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Objectives: To evaluate a new deep neural network (DNN)–based computer-

aided diagnosis (CAD) method, namely, a prostate cancer localization network

and an integrated multi-modal classification network, to automatically localize

prostate cancer on multi-parametric magnetic resonance imaging (mp-MRI)

and classify prostate cancer and non-cancerous tissues.

Materials and methods: The PROSTAREx database consists of a “training set”

(330 suspected lesions from 204 cases) and a “test set” (208 suspected lesions

from 104 cases). Sequences include T2-weighted, diffusion-weighted, Ktrans,

and apparent diffusion coefficient (ADC) images. For the task of abnormal

localization, inspired by V-net, we designed a prostate cancer localization

network with mp-MRI data as input to achieve automatic localization of

prostate cancer. Combining the concepts of multi-modal learning and

ensemble learning, the integrated multi-modal classification network is

based on the combination of mp-MRI data as input to distinguish prostate

cancer from non-cancerous tissues through a series of operations such as

convolution and pooling. The performance of each network in predicting

prostate cancer was examined using the receiver operating curve (ROC),

and the area under the ROC curve (AUC), sensitivity (TPR), specificity (TNR),

accuracy, and Dice similarity coefficient (DSC) were calculated.

Results: The prostate cancer localization network exhibited excellent

performance in localizing prostate cancer, with an average error of only

1.64 mm compared to the labeled results, an error of about 6%. On the test

dataset, the network had a sensitivity of 0.92, specificity of 0.90, PPV of 0.91,

NPV of 0.93, and DSC of 0.84. Compared with multi-modal classification

networks, the performance of single-modal classification networks is slightly

inadequate. The integrated multi-modal classification network performed best

in classifying prostate cancer and non-cancerous tissues with a TPR of 0.95,

TNR of 0.82, F1-Score of 0.8920, AUC of 0.912, and accuracy of 0.885, which

fully confirmed the feasibility of the ensemble learning approach.
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Conclusion: The proposed DNN-based prostate cancer localization network

and integrated multi-modal classification network yielded high performance in

experiments, demonstrating that the prostate cancer localization network and

integrated multi-modal classification network can be used for computer-aided

diagnosis (CAD) of prostate cancer localization and classification.

KEYWORDS

deep neural networks (DNN), computer-aided diagnosis (CAD), prostate cancer
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1 Introduction

Prostate cancer is the most common malignant tumor of the

male genitourinary system and has become the second most

common malignant tumor in men worldwide, second only to

lung cancer (Sung et al., 2021). Image information is of great

significance for the diagnosis of prostate cancer. Transrectal

prostate color Doppler ultrasound can be used as a screening

tool for prostate cancer. Magnetic resonance examination is widely

used to evaluate prostate cancer, and pathological examination and

Gleason score are an important basis for prostate grading (Litwin

and Tan, 2017). In the clinical diagnosis of prostate cancer, a

radiologist is required to separate the prostate tissue from the

surrounding tissues and organs in the prostate MRI. The

meaningful information extracted by this segmentation process

includes shape, the relative position of organs, volume, and

abnormal signals. Because the area of prostate tissue in MRI is

small, less valid information is available, and the size, shape, and

location of prostate tissue vary from patient to patient. Precise

localization of the prostate and identification of prostate cancer

remains difficult for radiologists.

In recent years, deep learning technology has developed

rapidly in the medical field, which can extract features from

image data in a supervised or unsupervised manner for image

classification or segmentation. Deep neural network (DNN) is an

artificial neural network that imitates the function of human

neurons and can perform tasks such as classification (Ciresan

et al., 2012), image segmentation (Quan et al., 2021), and entity

reconstruction (Nguyen et al., 2020). It has a stronger expressive

ability and can fit almost any function, but it also has problems

such as many network parameters, a large training amount, and

difficulty in training. The specific structure of DNN is shown in

Supplementary Figure S1. The use of DNNs is growing

exponentially, and researchers have used DNNs to correctly

classify a large number of different classes of images (Deng

et al., 2009). One of the main uses of DNN in medicine is to

aid in the diagnosis of certain types of cancer, which are often

identified clinically by skilled radiologists from medical images.

Cancer detection methods based on artificial intelligence and MRI

are widely used in daily clinical diagnosis, which has achieved

higher diagnostic success rates than experienced radiologists. The

study shows that the success rate of lung cancer detection and

breast cancer detection using DNN is significantly better than the

results of manual detection by radiologists (Becker et al., 2017;

Coudray et al., 2018). In addition to the use of DNN onMRI, other

studies have shown that the use of DNN can help determine the

accuracy of results from transrectal biopsies for the diagnosis of

prostate cancer (Takeuchi et al., 2019).

Therefore, DNN-based automatic localization of prostate MRI

and prostate cancer diagnosis is a study with good clinical

application prospects, which can assist radiologists in better

diagnosis of prostate cancer. We propose a computer-aided

diagnosis (CAD) method for localization and classification of

prostate cancer based on DNN and mp-MRI, called prostate

cancer localization network and integrated multi-modal

classification network, aiming to improve the efficiency of

radiologists. First, we used MR images provided by public

prostate cancer databases and preprocessed them for training

localization and classification models (Armato et al., 2018). The

previously defined metric algorithm was then fully evaluated using

a test set and a validation set. Finally, the output contains the image

locations of possible malignancies and the likelihood of detecting

prostate cancer based on the patient’s multi-parametric MRI.

