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Editorial on the Research Topic

Inference, Causality and Control in Networks of Dynamical Systems: Data Science andModeling
Perspectives to Network Physiology With Implications for Artificial Intelligence

A fundamental problem crisscrossing the fields of physiology and artificial intelligence is
understanding how complex activity and behavior emerge from the intrinsic underlying
structure and dynamics. To address this problem, we need new methodologies and tools to
perform a comprehensive analysis of complex systems dynamics. Multifractal formalism and
methodology enable us to investigate local interactions underlying physiological systems and
quantify the organization of physiological temporal fluctuations and their cascades across scales
(Plamen Ch. Ivanov et al., 1999, 2001; Ivanov et al., 2002; Mukli et al., 2015). Besides, we need a
general network framework to examine networks of interactions among diverse subsystems across
space and time scales that lead to emergent complex behaviors at the systems level (Bashan et al.,
2012; P. C. H. Ivanov et al., 2016; Ivanov and Bartsch, 2014). Despite recent progress in the theory of
dynamic networks, there are fundamental methodological and conceptual challenges in
understanding how global states and functions emerge in networks of diverse dynamical systems
with time-varying interactions and the basic principles of their hierarchical integration. In particular,
when mining the time-varying complex networks structure and dynamics, one has to overcome
various internal or external perturbations that can transiently or permanently mask the activity of
particular nodes and their causal interactions (Gupta et al., 2019; Gupta et al., 2018; Xue and Bogdan,
2017a; Xue and Bogdan, 2019; Xue and Bogdan, 2017b).

Novel artificial intelligence techniques and machine learning algorithms may equip us with the
tools to classify and predict the emergent behavior in dynamical networks based simultaneously on
network topology and temporal patterns in network dynamics. Key insights and knowledge that
emerge from multifractal and differential geometry concepts can help analyze and quantify their
complexity. Furthermore, they allow us to determine the most efficient network architecture to
generate a given function, quantify key universalities, and identify new theoretical directions for
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artificial intelligence andmachine learning based on physiological
principles (Richards et al., 2019). Ultimately, we will attain
sustainable systems that enjoy seamlessly indistinguishable
features of physiological systems (Wu et al., 2021).

From genomic, proteomic, and metabolic networks to microbial
communities, neural systems, and human network physiology of
organ systems, complex systems display multi-scale spatiotemporal
patterns that are frequently classified as non-linear, non-Gaussian,
scale-invariant, and multifractal (Bassingthwaighte et al., 2013;
Ivanov et al., 2009; Stanley et al., 1999; West and Zweifel, 1992).
While several efforts have demonstrated that electromyographic
signals possess fractal properties (Sanders et al., 1996; Xue et al.,
2016; Garcia-Retortillo et al., 2020; Rizzo et al., 2020), (Martin del
Campo Vera and Jonckheere) report a complex bursting rate
variability phenomenon where the surface electromyographic
(sEMG) bursts are synchronous with wavelet packets in the
D8 sub-band of the Daubechies 3 (db3) wavelet decomposition
of the raw signal. Their db3 wavelet decomposition analysis
reconstructs the sEMG bursts with two high coefficients at level
8, indicating a high incidence of two consecutive neuronal
discharges. In contrast to heart rate variability (P. Ch Ivanov
et al., 1998), the newly reported bursting rate variability
phenomenon involves a time-localization of the burst with a
statistical waveform matching between the “D8 doublet” and the
burst in the raw sEMG signal. While this analysis focused on an
available small cohort of patients, further comprehensive studies can
elucidate the interdependencies between the electromyographic
signals and other brain and physiological processes, determine
the mechanistic role, and implications for medical applications.

