endothelial function, and
inflammation, are potentially modulated by the peroxisome
proliferator–activated receptor gamma coactivator-1 alpha
(PPARGC1A), encoded by the PPARGC1A gene (Kadlec et al.,
2016). PPARGC1A co-activates several transcription factors
involved in energy metabolism and oxidative stress including
peroxisome proliferator–activated receptors (PPARs) and
nuclear respiratory factors (NRFs) (Liang and Ward, 2006).

Animal studies have shown the evidence of PPARGC1A
involvement in cardiac energy metabolism (Arany et al., 2005;
Rowe et al., 2010) during development (Lai et al., 2008a) and
aging (Whitehead et al., 2018). Furthermore, PPARGC1A is
dysregulated in heart failure (Sihag et al., 2009; Oka et al.,
2020) and plays a role in endothelial regulation (Craige et al.,
2016), atherosclerotic lesions (Kadlec et al., 2016), and may be
involved in endogenous protective mechanisms (i.e., ROS and
mitochondrial biogenesis) (Chen et al., 2011). Human studies
have shown associations between a non-synonymous coding
variant single nucleotide polymorphism (SNP) in PPARGC1A
(G482S; rs8192678) and metabolic outcomes (Vandenbeek et al.,
2017) such as adiposity, insulin resistance (Franks et al., 2014),
type 2 diabetes (T2D) (Ek et al., 2001), and hypertension
(Andersen et al., 2005). Other SNPs in this gene are less
studied in relation to cardiometabolic outcomes, but there are
a number of associations reported, for example, between
rs7672915 (intron variant) and left-ventricular diastolic
function (Juang et al., 2010) and between rs3755863 (T528T)
and waist circumference and cholesterol levels (Brito et al., 2009;
Mirzaei et al., 2012). Although not found associated with CHD in
genome-wide association studies (Peden et al., 2011; Schunkert
et al., 2011; Deloukas et al., 2013; Nikpay et al., 2015; van der
Harst and Verweij, 2018), PPARGC1A polymorphisms have been
associated with the risk of the first-time CHD event and severity
in candidate gene association studies (Zhang et al., 2008;
Yongsakulchai et al., 2016; Maciejewska-Skrendo et al., 2019).
CHD is increasingly described to be a chronic disease with a
dynamic nature (Knuuti et al., 2019) and different genetic
components could be involved in its progression in different
phases. To the best of our knowledge, associations between
PPARGC1A and subsequent CHD outcomes have not been
investigated.

The GENetIcs of sUbSequent Coronary Heart Disease
(GENIUS-CHD) consortium has been established to
investigate the genetic determinants of disease progression,
following an index CHD event, as many patients are living
with CHD due to increased survival rates after a CHD event,
and little is known about the risk factors influencing disease
progression (Patel et al., 2019a). We conducted an individual-
level meta-analysis using data from 23 cohort studies within the
GENIUS-CHD consortium (Patel et al., 2019a) to investigate the

effect of three different SNPs in the PPARGC1A gene on the risk
of subsequent CHD. We could not analyze more than three SNPs
due to restrictions within the consortium. The SNP rs8192678
was selected based on extensive previously reported associations
with cardiometabolic phenotypes (Arya et al., 2004; Andersen
et al., 2005; Barroso et al., 2006; Ridderstråle et al., 2006; Povel
et al., 2010). We also included rs7672915 and rs3755863 because,
although less studied, they have been suggested to be involved in
myocardial metabolism or metabolic traits (Brito et al., 2009;
Juang et al., 2010; Mirzaei et al., 2012). In addition, we examined a
number of secondary cardiovascular disease endpoints and all-
cause mortality, as well as the possible effect modification by age,
sex, co-morbidities, and medication use.

METHODS

The Consortium
The GENIUS-CHD consortium is an international
collaboration, established in 2014 to investigate the impact
of genetics on secondary CHD events (http://www.genius-chd.
com/). Details about the consortium and inclusion criteria are
published elsewhere (Patel et al., 2019a; Patel et al., 2019b). In
brief, it mainly includes prospective cohort studies where
participants with established CHD at baseline were followed
for secondary CHD events. The cases are defined as those
experiencing a subsequent CHD event. Participating studies
received the local institutional review board approval and
included patients who had/provided the informed consent
at the time of enrollment.