2 Materials and methods

The goal of this study was to propose a new diagnostic assistant

technology for prostate cancer, which uses multiple prostate MRIs

of each patient as the input of the localization and classification

model, and the output is the specific location of the localization and

the classification of benign and malignant tissue, aiming to identify

potential tumors. It is worth stating that our proposed localization

network and classification network are both studied independently.

2.1 Data set

The PROSTATEx public database used in this study is part of

the SPIE-AAPM-NCI Prostate MR Classification Challenge,

which aims to advance the diagnostic classification of prostate

cancer by analyzing prostate MRI (Armato et al., 2018). The

database, collected by Radboud University Medical Centre

(Radboudumc), covers more than 300,000 prostate MRIs from
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346 patients, including T2-weighted image (T2WI), proton

density–weighted image (PdWI), dynamic contrast

enhancement (DCE), and diffusion-weighted (DW) images.

Each patient has a Ktrans image, one or more DW images,

and one or more T2 images.

In the DICOM file of the PROSTATEx dataset, the header

information consists of the acquisition information of the image

with the basic information of the case. Among them, the image

acquisition information includes acquisition time, size, repetition

time, pixel spacing, image position, and orientation. The dataset

provides the coordinates of one or more points of interest (POIs)

and information on the prostate area. Based on human

experience, the characteristics of prostate lesions vary from

region to region. Four prostate zones are associated with the

POI provided: the peripheral zone (PZ), the transitional zone

(TZ), the anterior fibromuscular stroma (AS), and the seminal

vesicle (SV). The details of the dataset are shown in Table 1. The

specific image classification of the database is shown in Table 2.

The training set of the PROSTAREx dataset contains

204 cases with 330 suspicious cancer lesions, of which 76 are

gold standard “True” lesions, and the remaining 254 are gold

standard “False” lesions. The test set contains 104 cases and

208 suspicious lesions to be diagnosed.

2.2 Data preprocessing

We observed the PROSTATEx dataset using ITK-SNAP and

concluded that there are three problems in MR image

preprocessing of the prostate: 1) abnormal data acquisition,

such as missing sequences and different acquisition order; 2)

different image resolution and gray value distribution among

sequences; 3) insufficient sample size, containing only

TABLE 1 Details of PROSTATEx dataset.

Category PZ TZ As SV Total

Training set 191 82 55 2 330

Test set 113 59 34 2 208

AS, anterior fibromuscular stroma; PZ, peripheral zone; SV, seminal vesicle; TZ,

transitional zone.

TABLE 2 PROSTATEx database image classification, including Ktrans, ADC, and t2-weighted images.
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330 training samples, and the network training is prone to

overfitting.

To solve the problems existing in the dataset and further

reduce the redundant information of network learning, the

following preprocessing steps are proposed in this article, as

shown in Figure 1. The prostate MRI data are first read so that the

format is consistent between sequences, and then image

resampling is performed so that the pixel spacing is consistent

FIGURE 1
Prostate MRI data preprocessing steps.

FIGURE 2
Prostate MR image alignment results, where (A) ADC image, (B) T2-weighted image, and (C) overlap map after image alignment.
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from case to case and from sequence to sequence. Next, the

grayscale values are adjusted to ensure a consistent histogram

distribution for each sequence. To further reduce redundant

information, prostate tissue is extracted to reduce the learning

of background information by the network. After generating a

region of interest (ROI) that matches the network input

structure, image enhancement is performed to expand the

sample size.

We performed data cleaning on the training set and

eliminated the cases with missing sequences. This decision

reduced two cases, leaving 202 cases after elimination, each

containing four sequences, namely, T2WI sequences, DWI

sequences, Ktrans sequences, and ADC sequences. To expand

the sample size, we used the common image enhancement

methods of flip, pan, rotate, and zoom for multiple images of

prostate MRI, and in addition, used the data enhancement

method of Mixup to improve the linear expression between

different samples.

The prostate alignment transformation used in this study is

the B spline transformation. To make the alignment easier, two

resolutions are used, first using a low resolution for the alignment

and then a high resolution for the alignment. In performing the B

spline transformation, a mutual information function with an

increased penalty for rigidity is used as the optimization objective

using an adaptive gradient descent algorithm. Finally, the rigid

transform and B spline transformation were combined to obtain

the final transform results. The results of prostate MR image

alignment are shown in Figure 2.

2.3 Prostate cancer localization network
structure

For anomaly localization, previous research studies have

created a 3D convolutional DNN specifically for medical

image segmentation. The architecture used in this study is

based on V-net (Milletari et al., 2016), a well-known image

segmentation network for medical imaging. The main

modification made in this study is the redefinition of the

input and output tensors and activation functions. Both input

and output tensors are of size (128,128,16,1), and Leaky ReLU is

used as the activation function because the original PreLU

activation function increases the risk of overtraining in small

databases. At the same time, the output layer uses the sigmoid

activation function, which can get the binary position of the

tumor, and the output is reflected as the segmentation of the

same position in the figure. The specific architecture is shown in

Figure 3 to facilitate its repeatability.

