
The Methodological Quality of Studies
Investigating the Acute Effects of
Exercise During Hypoxia Over the Past
40 years: A Systematic Review
Erich Hohenauer1,2,3,4*, Livia Freitag1, Miriam Herten1, Julia Siallagan1, Elke Pollock5,
Wolfgang Taube3 and Ron Clijsen1,2,4,6

1Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care,
University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland, 2International University of Applied
Sciences THIM, Landquart, Switzerland, 3Department of Neurosciences andMovement Science, University of Fribourg, Fribourg,
Switzerland, 4Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium, 5Department of
Physiotherapy, Zurich University of Applied Sciences, Zurich, Switzerland, 6Department of Health, Bern University of Applied
Sciences, Berne, Switzerland

Exercise under hypoxia and the physiological impact compared to normoxia or hypoxia
has gained attention in the last decades. However, methodological quality assessment of
articles in this area is lacking in the literature. Therefore, this article aimed to evaluate the
methodologic quality of trials studying exercise under hypoxia. An electronic search was
conducted until December 2021. The search was conducted in PubMed, CENTRAL, and
PEDro using the PICO model. (P) Participants had to be healthy, (I) exercise under
normobaric or hypobaric hypoxia had to be (C) compared to exercise in normoxia or
hypoxia on (O) any physiological outcome. The 11-item PEDro scale was used to assess
the methodological quality (internal validity) of the studies. A linear regression model was
used to evaluate the evolution of trials in this area, using the total PEDro score of the rated
trials. A total of n = 81 studies met the inclusion criteria and were processed in this study.
With a mean score of 5.1 ± 0.9 between the years 1982 and 2021, the mean
methodological quality can be described as “fair.” Only one study reached the highest
score of 8/10, and n = 2 studies reached the lowest observed value of 3/10. The linear
regression showed an increase of the PEDro score of 0.1 points per decade. A positive and
small tendency toward increased methodologic quality was observed. The current results
demonstrate that a positive and small tendency can be seen for the increase in the
methodological quality in the field of exercise science under hypoxia. A “good”
methodological quality, reaching a PEDro score of 6 points can be expected in the
year 2063, using a linear regression model analysis. To accelerate this process, future
research should ensure that methodological quality criteria are already included during the
planning phase of a study.
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INTRODUCTION

Increased interest in altitude training as well as a popular trend
toward reaching higher altitudes for sporting activities or
traveling justifies the importance of understanding physiologic
changes at higher altitudes, particularly during exercise. Several
altitude classifications exist (Mazzeo, 2008; Dietz and Hackett,
2019). The most common of these is by Bärtsch and Saltin (2008):
sea level is considered to lie between 0 and 500 m, low altitudes
range from 500 to 2000 m, moderate altitude from 2000 to
3,000 m, high altitude above 3,000 m, and extreme above
5,000 m (Bärtsch and Saltin, 2008). Most mountain and ski
resorts are located at a moderate altitude (Dietz and Hackett,
2019). Rapid ascent, representing acute hypoxic conditions, can
lead to symptoms of altitude illness, which is the result of
impaired acclimatization (Dietz and Hackett, 2019).

The main factor, associated with (acute) exposure to altitude is
hypoxia, which is defined as tissue oxygen supply below the
needed levels, to maintain normal physiological function
(Loiacono and Shapiro, 2010). There are four main types of
hypoxia, which can be classified into hypoxic hypoxia, anemic
hypoxia, circulatory (stagnant or ischemic) hypoxia, and
histotoxic hypoxia (Pittman, 2016; Cheung and Ainslie, 2022).
The most common form of hypoxia is hypoxic hypoxia, which is
the result of reduced arterial oxygen tension (Cheung and Ainslie,
2022). The physiologic response of the human body to hypoxia
depends on the duration of exposure (short and long term), the
magnitude of reduced ambient pressures, reduction in ambient
oxygen pressure, the rate of occurrence, and severity of the
exposure (Dietz and Hackett, 2019; Cheung and Ainslie,
2022). These physiological responses have been highlighted
and explained in the literature (Michiels, 2004; Millet et al.,
2012; Mounier and Brugniaux, 2012).