Inclusion and Exclusion Criteria
Studies were included in the GENIUS-CHD consortium
according to the following criteria: First, recruitment of
participants with established CHD, defined as acute coronary
syndrome or coronary artery disease (any revascularization
procedures such as percutaneous coronary intervention,
coronary bypass surgery, or a significant (50%) coronary
artery plaque at angiography that affects any major epicardial
vessel) at baseline or with a history thereof; second, availability of
prospective follow-up and ascertainment of at least one clinical
cardiovascular outcome (including all-cause mortality); and
third, availability of samples, biomarkers, or in silico
genotyping data. In the present study, we only included
studies if SNP data in the PPARGC1A gene were available
(Figure 1, flow-chart).

Data Extraction and Quality Assessment
We examined three lead SNPs: rs8192678, rs7672915, and
rs3755863. If those variants were not available, proxies in high
linkage disequilibrium (r2 > 0.8) were considered: rs7683406,
rs9996943, rs1873532, rs10938963, and rs12650562 (Figure 1,
flow-chart). All proxy SNPs are intronic variants.

The quality control of the genotype data was performed by
each study prior to analysis. Minor allele frequencies (MAFs) and
Hardy–Weinberg equilibrium (HWE) were examined by
each study.
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Outcomes
The primary outcome was defined as myocardial infarction (MI)
or CHD death during follow-up. Secondary outcomes were MI,
coronary revascularization, heart failure, ischemic stroke, any
stroke, any CVD (including MI, stroke, coronary
revascularization, and CVD death), CHD death, CVD death,
and all-cause death.

Statistical Analysis
The associations between SNPs and cardiovascular outcomes
were evaluated in individual studies assuming an additive
genetic model and using time-to-event Cox proportional
hazards models adjusted for age and sex. Analyses were
performed using shared statistical scripts and harmonized
datasets across the consortium (Patel et al., 2019a; Patel et al.,
2019b).

The study-level effect estimates and their corresponding
standard errors were entered in an inverse variance weighted
fixed-effect meta-analysis model. The χ2 test for heterogeneity
and the I2 statistic were used to quantify heterogeneity. Stratified
analyses were performed for CHD subtypes at baseline: acute
coronary syndrome (ACS) and coronary artery disease (CAD)
with prior MI and CAD without prior MI. Stratification was also
performed for the baseline patient-level characteristics of age (<
or ≥65 years), sex, hypertension (physician-diagnosed or under
treatment), T2D (physician-diagnosed or under treatment),
body mass index (BMI) (18.5–24.9; 25–29.9; ≥30 kg/m2),
statin use, antiplatelet use, renal impairment
(eGFR<60 ml/kg/min), and left-ventricular impairment (left-
ventricular ejection fraction<45% or diagnosed heart failure
with impaired systolic function). Furthermore, sensitivity
analyses were performed by stratifying two study-specific
factors: European ancestry (a European study where >95% of
the participants were of European ancestry versus non-
European) and duration of the follow-up (< versus ≥5 years).

In addition, we repeated the main analysis excluding cohorts
departing from HWE (p < 0.05).

Effect sizes and confidence intervals (CI) were calculated using
the two-sided α of 0.05, and results are presented as hazard ratios
(HRs). Analyses at the coordinating centers were conducted by R
software (version 3.4.1) (R Development Core Team), and the
meta-analysis was performed using the EpiSheet tool (K.
Rothman, www.krothman.org).

RESULTS

Study Characteristics
In total, 23 studies from the GENIUS-CHD consortium with
established CHD and available SNP data in the PPARGC1A gene
were selected, with the lead SNPs available in 22, 17, and 19
studies and highly correlated (r2 > 0.8 in Europeans) proxies
available in 0, 2, and 2 studies for rs8192678 (non-synonymous
variant G482S), rs7672915 (single nucleotide variant in intron 2),
and rs3755863 (synonymous variant T528T), respectively
(Figure 1). The participant characteristics and genotyping
details (MAF and HWE p-value) of the SNPs under
investigation are presented in Tables 1, 2.

Meta-Analysis Results
We found null associations for all three SNPs with the primary
outcome of CHD death or MI (Figure 2). Similarly, null associations
were found for all three SNPswith all secondary outcomes (Figure 3).