2.4 Single-modal classification network
structure

To address abnormal single-modal image classification, a

lightweight architecture based on Inception-V3 and VGG-16

networks is proposed (Rueckauer et al., 2017). Typically, in this

type of architecture, ReLU is chosen as the activation function

(Dahl et al., 2013). However, to avoid problems such as gradient

FIGURE 3
Network structure of the V-Net–based prostate cancer anomaly localization system.
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FIGURE 4
(A) Single-mode classification network structure. (B) Input tensor multi-modal classification network structure. (C) Integrated multi-modal
classification network structure.
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decay, LeakyReLU is still chosen as the activation function. The

specific structure is shown in Figure 4A.

According to the order in the network structure, each process

is introduced in turn:

1) Multiscale stage: Since tumors may be of different sizes or

located in different locations, applying a series of multiscale

3D convolutions to the input data enables us to detect possible

anomalies. This technique comes from the inception-v3

network, as it has been shown that multiscale filter banks

can give good results on classification problems (Chollet and

Ieee, 2017).

2) Processing stage: This stage starts from the max-pool layer,

which allows obtaining the features of the maximum value.

Convolutional filter banks are then used to obtain more

complex features for further refinement of classification.

This filter-based design is inspired by networks such as

VGG-16 (Zhang et al., 2016). After this, a vectorized layer

is used to unify all dimensions for dimensionality reduction.

3) Classification stage: The dense layer is used for classification.

Experience has shown that the best training results are

obtained using two dense layers with ten neurons.

2.5 Multi-modal classification network
structure

Based on the single-modal classification network, we propose

a multi-modal classification network structure, which tries to use

multiple medical image data of patients and tries to combine the

information of different attributes to achieve a better

classification effect. This work proposes two different multi-

modal classification network structures:

2.5.1 Input tensor multi-modal classification
network structure

The goal of the multi-modal classification network structure

design is to have an accurate classification effect, and it can be

trained using different modes of 3D volume channels to have

multiple perspectives on the diagnosis of the same lesion

location. The model uses five images of the same patient as

input, for which it is necessary to preselect patients with more

than five images available, reducing the training set. The rest of

the neural network structure is the same as the single-modal

classification structure in Figure 4A, but the input consists of five

images each time instead of a single image. The specific network

structure is shown in Figure 4B.

2.5.2 Integrated multi-modal classification
network structure

This model is the most complex in the article and is designed

to use all the information previously obtained to generate a more

accurate model. The network structure is based on the concept of

multi-model ensemble learning (Xiao et al., 2018), which uses

several lower-complexity classifiers to obtain a classifier with

stronger performance. The model input uses all five types of

images, but unlike the input tensor multi-modal classification

structure, each type of image is now evaluated in its specific

single-modal network structure, and the previously obtained

weights are used to adjust the model parameters for best

results. The outputs of these five sub-networks are processed

in two convolutional layers, and the corresponding neurons use

the leaky-RELU activation function and the Sigmoid activation

function, respectively, to achieve the effect of binary

classification. The specific structure is shown in Figure 4C.

2.6 Training parameters

Our model is implemented in python (version 3.8) and uses

Tensorflow, Keras, OpenCV, and Cuda Toolkit as the backend

DNN learning library.

We designed comparison experiments to select

hyperparameters for training the classification network,

including optimizers (ADAM, AdaGrad, and RMSProp),

learning rate, epoch, and batch size. 1e−4 and 1e−5 learning

rates were used to compare the performance of the algorithms

in the comparison experiments. The model was applied to

training with batches of sizes 4 and 8, while the

corresponding epoch size grew from 50 to 200, increasing by

50 each time.

The parameters chosen for training the model are as follows.

1) Optimizer: The ADAM optimizer was used in this study

(Zhang, 2018). The reason for choosing ADAM is that it

combines the advantages of the two optimization

algorithms, AdaGrad and RMSProp, and

comprehensively considers the first-order moment

estimation of the gradient (that is, the mean value of the

gradient) and the second-order moment estimation (that

is, the uncentered variance of the gradient) and calculates

out the update step size. Parameter updates in ADAM are

not affected by gradient scaling. Hyperparameters are well

interpretable and usually require little or no tuning. At the

same time, it can naturally realize the step size annealing

process (automatically adjust the learning rate), which is

very suitable for large-scale data and parameter scenarios

such as medical image processing.

2) Batch size: Due to the small size of the database, the batch size

was set to 4. This is a small-scale case and can lead to

confusion in the direction of gradient descent.

3) Number of iterations: The number of iterations was set to 200,

while retaining the weights of those excellent results in the

validation set, thus, avoiding overfitting.

4) Learning rate: The learning rate was set to 1e−5, which is

determined by the batch size.
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5) Loss function: The loss function used in this study was focal

loss, which is used to solve the problem of imbalance between

positive and negative samples. The imbalance between

positive and negative samples can cause the model training

to fall into the local minimum of the loss function. Focal loss

is used in medical image classification problems to reduce the

weight of easy-to-classify samples so that the model can focus

more on the hard-to-classify samples during training (Lin

et al., 2020). The focal loss is calculated by multiplying the

cross-entropy loss by the variable weights. Let p be the

probability that the predicted sample is a positive sample

(p ∈ [0, 1]) and y denote the predicted outcome (y ∈ {−1, 1});

TABLE 3 Prediction results of prostate cancer localization network.