Hypoxic hypoxia can be the result of reduced barometric
pressures at altitude, leading to a reduced partial pressure of
inspired oxygen (Cheung and Ainslie, 2022). Barometric pressure
decreases with increased terrestrial altitude, resulting in
proportionally lower atmospheric oxygen partial pressures,
while the oxygen percentage stays constant (20.9%) (Brown
and Grocott, 2013). The direct consequences of lowered
atmospheric oxygen partial pressure are a decrease in the
partial pressure of oxygen in the body and blood tissues, a
decrease in the arterial O2 partial pressure, and a reduction of
the oxygen tension in the alveoli (Rodway et al., 2003; Sharp and
Bernaudin, 2004). In the setting of hypobaric hypoxia and
normobaric hypoxia, the respiratory ventilation is increased to
compensate the reduced partial pressure of inspired oxygen.

The effects of altitude on human physiology were described as
early as 1644. Evangelista Torricelli (1,608–1,647), a student of
the great Galileo, was the first person to clearly state that the
atmosphere exerts pressure. Over the proceeding years, many
experiments with hypobaric and hyperbaric chambers and those
at effective altitudes (e.g., balloon and mountain) were performed
(West, 2016). Over the last few centuries, a large amount of
scientific knowledge about altitude exposure was gained. Rapid
exposure to high altitudes can result in acute hypoxia that affects
many physiological systems, including the respiratory,

cardiovascular, and neurologic systems (Cheung and Ainslie,
2022; Hohenauer, 2022). One of the most important responses
of the body to hypoxia is to increase ventilation. As a result of
lower partial pressure of oxygen, the increase in minute
ventilation is triggered by oxygen-sensing cells in the carotid
body (Dietz and Hackett, 2019). Further physiologic adaptions to
altitude include an increased resting and sub-maximal heart rate,
increased blood pressure, and decreased maximal oxygen
consumption (Wyatt, 2014).

A considerable number of review studies about physical
activity during hypoxia exposure have been performed over
the past few decades (Ando et al., 2020; Pojskić et al., 2021),
investigating its physiologic consequences (Coppel et al., 2015;
Fernandez-Lazaro et al., 2019; Griffiths et al., 2019). Exercise
training under hypoxia, as part of elite sports training, was
established in the late 1960s, as it is advantageous compared
to sea-level training to increase oxygen delivery capacity and
aerobic exercise capacity (Park et al., 2016). Exercise under
hypoxia is currently not only integrated into elite sports but
also used in the field of health and rehabilitation (Nishiwaki et al.,
2011; Kong et al., 2014; Schreuder et al., 2014). However, evidence
from the literature shows that several methods and variables have
to be taken into account during hypoxic training which determine
its effectiveness (Millet et al., 2010). In general, exercise under
hypoxia is associated with a compensatory increase in blood flow
toward active muscles, resulting in pronounced shear stress and
nitric oxide release (González-Alonso et al., 2006; Casey and
Joyner, 2012). Exercise under hypoxia, therefore, seems to
stimulate arterial remodeling/function and angiogenesis
(Geiser et al., 2001; Ridnour et al., 2005; Tinken et al., 2010;
Hellsten and Hoier, 2014). However, this is controversially
discussed, with reports indicating superior (Geiser et al., 2001;
Nishiwaki et al., 2011; Kon et al., 2015) or similar (Desplanches
et al., 2014; Kong et al., 2014; Schreuder et al., 2014) vascular
adaptations following hypoxic versus normoxic exercise. Debates
on the difference between normobaric and hypobaric hypoxia
highlight the increased interest and developments in this area
(Millet and Debevec, 2020; Richalet, 2020).