Quests for understanding the inner workings of complex
biological dynamics have provided not only more appropriate
and efficacious medical therapies but have also led to new
artificial intelligence algorithms and architectures. For
instance, inspired by early modeling of how biological neurons
process information, the reservoir computer model–a type of
recurrent neural network where the set of outputs are fit to a
training signal–provided promising high-performance low-
power consumption computational strategies in classification
tasks. Along these lines, (Carroll) considers the computational
difficulty of parameter optimization in a reservoir computer and
demonstrates that the optimum classification performance occurs
for the hyperparameters that maximize the entropy of either a
spiking reservoir computer or a reservoir computer. Intriguingly,
T. Carroll shows that optimizing for entropy only requires a
single realization of each signal to be classified, which provides a
fast and low power computational strategy.

Intelligence is an essential trait characteristic of healthy biological
systems, allowing them not only to locally optimize in search for
better fitness states, but also to cope with unknown rare
environmental perturbations. While much of the complex
dynamical systems theory focused on defining, quantifying, and
analyzing the degree of emergence (Balaban et al., 2018;
Koorehdavoudi and Bogdan, 2016), self-organization (Balaban
et al., 2018; Koorehdavoudi and Bogdan, 2016; Polani, 2008),
self-optimization (Gershenson et al., 2021; Koorehdavoudi and
Bogdan, 2016; Prokopenko et al., 2009; Prokopenko et al., 2014)
and complexity (Adami, 2002; Jost, 2004; Koorehdavoudi and

Bogdan, 2016) of various complex biological systems towards
providing a definition of “intelligence” (Hernández-Orallo et al.,
2021), generalization–the ability of a system to handle unexpected
(future) situations for which it was not trained with a similar degree
of success to that small data on which it was trained—remains an
essential feature distinguishing human and artificial intelligence.
Current efforts in artificial intelligence and machine learning
investigate the degree to which a variety of neural network
architectures are capable of “generalizing” and exhibiting
intelligent behavior. Along these lines, Stoop) provides a series of
fundamental examples demonstrating that for situations not
included in the training efforts, the AI systems tend to run into
substantial problems. These fundamental examples highlight not
only the difference between human and artificial intelligence but also
call for renewed interest in defining the theoretical foundations of
intelligence.

By taking inspiration from biological neural systems
capable of solving complex multi-objective problems
characterized by ill-conditioned Hessians, Chatterjee et al.
pioneer a fractional time series analysis framework that can
not only model the neuro-physiological processes but also can
circumvent the challenges of current optimization tools. More
precisely, they show that the long-range memory observed in
many biological systems and neurophysiological signals in
particular exhibits non-exponential power-law decay of
trajectories that can model the behavior associated with the
objective function’s local curvature at a given time point. This
allows them to propose the NEuro-inspired Optimization
(NEO) method to deal with ill-conditioned Hessian
problems. While promising, this effort shows that
mathematical approaches targeting understanding the
multifractality of biological systems can provide new
theoretical directions for artificial intelligence.

The works presented in this Research Topic collection and current
advances in the field of fractal and multifractal investigations of
physiological systems structure and dynamics, and their applications
to artificial intelligence, outline new challenges and opportunities in
multidisciplinary research and applications. Dealing with the
heterogeneity, multi-modality, and complexity of physiological and
artificial systems requires rigorous mathematical and algorithmic
techniques to extract causal interdependencies between systems
across different scales while overcoming various noise sources. As
such, progress in this direction will require new algorithmic strategies
to quantify time-varying information flow among diverse
physiological and artificial processes across scales and determine
how it influences the system dynamics.

Furthermore, there is an urgent need to adopt a cross-scale
perspective and a corresponding theoretical framework to
investigate the multi-scale regulatory mechanisms underlying
the overall network and its relation to emergent states and
functions in physiological and artificial systems. This urges the
interactions of statistical physics, non-linear dynamics,
information theory, probability and stochastic processes,
artificial intelligence, machine learning, control theory and
optimization, basic physiology, and medicine, such that new
theoretical and algorithmic foundations will emerge for
analyzing and designing physiological and artificial systems.
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Only then, the biomedical and engineering communities will be
able to develop new control methodologies that do not seek to
only enforce a specific reference value but rather ensure that the
complexity and multifractality are restored to a desirable profile.
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