Stratified Meta-Analysis
Stratification by the CHD subtype at baseline resulted in borderline
significant direct associations for rs8192678 (G482S) with the
primary outcome for baseline CAD without MI and borderline
inverse associations for rs7672915 (intron 2) for baseline ACS
(Figure 4). A significant inverse association was found for

FIGURE 1 | Flow chart of study selection criteria and available SNPs for the primary outcome. Correlation between lead and proxy SNP is indicated by r (source:
LDproxy Tool; ldlink.nci.nih.gov in European).
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TABLE 1 | Characteristics of studies included in the meta-analysis.

Cohort Study
(country)

Design,
CHD type

Year Mean
follow-up

time,
years
(SD)

N
recruited

with
CHD

Sex,
%

male

Mean
age,
years
(SD)

European
ancestry

(%)

PubMed ID

AGNES Arrhythmia Genetics in the
Netherlands

Cohort, ACS 2001–2005 6.73 (4.75) 1,459 79.2 57.8 (10.7) 100 20622880

ANGNES Angiography and Genes Study
(Finland)

Cohort,
mixed

2002–2005 8.20 (4.47) 588 65.5 64.1 (9.6) 100 21640993

CDCS Coronary Disease Cohort Study
(New Zealand)

Cohort, ACS 2002–2009 5.21 (2.15) 2,139 71.3 67.4 (12.0) 91.4 20400779

CTMM CTMM Circulating Cells
(Netherlands)

Cohort,
mixed

2009–2011 0.97 (0.37) 713 69 62.6 (10.1) 96.5 23975238

FINCAVAS Finnish Cardiovascular Study Cohort,
mixed

2001–2008 8.57 (3.99) 1,671 69.4 60.9 (11.0) 100 16515696

GoDARTSprevalent Genetics of Diabetes Audit and
Research in Tayside Scotland (I)

Population,
CAD

2004–2012 3.47 (2.95) 1,261 61.1 71.3 (10.9) 99.8 29025058

GoDARTSincident Genetics of Diabetes Audit and
Research in Tayside Scotland (P)

Population,
CAD

2004–2012 6.48 (3.06) 2,514 65.9 69.1 (9.4) 99.7 29025058

IATVB Italian Atherosclerosis,
Thrombosis and Vascular Biology
Group

Cohort, ACS 1997–2006 10.47 (4.45) 1,741 90.8 40.0 (4.4) 100 21757122

LIFE-Heart Leipzig (LIFE) Heart Study
(Germany)

Cohort,
mixed

2006–2014 1.62 (2.03) 5,564 77.2 63.9 (11.1) 100 32747942

LURIC The Ludwigshafen Risk and
Cardiovascular Health Study
(Germany)

Cohort,
mixed

1997–2000 8.58 (3.18) 2,320 76.6 63.8 (9.9) 100 11258203

OHGS Ottawa Heart Genomics Study
(Canada)

Cohort,
mixed

2010–2013 1.77 (0.27) 546 73.8 65.6 (11.1) 100 NA

PLATO The Study of Platelet Inhibition and
Patient Outcomes (International)

RCT, ACS 2006–2008 0.86 (0.24) 18,624 69.5 62.6 (11.0) 98.3 19332184

PMI Post Myocardial Infarction Study
(New Zealand)

Cohort, ACS 1994–2001 8.56 (3.58) 1,057 78 62.8 (10.6) 91.1 12771003

PROSPER Prospective Study of Pravastatin
in the Elderly at Risk (Netherlands)

RCT, CAD 1997–1999 3.15 (0.71) 893 70.3 75.4 (3.4) 100 10569329

SHEEP Stockholm Heart Epidemiology
Program (Sweden)

Cohort, ACS 1992–1995 14.87 (5.91) 1,150 70.7 59.3 (7.2) 100 17667644

SMART Second Manifestations of Arterial
Disease (Netherlands)

Cohort,
mixed

1999–2010 6.77 (3.86) 3,057 81.7 60.5 (9.3) 98.2 10468526

STABILITY Stabilization of Atherosclerotic
Plaque by Initiation of Darapladib
Therapy trial (International)

RCT, CAD 2008–2010 3.60 (0.57) 10,786 82 64.7 (9.1) 86.1 24678955

UCP Utrecht Cardiovascular
Pharmacogenetic Study
(Netherlands)

Cohort,
mixed

1985–2010 8.00 (4.16) 1,508 75.4 64.1 (10.0) 100 25652526

UKB United Kingdom Biobank
(United Kingdom)