Internal validity and external validity are the most relevant
components when critically appraising randomized controlled
trials although there is no gold standard method available (Jung
et al., 2022). The internal validity of a study reflects the systematic
error or bias in a clinical trial (Higgins and Green, 2011; Boutron
et al., 2019), expressing the methodological robustness of a study
(Jung et al., 2022). External validity is known by several
definitions, and the terms generalizability, external validity,
applicability, or transferability are used interchangeably in the
literature (Weise et al., 2020). In an internally valid trial, external
validity refers to the ability of the results to be generalized to the
“real world” population (Akobeng, 2008). Consequently, a lack of
internal validity adversely influences the quality of the evidence
that can be derived from a trial. Without internal validity, an
experiment cannot demonstrate a causal link between two
variables. The main errors that could negatively affect the
internal validity are bias (systematic error) and random error
(chance error or statistical error) (Keirse and Hanssens, 2000;
Stephenson and Babiker, 2000; Akobeng, 2008). Therefore, it is an
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important step to assess the methodological quality of trials, build
an evidence base that informs clinical practice, and identify areas
of healthcare that require further research (de Morton, 2009). In
general, there are three types of tools for establishing internal
validity: scales, checklists, and items (Jüni et al., 2001; Zeng et al.,
2015).

Although there are many scales available that assess the
methodological quality of clinical trials (Ma et al., 2020), the
PEDro scale is commonly employed to assess the internal validity
(Maher et al., 2003) and was already used in the field of hypoxia
(Camacho-Cardenosa et al., 2019). The PEDro scale considers
two aspects of trial quality, namely, the “believability” (or
“internal validity”) of the trial and whether the trial contains
sufficient statistical information to make it interpretable. It does
not rate the “meaningfulness” (or “generalizability” or “external
validity”) of the trial or assess the size of its treatment effect.

To the authors’ knowledge, no systematic review has evaluated
the methodological quality of studies that investigated the effects
of exercises in the setting of acute hypoxia on physiological
parameters over the past 40 years. The present systematic
review uses the PEDro scale to evaluate the methodological
quality of studies that examined the effects of exercise under
acute hypoxic conditions (normobaric or hypobaric) vs.
normoxic conditions or acute hypoxic conditions under
different barometric pressure on physiologic parameters and to
assess the evolution of the methodological quality of these trials
over the last 40 years.

MATERIALS AND METHODS

Literature Search Strategies and Data
Sources
A literature search was conducted using the PICOmodel from the
PRISMA guidelines (Page et al., 2021): 1) Population: healthy,
female and male study participants could be of any training
status; 2) Intervention: exercise under hypobaric or normobaric
hypoxia; 3) Comparator: exercise under normoxia or hypoxia;
and 4) Outcomes: physiological parameters including, but not
limited to heart rate, oxygen saturation (of the blood or muscle),
blood flow, core temperature, blood markers, and respiration
characteristics.

A systematic search was performed electronically until
December 2021 in the following databases: MEDLINE
(PubMed), Cochrane Central Register of Controlled Trials
(CENTRAL), and Physiotherapy Evidence Database (PEDro),
according to the PRISMA statement. The keywords and their
combinations that were used in this work are shown in Table 1.

Selection Criteria
Eligibility criteria were based on the PICO approach. The
following selection criteria were used: 1) all participants were
healthy humans, 2) healthy participants had to perform any
exercise under acute (<24 h) normobaric or hypobaric hypoxic
conditions, 3) physiologic values were measured during and/or
after exercise, and 4) only experimental studies were included.
Studies were excluded in cases of 1) participants were exposed to
hypoxia for longer than 24 h, 2) supplement (caffeine, vitamins,
saline, etc.) or medication intake (e.g., formoterol, beta-blocker,
sildenafil), 3) studies were published in a language other than
English, or 4) no physical exercises were performed.