Table 3 shows the results for four different patients in the dataset. The first column shows the patient ID., The second column shows the 2D Ktrans map, represented by a “viridis” color

band for better visualization. The third and fourth columns show the two-dimensional images of the prediction results of the artificial labeling and localization network after inputting

Ktrans images, which are all grayscale images, and it can be observed that the prediction results are very close to the label image. Due to the small size of the prostate, it is, on average, 40 ×

30 × 20 mm. Numerically, the error between the predicted results and the labeled results for the four patients was less than 3 mm, with an average error of only 1.64 mm, and the prediction

results were only about 6% error compared to the normal prostate volume. Therefore, it can be considered that the prostate cancer localization network has excellent performance and

accurate prediction results, and the results can be further improved by using a larger database or better data preprocessing in the future.
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then, the operation rules for the cross-entropy loss and focal

loss of a sample are defined as follows:

CE(p, y) � { −log(p), if y � 1
−log(1 − p), otherwise (1)

FL(p, y) � {−(1 − p)γ log(p), if y � 1
−pγ log(1 − p), otherwise (2)

When the sample is an easy-to-classify sample, i.e., the closer

p is to 0 or 1, the smaller the calculated weight coefficient is, the

smaller the proportion of the sample to the total loss, when

constant; when the sample is a hard-to-classify sample, i.e., when

p is close to 0.5, the larger the weight coefficient is, the larger the

proportion of the sample to the total loss when ? is constant. The

focal loss used in this study makes γ = 2 to apply weights to the

loss values of the hard and easy samples during the training

process, making the model learning more focused on the hard-

learned samples.

In the experiment, a five-fold cross-validation method was

used to divide the 328 suspected lesions from the preprocessed

PROSTATEx dataset into five folds according to the systematic

classification to ensure that the distribution of data in each fold is

consistent in terms of lesion area and benignity and malignancy,

and also to avoid the problem of data leakage as much as possible.

After five training sessions, the average AUC was taken as the

final evaluation score.

2.7 Evaluation metrics

Network performance can be evaluated using metrics such as

root mean square error (RMSE), true positive rate (TPR), true

negative rate (TNR), F1-score and AUC, accuracy and

confidence interval, Jaccard index, PPV, NPV, and DSC.

The RMSE is in the marked circle centroid, and the surface

centroids obtained in the post-threshold prediction are

calculated; RMSE is defined as follows:

RMSE(X, h) �
�������������������
1
m
∑m

i�1(h(x(i)) − y(i))2√
(3)

where RMSE (X, h) is the loss function measured in the sample

set using hypothesis h, and h is the prediction function of the

system, also known as the hypothesis. m is the number of

instances in the dataset, x(i) is a vector of all eigenvalues of the

ith instance in the dataset, and y(i) is the expected output value.

TPR, TNR, PPV, and NPV are defined as follows:

TPR � TP
TP + FN

� 1 − FNR (4)

TNR � TN
TN + FP

(5)

PPV � TP
TP + FP

(6)

NPV � TN
TN + FN

(7)

F1-score is the harmonic value of the precision and recall

evaluation indicators, the best value is 1, which is defined as

follows:

F1 − Score � 2 · TPR · PPV
TPR + PPV

(8)

AUC refers to the area under the ROC curve, which can be

used to evaluate the classification quality of the classifier. The

larger the value, the higher the quality of the classifier.

Accuracy is defined as follows:

Accuracy � TP + TN

TP + TN + FP + FN
(9)

The confidence in the accuracy is assessed using 95%

confidence intervals, by which the range of the model’s

accuracy for the overall sample can be estimated, and 95%

confidence intervals are defined as follows:

P(μ̂ − 1.96
σ��
n

√ ≤M≤ μ̂ + 1.96
σ��
n

√ ) ≈ 0.95 (10)

where n represents the number of selected accuracies, μ̂

represents the mean of all accuracies, σ represents the

standard deviation of all accuracies, and M represents the

desired 95% confidence interval.

TABLE 4 Performance of prostate cancer localization network compared with previous classical segmentation methods.

Model Sensitivity Specificity Jaccard index PPV NPV DSC

U-Net 0.80 0.83 0.79 0.76 0.80 0.74

U-Net++ 0.82 0.84 0.82 0.81 0.83 0.75

DenseNet 0.86 0.88 0.87 0.85 0.89 0.81

FCN 0.85 0.89 0.86 0.90 0.89 0.82

SegNet 0.91 0.87 0.87 0.86 0.90 0.78

Our Method 0.92 0.90 0.89 0.91 0.93 0.84

DSC, dice similarity coefficient; NPV, negative predictive value; PPV, positive predictive value. Best performance values are in bold.
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Jaccard index is used to compare the similarity and difference

between finite sample sets. The larger the value of the Jaccard

coefficient, the higher the sample similarity. Given two sets, A

and B, the Jaccard coefficient is defined as the ratio of the size of

the intersection of A and B to the size of the concurrent set of A

and B. It is defined as follows:

J(A, B) � |A ∩ B|
|A ∪ B| �

|A ∩ B|
|A| + |B| − |A ∩ B| (11)

FIGURE 5
(A) Confusion matrix of five single-modal classification networks. (B) ROC curves of five single-mode classification networks.
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Dice similarity coefficient (DSC) is used to measure the

similarity of two sets, the value range is (0,1), and the larger

the value, the more similar the two sets, commonly used in

calculating the similarity of the closed region, defined as follows:

DSC � 2TP
FP + 2TP + FN

(12)

3 Results

The performance of the selected different optimizers,

learning rate, epoch, and batch size in the training network

is shown in Supplementary Table S1. According to

Supplementary Table S1, the Adam algorithm achieved the

highest performance with a learning rate of 1e−5, 200 epochs,

and 4 min-batches.

3.1 Prostate cancer localization network
results

The results of the prostate cancer localization network are

shown in Table 3. It presents experimental results from both

quantitative and qualitative perspectives.

The first is the qualitative result, which visualizes the 2D

portion of the 3D volume segmentation, and both the labeled

images and the network predictions detect the presence of

cancerous tissue. The second is the quantitative result, which

expresses the root mean square error (RMSE) of each

experimental image as the average RMSE in the database in

millimeters while taking into account the resolution of the

instrument and other issues. The use of viridis ribbons is

intended to improve the readability of graphics for readers

with common forms of color blindness and color vision

deficiencies. Color graphics are also uniform in perception,

both in regular form and when converted to black and white

for printing. The performance of the prostate cancer localization

network compared with previous classical segmentation methods

is shown in Table 4.

As shown in the table, the prostate cancer localization

network proposed in this study has improved in each index

compared with previous methods, with sensitivity, specificity,

Jaccard index, PPV, NPV, and DSC of 0.92, 0.90, 0.89, 0.91, 0.93,

and 0.84, respectively.

Once the model is trained using multi-modal datasets, the

performance of the network can be quantitatively evaluated by

volumetric or regional overlapping metrics, e.g., Dice scores, as

stated in the study by Yang et al. (2022). The experimental data in

Table 4 fully illustrate the interpretability of the model, which

FIGURE 6
(A) ROC curve of input tensor multi-modal classification network. (B) Confusion matrix of input tensor multi-modal classification network. (C)
ROC curve of integrated multi-modal classification network. (D) Confusion matrix of integrated multi-modal classification network.
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enhances its credibility and transparency of the model, and also

facilitates future improvements of the model.

3.2 Single-modal classification network
results

3.2.1 Confusion matrix
Figure 5A shows the resulting confusion matrix for five

different types of images as input to a single-modal

classification architecture. According to Figure 5A, the Ktrans

and ADC modal images perform best, and the true positive rate

(TPR) and true negative rate (TNR) values are quite balanced,

with an average of about 82% (85 and 80.5%, respectively).

In T2-weighted images, however, there was a large difference

between the results of the three-parameter imaging. The COR

image performed the best with an average of 77%, and its results

were inferior to Ktrans and ADC. The mean values of SAG

images and TRA images were 74 and 75%, respectively. They are

not good indicators for detecting prostate cancer.

3.2.2 ROC curve
Figure 5B shows the ROC curves of the results obtained with

five different types of images as input to a single-modal

classification network. The ROC curve graph is a curve

reflecting the relationship between sensitivity and specificity.

The X-axis of the abscissa is 1-specificity, also known as the

false positive rate (FPR), and the closer the X-axis is to zero, the

higher the accuracy; the Y-axis of the ordinate is called the

sensitivity, also known as the true positive rate (TPR), and the

larger the Y-axis, the better the accuracy. So, the closer the curve

is to (0,1), the better its performance.

It can be seen from Figure 5B that the performance of the

Ktrans and ADC modes is relatively better. Ktrans has a

smoother curve and better response, while ADC has a more

abrupt response. Compared with the former two, the curves

obtained by T2-weighted COR, SAG, and TRA are less suitable

for the detection of prostate cancer localization.

3.2.3 Overall results
Supplementary Table S2 contains the comprehensive

evaluation indicators of five single-mode classification

networks, including TPR, TNR, F1-Score, AUC, and accuracy.

It can be observed that Ktrans performs the best, exceeding

0.85. ADC and COR performed slightly worse, stable at around

0.8. While SAG and TRA performed the worst, both less than 0.8.

0.8 was chosen as the threshold; based on this metric, the Ktrans

modality was considered the most suitable input modality.

It can be observed that Ktrans and ADC still have good

performance, reaching 85 and 83% of the area, respectively. The

AUCs of the three modes of T2-weighted all fluctuate around

75%, which is not excellent.

The accuracy indicator selects 0.8 as the threshold. It was

observed that among the five single-modal classification

networks, Ktrans performed the best with an accuracy of 85%,

followed by ADC with an accuracy of 81%.

3.3 Multi-modal classification network
results

3.3.1 Input tensor multi-modal classification
network results

In this network, five MRIs of the same patient with different

modes are used as input. The following analyze and compare

various indicators to judge whether the integration and fusion of

the models can bring better performance. As shown in Figure 6A,

the model obtained an AUC of 0.900, which is better than the

highest value of 0.853 for the single-mode classification network.