Population,
CAD

2006–2010 6.39 (1.72) 12,045 80.6 69.9 (6.1) 94.2 1001779

VIVIT Vorarlberg Institute for Vascular
Investigation and Treatment Study
(Austria)

Cohort, CAD 1999–2008 7.43 (2.91) 1,447 72 64.5 (10.5) 99.8 24265174

GENEBANK Cleveland Clinic Genebank Study
(United States)

Cohort,
mixed

2001–2007 3.00 (0.00) 2,345 74.3 61.5 (11.1) 100 21475195

INVEST International Verapamil SR
Trandolopril Study Genetic
Substudy INVEST-GENES
(United States/International)

RCT, CAD 1997–2003 2.83 (0.82) 5,979 44 66.1 (9.7) 38.0 21372283,
17700361

UCORBIO Utrecht Coronary Biobank
(Netherlands)

Cohort,
mixed

2011–2014 1.6 (0.9) 1,493 75.6 65.4 (10.3) 72.4 NA

Additional studies not included in primary outcome analysis but included in secondary outcome analyses of all-cause mortality.

COROGENE Corogene Study (Finland) Cohort, ACS 2006–2008 7.7 (0.5) 1,489 70.9 64.7 (11.9) 100 21642350
MDCS Malmo Diet and Cancer Study

(Sweden)
Population,
CAD

1991–1996 8.3 (8.0) 4,546 60.2 58.0 (7.6) 100 19936945

(Continued on following page)
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rs7672915 (intron 2) with the primary outcome among the
≥65 years of age category as well as for renal impairment and
antiplatelet use (Figure 5B). There were no significant
associations between any of the SNPs and the primary outcome

in the models stratified by sex, hypertension, T2D, BMI, statin use,
and left-ventricular impairment (Figures 5A–C).

Sensitivity analyses only indicated marginal differences.
Neither exclusion of cohorts deviating from HWE nor

TABLE 1 | (Continued) Characteristics of studies included in the meta-analysis.

Cohort Study
(country)

Design,
CHD type

Year Mean
follow-up

time,
years
(SD)

N
recruited

with
CHD

Sex,
%

male

Mean
age,
years
(SD)

European
ancestry

(%)

PubMed ID

TRIUMPH Translational Research
Investigating Underlying
Disparities in Acute Myocardial
Infarction Patient’s Health Status
(United States)

Cohort, ACS 2005–2008 0.97 (0.15) 2,062 72.2 59.8 (12.1) 100 21772003

WTCCC (BHF) WTCCC CAD Study
(United Kingdom)

Cohort,
mixed

1998–2003 10.05 (2.81) 1,926 79.3 60.0 (8.1) 100 16380912,
17634449

More detailed information is available in Reference number 28: Patel RS,et al. (2019) Circ Genom Precic Med.
CHD, coronary heart disease; ACS, acute coronary syndrome; CAD, coronary artery disease; RCT, randomized controlled trial; SD, standard deviation.

TABLE 2 | Minor allele frequencies (MAFs) and p-values for Hardy–Weinberg equilibrium (PHWE) for the three SNPs in the studies included in the meta-analysis.

Cohort MAF rs8192678
(G482S)

PHWE rs8192678
(G482S)

MAF rs7672915
(intron 2)

PHWE rs7672915
(intron 2)

MAF rs3755863
(T528T)

PHWE rs3755863
(T528T)

AGNES 0.331 0.106 0.404a 0.842a 0.395 0.550
ANGNES 0.316 0.075 0.385 0.265 0.343 0.280
CDCS 0.345 0.880 0.465 0.254 0.402 0.741
CTMM 0.345 0.720 0.430 0.242 0.402 0.237
FINCAVAS 0.320 0.261 0.355 0.0006b 0.350 0.162
GoDARTSprevalent 0.348 0.784 0.466 0.485 0.409 0.572
GoDARTSincident 0.325 0.523 0.444 0.064 0.382 0.416
IATVB 0.360 0.909 - - 0.441a 0.672a

LIFE-Heart 0.323 0.135 0.432 0.950 0.367 0.109
LURIC 0.345 0.776 0.448 0.571 0.395 0.654
OHGS 0.287 0.806 0.424a 0.215a 0.355 0.097
PLATO 0.325 0.698 0.451 0.374 0.374 0.701
PMI 0.348 0.015b 0.435 0.093 0.404 0.032
PROSPER 0.338 0.582 0.442 0.510 0.399 0.420
SHEEP 0.339 0.946 0.399 0.804 0.391 0.416
SMART 0.339 0.965 - - - -
STABILITY 0.334 0.778 0.463 0.026b 0.385 0.714
UCP 0.353 0.734 0.435 0.434 0.411a 1.0a