Assessment of Methodological Quality
Using the PEDro Scale
The German version of the PEDro scale was used to assess the
methodological quality of the included trials. The German
version of the PEDro scale demonstrated good inter-reliability
for individual items and the total PEDro score (Costa et al., 2015).
The PEDro scale, which is based on the Delphi list, is a valid
(convergent and construct validity) and reliable tool for assessing
trial methodologic quality (Maher et al., 2003; Macedo et al.,
2010). The use of the PEDro scale, outside the classical field of
physiotherapy, is growing (Elkins et al., 2013). This shows that its
use is not limited to currently practiced methods in
physiotherapy, nor that the trials have to be conducted by a
physiotherapist (PEDro, 2017). The PEDro scale was used to
assess the internal validity and has already been used in studies
dealing with healthy participants (Fradkin et al., 2006; Ganio
et al., 2009), patients (Pinto et al., 2012; Kouloutbani et al., 2019)
and also in the field of hypoxia (Camacho-Cardenosa et al., 2019).
The scale includes 11 items, but item 1 (eligibility criteria were
specified) is not included in the calculation of the total score. A
maximum of 10 points is therefore possible. A brief description of
each PEDro item (English version) can be seen in Table 2. A
PEDro score of 9–10 is considered to reflect an “excellent,” 6 to 8 a
“good,” 4 to 5 a “fair,” and <4 a “poor” methodological quality
(Cashin and McAuley, 2020).

A team internal briefing took place, during which each item of
the PEDro score was discussed for reliability reasons. It was set
forth, that a point for an item could only be awarded if the
criterion was fulfilled. For Item 1, a list of inclusion criteria and
exclusion criteria were required to fulfill the criterion.
Furthermore, it had to be clearly described how the subjects
were recruited. For Item 4, the trial must have performed a
baseline measure of the severity of the condition being treated and
at least one key outcome. In addition, it had to be shown that

TABLE 1 | Screened databases, keywords, and identified studies.

Database Keywords Total Studies

PEDro Hypoxia 72
PubMed ((((“hypoxia” [MeSH Terms] OR “hypoxia” [All Fields]) OR “hypoxia s” [All Fields]) OR “hypoxias” [All Fields]) AND (“hypobaric”

[All Fields] OR “hypobarism” [All Fields])) OR “normobaric” [All Fields])
5,492

Cochrane trials hypoxia AND normobaric OR hypobaric 879
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these parameters did not differ significantly between the different
groups (e.g., through a p-value). Finally, for Item 11, both point
measures and measures of variability were required.

Data Extraction
A total of n = 6,443 studies were identified from the main search
strategy (Table 1) in databases and registers. After removing
duplicates (n = 345) and for other reasons (n = 4,698), a total of
n = 1,400 studies were used for the screening process. During this

process, a total of n = 1,316 were excluded because they did not
meet the PICO scheme or due to other reasons, and n = 8 reports
were not retrieved. This resulted in the inclusion of n = 76 studies
from databases and registers. A total of n = 15 studies were
retrieved from citation searching. From these n = 15 studies, a
total of n = 10 studies were extracted because they did not meet
the defined PICO scheme, resulting in an inclusion of n = 5
studies from other methods. Figure 1 depicts the systematic
search strategy and selection process.

TABLE 2 | PEDro score.

Nr Item No Yes Where

1 Eligibility criteria were specified
2 Subjects were randomly allocated to groups (in a crossover study, subjects were randomly allocated an order in which

treatments were received)
3 Allocation was concealed
4 The groups were similar at baseline regarding the most important prognostic indicators
5 There was blinding of all subjects
6 There was blinding of all therapists who administered the therapy
7 There was blinding of all assessors who measured at least one key outcome
8 Measures of at least one key outcome were obtained from more than 85% of the subjects initially allocated to groups
9 All subjects for whom outcome measures were available received the treatment or control condition as allocated or, where

this was not the case, and data for at least one key outcome was analyzed by “intention to treat”
10 The results of between-group statistical comparisons are reported for at least one key outcome
11 The study provides both point measures and measures of variability for at least one key outcome