At the same time, it can be seen from the confusion matrix

(Figure 6B) that the TPR and TNR values of the network are

90 and 82%, respectively, and the average value is 86%, which is

slightly higher than Ktrans (average 85%), which is the best result

obtained in single-mode networks and variants at present.

We compare the input tensor multi-modal classification

network with five single-modal classification networks using

detailed metrics in Supplementary Table S3. It can be

TABLE 5 Indicators of integrated multi-modal classification network, input tensor multi-modal classification network, and five single-modal
classification networks.

Modality TPR TNR F1-score AUC Accuracy

Integrated Multi-modal Classification Network 0.95 0.82 0.8920 0.912 0.885

Input Tensor Multi-modal Classification Network 0.90 0.82 0.8654 0.900 0.86

Ktrans 0.90 0.80 0.8571 0.853 0.85

ADC 0.89 0.72 0.8203 0.826 0.805

T2-Weighted COR 0.85 0.68 0.7834 0.741 0.765

T2-Weighted SAG 0.64 0.84 0.7636 0.735 0.74

T2-Weighted TRA 0.80 0.69 0.7583 0.775 0.745

ADC, apparent diffusion coefficient; AUC, area under curve; COR, coronal; TNR, true negative rate; TPR, true positive rate; SAG, sagittal; TRA, transverse. Best performance values are in

bold.
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observed that the input tensor multi-modal classification

network outperforms the above single-modal classification

network on almost all metrics, and although the lead may not

be large, these small improvements play a role in the clinical

detection and diagnosis of prostate cancer.

3.3.2 Integrated multi-modal classification
network results

The network integrates five single-mode classification

models, in each of which images of the corresponding

modality of the same patient are processed. The ROC curve of

the network is shown in Figure 6C. The model obtained an AUC

of 0.912, which is higher than all previous models proposed in

this study and has the best classification performance with a 1.2%

improvement over the results of the input tensor classification

network.

The confusion matrix of the integrated multi-modal

classification network is shown in Figure 6D; the values of TPR

and TNR are 95 and 82%, respectively, which exceed the previous

best values of 90 and 82% obtained by the input tensor multi-

modal classification network. This shows that the integratedmulti-

modal classification network, through the integration of the single-

modal classification model, is not only more robust and less

coupled but also optimizes the results obtained by the single-

modal classification network and the input tensor multi-modal

classification network to a certain extent. To test this claim, Table 5

presents the data for the remaining indicators.

Table 5 contains all the results for all the models in this study.

The integrated multi-modal classification network has the optimal

value for all the other indicators except TNR. For example, the

prediction accuracy is improved by about 4% compared to the

Ktrans single-modal classification network. Although the absolute

value of the improved accuracy is not high, the higher the previous

accuracy, the more significant the improvement obtained.

Meanwhile, we also conducted experiments on whether the

reduction in the number of training samples would affect the

classification performance of the model by setting the sample size

to 50, 100, 150, and 200, respectively, and the network model was

selected as the best-performing integrated multi-modal

classification network in the abovementioned experiments,

and the specific results are shown in Supplementary Table S4.

TABLE 6 Effect of the number of modalities on model performance.

Modality TPR TNR F1-score AUC Accuracy

Ktrans + ADC 0.91 0.80 0.8575 0.864 0.851

Ktrans + T2-Weighted 0.89 0.81 0.8424 0.859 0.834

ADC + T2-Weighted 0.87 0.81 0.8281 0.853 0.842

Ktrans + ADC + T2-Weighted 0.95 0.82 0.8920 0.912 0.885

AUC, area under curve; TNR, true negative rate; TPR, true positive rate. Best performance values are in bold.

TABLE 7 Comparison between different classification networks, stratified by accuracy and 95% confidence interval.

Model Modality Average accuracy, 95%
confidence interval

Integrated Multi-modal Classification Network - 0.885 [0.881, 0.889]

Input Tensor Multi-modal Classification Network - 0.86 [0.852, 0.868]

Single-modal Classification Network Ktrans 0.85 [0.84, 0.86]

ADC 0.805 [0.702, 0.818]

T2-Weighted COR 0.765 [0.75, 0.78]

T2-Weighted SAG 0.74 [0.721, 0.759]

T2-Weighted TRA 0.745 [0.727, 0.763]

TABLE 8 Comparison of the classification model proposed in this
article with the results of previous classification models.

Model Author AUC

Inception V3 Quan Chen 0.83

VGG-16 Quan Chen 0.81

XmasNet Saifeng Liu 0.84

SVM Jarrel C.Y. Seah 0.84

3D Convolutional Neural Networks Alireza Mehrtash 0.80

Single-modal Classification Network - 0.853

Input Tensor Multi-modal Classification Network - 0.900

Integrated Multi-modal Classification Network - 0.912

Frontiers in Physiology frontiersin.org13

Yi et al. 10.3389/fphys.2022.918381

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.918381


From Supplementary Table S4, it can be seen that the number

of training samples increases from 50, 100 to 150, with the

increase of training samples, the indexes have a large

improvement, where the accuracy increases significantly by

20%, from 0.683 to 0.885. In the subsequent increase of

training samples, from 150 to 200 to use all training samples,

it can be seen that the accuracy is stable above 0.85, and the values

of TPR, TNR, F1-score, and AUC indexes are stable around 0.92,

0.80, 0.86, and 0.88. It can be seen that the size of the training set

has a certain influence on the performance of the classification

system. With the increase of the training scale, the classification

performance gradually improves, but after a certain scale, the

classification performance does not change much and remains at

a more stable value.