UKB 0.342 0.982 0.061 0.909 0.005 0.846
VIVIT - - - - 0.477a 0.270a

GENEBANK 0.348 0.716 0.423 0.472 0.4 0.931
INVEST 0.301 0.034b 0.498 0.554 0.374 0.385
UCORBIO 0.337 0.643 - - - -

Additional studies are not included in primary outcome analysis but included in secondary outcome analyses of all-cause mortality.

COROGENE 0.322 0.373 0.333 0.162 0.350 0.609
MDCS 0.342 0.325 0.379 0.536 0.392 0.769
TRIUMPH 0.370 0.002b 0.464 0.103 0.404 0.015b

WTCCC (BHF) 0.333 0.341 0.460 1.0 0.408 1.0

aIndicates the use of a highly correlated proxy (AGNES, rs9996943; OHGS, rs7683406; IATVB, rs10938963; UCP, rs1873532; and VIVIT, rs12650562).
bStudies with p HWE<0.05 were excluded in sensitivity analyses for the primary outcome.
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FIGURE 2 | Meta-analyses of the associations between three SNPs in the PPARGC1A gene and primary outcome (CHD death or myocardial infarction) in
participants with baseline CHD within GENIUS-CHD using an additive, fixed-effect model adjusted for age and sex.
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stratification by European ancestry changed associations with the
primary outcome (data not shown). Stratification by follow-up
time also resulted in null associations, except for significant
inverse associations for rs7672915 (intron 2) and the primary
outcome in the stratum with follow-up <5 years (HR: 0.93, 95%
CI 0.88–0.99).

DISCUSSION

This meta-analysis resulted in overall null associations between
three polymorphisms in the PPARGC1A gene studied in relation
to the risk of subsequent CHD events (primary outcome) in a
population with established CHD. The polymorphism rs7672915
(intron 2) was, however, observed to be borderline inversely
associated with subsequent CHD events.

The results were generally consistent across the strata of CHD
subtypes at baseline as well as of patient- and study-level
characteristics. However, inverse associations with the primary
outcome were seen for rs7672915 (intron 2) amongst those

with age ≥65, renal impairment, and use of antiplatelets. In
addition, inverse associations with the primary outcome were
seen for rs7672915 (intron 2) among studies having a follow-up
<5 years.

Human Studies on Polymorphisms in the
PPARGC1A Gene
Our results suggested that the PPARGC1A gene in patients with
established CHD does not play an important role in disease
progression, leading to subsequent CHD events. Previous
research study has not investigated this relationship. However,
there are studies that indicate that the PPARGC1A gene is
important for the development of CAD (Zhang et al., 2008;
Yongsakulchai et al., 2016; Maciejewska-Skrendo et al., 2019)
and cardiometabolic disease phenotypes (Ek et al., 2001; Barroso
et al., 2006; Xie et al., 2007; Lai et al., 2008b; Vimaleswaran et al.,
2008; Yang et al., 2011; Franks et al., 2014; Jemaa et al., 2015;
Kruzliak et al., 2015). The PPARGC1A gene (rs8192678; G482S)
was associated with an increased risk of CAD in a Chinese