FIGURE 1 | Flowchart describing the systematic selection procedure.
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Included articles were downloaded and saved in alphabetical
order in a pdf format. The following variables were extracted:
author names, article title, and publication year. Four researchers
(EP, JS, LF, and MH) independently scored all trials (n = 81) for
methodological study quality with the PEDro score (each item
and the total score of the PEDro scale). Two researchers each
rated the same article. In case of disagreement between the
researchers, a third researcher rated the questionable item, and
agreement was sought by consensus.

Data Analysis
All data were analyzed using the Statistical Package for the Social
Sciences (SPSS version 27.0, IBM, Armonk, United States). A
bubble plot was created (DataGraph 4.7.2beta, Visual Data Tools
Inc. Chapel Hill, United States) based on the total score of the
PEDro scale (dependent variable) and the publication year
(independent variable) of each study. The size of the bubble
was dependent on the number of studies with the same total
PEDro score for each year, to assess the relationship between the
total PEDro score and time. The different colors of the bubbles
represent the different PEDro scores: green represents a high
PEDro score (greater than or equal tosix) and red represents a
lower score (lower than six). A linear regression model was used
to evaluate the development of methodological quality over time.

RESULTS

Distribution of Scientific Literature
The included clinical trial dates ranged from 1982 to 2021. A total
of n = 81 studies were included in the final analysis to evaluate the
methodological quality over the past 40 years. Notably, no study
was already listed in the PEDro database.

A total of n = 2 studies were retrieved between the years 1982
and 1989 (Squires and Buskirk, 1982; Wagner et al., 1986), n = 5
between 1990 and 1999 (Fulco et al., 1994; Koistinen et al., 1995;
Naughton et al., 1995; Fulco et al., 1996; Taylor and Bronks,
1996), n = 18 between 2000 and 2009 (Casas et al., 2001; Takase
et al., 2002; Bocqueraz et al., 2004; Shave et al., 2004; Choukèr
et al., 2005; Friedmann et al., 2005; Heubert et al., 2005; Saito
et al., 2005; Sandiford et al., 2005; Schiffer et al., 2005; Wehrlin
and Hallen, 2006; Mackenzie et al., 2008; Richardson et al., 2008;
Subudhi et al., 2008; Zhou et al., 2008; Richardson et al., 2009a; b;
Wang and Chiu, 2009), n = 46 between 2010 and 2019 (Fukuda
et al., 2010; Miyagawa et al., 2011; Basualto-Alarcón et al., 2012;
Degache et al., 2012; Kroepfl et al., 2012; Maire r et al., 2012;
Schommer et al., 2012; Faiss et al., 2013; Fan et al., 2013; Mairer
et al., 2013; Sandfeld et al., 2013; Feriche et al., 2014; Ho et al.,
2014; Julia-Sanchez et al., 2014; Kröpfl et al., 2014; Slivka et al.,
2014; Trapp et al., 2014; DiPasquale et al., 2015; Seo et al., 2015;
Brocherie et al., 2016; Girard et al., 2016; Shrestha and Singh,
2016; Filopoulos et al., 2017; Girard et al., 2017; Klenze et al.,
2017; Lira et al., 2017; Lühker et al., 2017; Machado et al., 2017;
Matu et al., 2017; Sweeting et al., 2017; Tymko et al., 2017;Wadley
et al., 2017; Willis et al., 2017; Alhammoud et al., 2018; Cooke
et al., 2018; Lee and Thake, 2018; Angeli et al., 2019; Charkoudian
et al., 2019; da Mota et al., 2019; Gronwald et al., 2019; Lei et al.,

2019; Morawetz et al., 2019a; Morawetz et al., 2019b; Mulliri et al.,
2019; Sharma et al., 2019; Valenzuela et al., 2019), and n = 10
between 2020 and 2021 (Faulhaber et al., 2020; Jung et al., 2020;
Limmer et al., 2020; Nell et al., 2020; Willis et al., 2020; De Groote
et al., 2021; Kong et al., 2021; Magnani et al., 2021; Vasquez-
Bonilla et al., 2021; Yamaguchi et al., 2021).