Table 6 shows the performance comparison of the integrated

multi-modal classification network using some of the modalities

for learning, divided into four groups for ablation experimental

comparison.

Table 7 shows the comparison of the average accuracy 95%

confidence intervals of the three models mentioned in the article

and their different modalities. It can be observed that the average

accuracy 95% confidence interval of the integrated multi-modal

classification network has the least fluctuation of 0.004, which

indicates that this model is more stable compared to other models.

To evaluate the classification network proposed in this

article, previous networks designed using the PROSTATEx

dataset were selected for comparison, as shown in Table 8.

4 Discussion

Ourmethod successfully achieves accurate segmentation of the

prostate on magnetic resonance images, and experiments with the

prostate cancer localization network obtained an average root

mean square error of 1.64 mm, which is approximately less

than 6% error compared to the normal size of the prostate. The

error of 6% is an acceptable error range, which indicates that the

localization network of the prostate proposed in this study

possesses a good performance. Compared with the classical

medical segmentation network U-Net, the method in this study

has improved by 0.12 and 0.07 in sensitivity and specificity,

respectively. In terms of the Jaccard index, the performance of

DenseNet, FCN, and SegNet is respectable and slightly lower than

the results of this study’s method by 1–3%. The prediction results

of the prostate cancer localization network can be used as an

evaluation index to assist radiologists in diagnosis so that doctors

can locate prostate cancer more quickly and accurately.

Grand Challenges and the SPIE Medical Imaging

Symposium launched an open competition in 2017 on

prostate cancer prediction on magnetic resonance images to

promote advances in prostate cancer detection algorithms

(Litjens et al., 2014). Currently published research studies on

deep learning–based prostate classification algorithms are mainly

focused on PROSTATEx contestants published in

PROCEEDINGS OF SPIE, where the use of convolutional

neural networks is mostly based on the abovementioned VGG

network modification. Chen et al. used a migration learning

approach with Inception V3 and VGG-16, pre-trained on

ImageNet, as the base network (Simonyan and Zisserman,

2014; Szegedy et al., 2016). In addition, because of the

different number of positive and negative sample distributions

in the cancer lesion regions, a network was trained on each

region, and finally, the results of the different networks were

weighted and averaged. The performance of the competition

results on the PROSTATEx test set is AUC = 0.83 and AUC =

0.81, respectively (Chen et al., 2017). Liu et al. also built a new

deep learning architecture, called XmasNet, based on VGG net,

and obtained seven results by combining training between

different sequences and calculating the weights of the seven

models using a greedy algorithm, and the prediction results

were taken as a weighted average, and the performance on the

test set was reflected as AUC = 0.84 (Liu et al., 2017). Similar to

their study, we first propose a single-modal classification network

structure based on Inception-V3 and VGG-16 networks. Based

on this, we further propose an input tensor multi-modal

classification network structure. Combined with multi-modal

ensemble learning, we propose an integrated multi-modal

classification network structure. The multi-modal classification

network combines the current emerging multi-modal learning

and ensemble learning techniques to transfer the knowledge

learned on the information-rich modality to the information-

poor modality so that the learning of each modality can assist

each other to achieve better classification results (Xiao et al.,

2018). The integrated multi-modal classification network

improved the AUC by 8.2 and 7.2% compared to Chen et al.

and Liu et al.’s network, respectively, with an AUC of 0.912.

Mehrtash et al. designed a three-branch three-dimensional

convolutional neural network to exploit the spatial information

of the lesion and introduced regional information of the lesion

location in the fully connected layer. The CNN architecture

consists of three input streams: ADC map, maximum b-value

from DWI, and Ktrans from DCE-MRI. Its model input is a

32*32*12 3D ROI centered on the lesion. The prediction result on

the test set is AUC = 0.80 (Mehrtash et al., 2017). Unlike their

design, our input stream also includes T2-weighted images, and

conventional T2WI has a greater diagnostic value for prostate

cancers occurring in the peripheral zone, where 70–80% of

prostate cancers are clinically located (Lee et al., 2015; Israel

et al., 2020). Therefore, the T2-weighted image is not only

indispensable for unimodal classification networks but also

has an active role in multi-modal fusion learning. Seah et al.

concluded that the contrast and brightness of prostate MR

images are important factors affecting the judgment of the

benignity and malignancy of lesions, so they designed the

auto windowing module, which can adjust the contrast and

brightness of images adaptively according to the input data
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and reduce the steps of image preprocessing. In addition to this,

additional information such as the patient’s age, the area, and the

angle at which the lesion was located was used. Finally, by model

integration, the network had an AUC = 0.84 on the test set (Seah

et al., 2017). For the characteristics and problems of the

PROSTATEx challenge dataset, we proposed image alignment,

resampling, noise reduction, and normalization preprocessing

methods in this study. To solve the problem of small sample data,

we propose image panning, rotation, zooming, flipping, and

Mixup image enhancement methods, and finally, achieve an

AUC of 0.912.