FIGURE 3 |Meta-analyses pooled results of the associations between three SNPs in the PPARGC1A gene and secondary outcomes in participants with baseline
CHD within GENIUS-CHD using an additive, fixed-effect model stratified for age and sex (phomogeneity>0.05 for all outcomes). Abbreviations: CHD, coronary heart
disease; CVD, cardiovascular disease; MI, myocardial infarction.
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population (Zhang et al., 2008). Moreover, the PPARGC1A gene
(rs8192678; G482S), alone as well as in combination with
polymorphisms in PPARG and liver X receptor α (LXRA),
associated with an increased risk and severity of CAD in a
Thai population (Yongsakulchai et al., 2016). The PPARGC1A
gene (rs8192678; G482S) was further associated with T2D in a
Tunisian population (Jemaa et al., 2015), with waist
circumference among Slovenian participants with T2D
(Kruzliak et al., 2015) and with severe hypertension in a
Chinese population (Xie et al., 2007). The PPARGC1A gene
was also identified in a search for protein-level interactions
with transcripts mapped nearest to T2D susceptibility loci
(Morris et al., 2012). Although the rs8192678; G482S Ser482
allele appears to be associated with increased obesity and T2D
susceptibility (Vandenbeek et al., 2017) as well as a poorer
therapeutic efficacy of rosiglitazone (Zhang et al., 2010), its
carriers also appear to respond better to caloric restriction
(Goyenechea et al., 2008) and bariatric surgery (Geloneze
et al., 2012). In the Boston Puerto Rican Health Study, they
found associations between polymorphisms in the PPARGC1A
gene and DNA damage, T2D, and CVD (Lai et al., 2008b).
However, meta-analysis only indicated modest roles within
specific ethnicity and age groups for polymorphisms in the
PPARGC1A gene (rs8192678; G482S) with T2D (Barroso
et al., 2006; Yang et al., 2011) and hypertension
(Vimaleswaran et al., 2008). The Ser482 allele carried an
increased risk for hypertrophic cardiomyopathy in a
community-based cross-sectional study in China (Wang et al.,
2007). However, another study in a Russian population did not
find evidence for such an association (Nikitin et al., 2010). The
two other SNPs under investigation were less studied but have
been shown to associate with metabolic traits (Brito et al., 2009;
Juang et al., 2010; Mirzaei et al., 2012): rs7672915 (intron 2)
associated with left-ventricular diastolic function in Caucasians

(Juang et al., 2010) whereas rs3755863 (T528T) was found to be
associated with waist circumference in European children (Brito
et al., 2009) and with LDL cholesterol in an adult population
consisting mostly of obese women (Mirzaei et al., 2012).
Furthermore, rs3755863 (T528T) seemed to decrease
PPARGC1A expression levels in cellular models (Mirzaei et al.,
2012). Although results from subgroup analyses always should be
interpreted with caution, it is possible that the significant
association between rs7672915 (intron 2) and the primary
outcome seen only in the subgroup of individuals aged
65 years or older in our study population may be relevant;
age-related risk factors could interact with genetics and
increase vulnerability to subsequent events. Based on similar
reasoning, the significant associations we observed in
subgroups with impaired renal function and users of
antiplatelets, respectively, could be relevant. Also, the fact that
rs7672915 (intron 2) was significantly associated with our
primary outcome when the basis for the analysis was limited
to including cohort data with less than 5 years of follow-up may
indicate that the PPARGC1A gene plays a role in CHD
progression, possibly in repair and recovery after an initial
event in the short term.

Mechanistic Studies on PPARGC1A and
Cardiometabolic Health
The PPARGC1A gene, located on chromosome 4, encodes for a
protein consisting of 798 amino acids in humans. It is highly
expressed in tissues abundant in mitochondria such as the liver
(in fasting states) (Yoon et al., 2001), kidney, brown adipose
tissue, skeletal muscle, brain, and heart (Puigserver et al., 1998).
PPARGC1A activates transcription factors by inducing a
conformational change after binding to them, which increases
the affinity of the transcription complex to other coactivators that

FIGURE 4 | Meta-analyses pooled results of the associations between three SNPs in the PPARGC1A gene and the main outcome (CHD death or myocardial
infarction) in participants with baseline CHD within GENIUS-CHD using an additive, fixed-effect model stratified for the baseline CHD subtype (phomogeneity>0.05 for all
outcomes).Abbreviations: ACS, Acute Coronary Syndrome; CAD, Coronary Artery Disease; MI, Myocardial Infarction.
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have histone acetyltransferase activity. This increased affinity will
then lead to the acetylation of histone proteins and
conformational alterations that allow the increased accessibility
of DNA to the transcription complex (Puigserver et al., 1999).
Several pathways involving PPARGC1A and energy metabolism

have been described, for example, mitochondria biogenesis,
glucose/fatty acid metabolism, remodeling of fiber muscle
composition, and adaptive thermogenesis (Liang and Ward,
2006). The effect of PPARGC1A on the mitochondrial
metabolism, especially, can have implications for cardiac