As can be seen from Table 8, the AUCs of the integrated multi-

modal classification network and input tensor multi-modal

classification network models proposed in this study are both

significantly better than the mentioned existing mainstream

classification models, which are 0.912 and 0.900. Compared with

the best-performing SVMandXmasNet, the integratedmulti-modal

classification network improves the AUC by 7.2%. Therefore, it can

be proved that the proposed integrated multi-modal classification

network has better classification performance.

The experimental results of our classification network show

that the Ktrans modality in the single-modal classification

network performs the best with an accuracy of 85%.

Subsequently, by integrating and fusing different classifiers,

the accuracy of the input tensor multi-modal classification

model was improved to 86%. Finally, the best results are

achieved in the integrated multi-modal classification model,

with a small improvement of 2.5% and an accuracy of 88.5%.

Therefore, we can conclude that the integration and fusion of

models can lead to better performance, and the input tensor

multi-modal classification network improves the performance by

1–2% compared to the single-modal classification network. On

this basis, the performance of the integrated multi-modal

classification network is improved by 2.5% compared to the

input tensor multi-modal classification network. The successful

integration of multiple models not only makes the new structure

more robust and achieves the goal of low coupling but also proves

that images can be combined in a decoupled manner because

each single-modal classification model can be trained in a

decoupled manner, and only the final network weights need

to be adjusted. Huang et al. showed that the quality of the latent

representation space directly determines the effectiveness of the

multi-modal learning model, and the richer the variety of

modalities, the more accurate the estimation of the

representation space and the better the learning effect with

sufficient training data (Huang et al., 2021). As can be seen

from Table 6, the combination of Ktrans + ADC + T2-weighted

with the highest number of modalities still achieves the best

performance in all evaluation metrics, and the modal

combination of Ktrans + ADC performs well in TPR, F1-

Score, AUC, and accuracy, but not as well as Ktrans + T2-

weighted and ADC + T2-weighted in TNR. This suggests that

although T2-weighted images do not perform as well as Ktrans and

ADC on single-modal classification networks, they have an active

role in multi-modal fusion learning. Taking the assisted diagnosis

of prostate cancer MRI as an example, multi-modal learning can

aggregate information from multiple sources of data, make the

representation learned by the model more complete, transfer the

knowledge learned on the information-rich modality to the

information-poor modality, and make the learning of each

modality assist each other to achieve better classification results.

Both the prostate cancer localization network and the single-

modal and multi-modal classification networks have achieved

good results, but these models cannot be considered accurate

enough to be used as a single diagnostic criterion. It is better

suited as a support system or second opinion for radiologists,

capable of detecting overlooked positive cases or speeding up the

detection of possible positive cases.

Other publicly available prostateMRI datasets can be used in the

future to optimize model training with the study of prostate cancer

tissue contour segmentation, such as the PROMISE12 competition

dataset, the main theme of which is prostate segmentation using

T2WI sequences of the prostate. The data provided include

50 training samples and the corresponding prostate masks and

30 test samples. Also, in the future, when facing the multicenter

prostate cancer MRI data fusion problem, it is necessary to consider

the problem of certain disparity in imaging results due to scanner,

parameters, and environment (Nan et al., 2022). In addition, it is

possible to use a deep learning-based approach to construct scanner

image invariant encoding based on the existing methods (Moyer

et al., 2020). As for the interpretability of the model, in the next step,

we add visual interpretationmethods such as gradient interpretation

method, GradCAM interpretation method, and RISE interpretation

method to further solve the problem of opaque model details and

achieve a “trustworthy” and “interpretable” diagnosis process.

Our study has some limitations. First, medical ethics requires

that the effectiveness and safety of any new technology in the

clinical application must be fully tested. Medical artificial

intelligence alone has certain risks in judging diseases based

on imaging data. The results of this study can only be used as a

reference for radiologists’ diagnoses. Second, our research is

purely based on mp-MRI and does not add other types of

medical indicators as parameters to the design and training of

the model, such as the patient’s age, weight, and PSA, to improve

the generalization ability of the model. Third, in the diagnosis of

prostate cancer, the DNN technology based on magnetic

resonance examination is based on its database or public

database and lacks external verification of a large sample size,

which is also our future research direction. We look forward to

developing new single-modal classification models in future

work that achieve higher accuracy in the T2-weighted

modality, thereby indirectly improving the performance of an

integrated multi-modal classification network. Furthermore, we

will cooperate with the Radiology Department of Xiangya

Hospital to create our database and test our system in a real

medical environment and consider inter-observer variability.
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5 Conclusion

CAD of prostate cancer remains a challenging topic. In this

article, we propose a localization and classification network for

prostate cancer based on DNN and mp-MRI to assist radiologists

in the diagnosis of such diseases. We constructed four different

localization and classification networks, namely, prostate cancer

localization network, single-modal classification network, input

tensor multi-modal classification network, and integrated multi-

modal classification network, and analyzed them in detail

through experiments. The results show that the DNN-based

prostate cancer localization network and integrated multi-

modal classification network obtain high performance in

experiments and can be used to assist radiologists in more

easily localizing and classification of prostate cancer.
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