FIGURE 5 | Panel (A):Meta-analyses of the associations between rs8192673 (G482S) in the PPARGC1A gene and the primary outcome (CHD death or myocardial
infarction) in participants with baseline CHD within GENIUS-CHD using an additive, fixed-effect model stratified for patient-level characteristics. LV, left ventricular. Panel
(B): Meta-analyses of the associations between rs7672915 (intron 2) in the PPARGC1A gene and the primary outcome (CHD death or myocardial infarction) in
participants with baseline CHD within GENIUS-CHD using an additive, fixed-effect model stratified for patient-level characteristics. LV, left ventricular. Panel (C):
Meta-analyses of the associations between rs3755863 (T528T) in the PPARGC1A gene and the primary outcome (CHD death or myocardial infarction) in participants
with baseline CHD within GENIUS-CHD using an additive, fixed-effect model stratified for patient-level characteristics. LV, left ventricular.
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health by regulating the fuel availability and the amount of
reactive oxygen species in the heart (Di et al., 2018).
PPARGC1A target genes that are thought to play a role in
cardiac health are estrogen-related receptors (ERRs; i.e., ERRα,
ERRβ, and ERRγ) and nuclear respiratory factor-1, which activate
many mitochondrial genes, as well as PPARs (i.e., PPARα,
PPARβ, PPARγ, and PPARδ), which play important roles in
the fatty acid uptake and oxidation in the heart (Di et al., 2018).
Any dysregulation in PPARGC1A may be detrimental; studies
have shown that its downregulation increased vascular stress
(Kadlec et al., 2016), oxidative stress and inflammation
(Waldman et al., 2018; Rius-Pérez et al., 2020), impaired
mitochondrial function, and reduced antiapoptotic and
angiogenic responses (Mahmood et al., 2019), whereas its
upregulation induced pathological changes in mitochondrial
biogenesis, contributing to cardiac disease (Lehman et al.,
2000; Le Chen and Knowlton, 2011; Caravia et al., 2018). One
of the SNPs (rs8192678; G482S) was recently shown to decrease
the stability, impact structural conformation, and catalytic
function of the PPARGC1A protein, which could be
detrimental for CAD (Taghvaei et al., 2021). However, this is
not reflected in our findings of null associations for the three
tested SNPs in the PPARGC1A gene with subsequent CHD
events. Our findings of inverse associations of rs7672915,
intron 2 in subgroups (older age, with renal impairment, and
antiplatelet users) could be random findings or due to the role of
PPARGC1A in mitochondria subsequently affecting the aging
process (Wenz, 2011), kidney disease (Lynch et al., 2018), and
platelet function (Melchinger et al., 2019).

Limitations and Strengths
There are several limitations which may have attenuated or diluted
the effect estimates. First, when studying cohorts of patients, as in
this study, there is always a possibility that the index event bias may
influence the results (Dahabreh and Kent, 2011; Patel et al., 2019a).
Our study population consists of CHD survivors subjected to
varying types of preventive actions, including lifestyle changes
and drug treatments, which may have impacted risks for
recurrent events and death. In addition, there is a possibility that
individuals who died early with the disease have a more severe
phenotype and that the degree of severity is linked to the presence of
the genetic variants we studied. However, in the previously published
genome-wide studies of genetic variants in relation to the risk of first-
time events of CHD, the current genetic variants were not included
among the significant association findings (Peden et al., 2011;
Schunkert et al., 2011; Deloukas et al., 2013; Nikpay et al., 2015;
van der Harst and Verweij, 2018). Furthermore, if the index event is
a consequence of a strong risk factor, there may be lower levels of
exposure to other—individually weaker—independent risk factors in
the selected population, which could have attenuated associations
between genetic variants and the risk of subsequent events in our
study (Patel et al., 2019b). Second, we had no information on the age
of onset of the index CHD event or on whether revascularization
procedures were late-staged (belonging to the index event) or
unplanned and symptom-driven (true secondary event). Third,
the variability in the follow-up between studies could impact the
findings through outcomemisclassification. Fourth, it is possible that

other SNPs, outside our selected three, in the PPARGC1A gene play a
key role. Finally, in the present study, we only investigated single
SNP associations within a single gene whereas it could be relevant to
also address gene–gene interactions and polygenetic scores. The
major strength of this study, however, is the large number of studies
and individuals included. This allowed us to make reasonably
conclusive inferences.

CONCLUSION

The findings from this large individual-level meta-analysis do not
indicate the involvement of the PPARGC1A gene in the
progression to secondary CHD events amongst people who
experienced an index CHD event. However, future research
studies on the potential role of PPARGC1A in subgroups of
patients with established CHD, in relation to the risk of
recurrence, may be warranted.
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