The mean PEDro score of the included studies over time was
5.1 ± 0.9. In the period from 1982 until 1989, only two studies
were published in peer-reviewed journals, with a mean PEDro
score of 4.5 ± 0.7. In the period from 1990 to 1999, five studies
achieved a mean PEDro score of 5.0 ± 0.8. From 2000 to 2009, a
total of n = 18 studies achieved a mean PEDro score of 4.6 ± 0.7,
from 2010 to 2014 a total of n = 17 studies reached a score of 4.8 ±
0.9, and from 2015 to 2020 a mean PEDro score of 5.4 ± 1.0 was
reached by n = 35 included studies. Four studies reached a mean
PEDro score of 5.7 ± 0.5 out of 10 in the year 2021.

Methodological Quality
The bubble plot in Figure 2 depicts the evolution of the PEDro
scores of the included manuscripts from 1982 to 2021. Green
bubbles represent a PEDro score of 6 and higher and red bubbles
represent studies with a PEDro score of 5 or lower. The linear
regression analyses demonstrated that 2.6% of the variance of the
y-variable can be explained, and the linear regression line was
calculated using the following equation: y = (0.0188 x year) +
(−32.794). The slope of the linear regression line suggests that the
mean PEDro score increases by 0.1 points each decade.

The methodological quality, measured with the PEDro score,
ranged from 3/10 to 8/10, between the years 1982 and 2021. None
of the included studies reached the maximum PEDro score of 10.

The highest achieved PEDro score in the assessed studies was a
score of eight, which was awarded to an article published by one
research group in the year 2016 (Brocherie et al., 2016). The
second highest PEDro score was 7/10, which was achieved by four
studies (Wehrlin and Hallen, 2006; Faiss et al., 2013; DiPasquale
et al., 2015; Nell et al., 2020). A total of 23 studies achieved a
PEDro score of 6/10. Total PEDro scores of six to eight, which are
considered reflective of “good” methodological quality, were
achieved in 34.6% (n = 28 studies) of all included studies
(Cashin and McAuley, 2020).

“Fair”methodological quality (PEDro score of four to five was
achieved by 51 studies, reflecting 63.0% of the 81 included studies.
Only 2.4% (2/81) of works are rated to have “poor”methodologic
quality, which is considered a PEDro score of <4. A detailed
overview of the number of studies and their PEDro scores is
shown in Figure 3.

Analysis of PEDro score single items can be seen in Figure 4.
All included trials (100%) fulfilled the item for point estimates
and variability, 97.5% included “between-group comparisons”,
and 95.0% performed “adequate follow-up.” Lower relative
frequency scores were observed for the items regarding
“intention-to-treat analysis” (83.9%) and “random allocation”
(74.0%). The items “eligibility criteria” (excluded from the total
PEDro score ratings) and “blind subjects” each reached 39.5%.
“Baseline comparability” (11.1%), “blind therapists and blind
assessors” (each 4.9%), and “concealed allocation” (0%) had
the lowest relative frequency scores.
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DISCUSSION

This systematic review aimed to assess the methodological quality
of clinical trials examining the physiological response to exercise
under hypoxic conditions by considering PEDro scores. We also
aimed to assess changes in the mean methodological quality
over time.

The calculated mean PEDro score of the n = 81 included
studies was 5.1 ± 0.9. Research groups that were able to blind the
subjects and assessors (Brocherie et al., 2016) or subjects and
therapists (Nell et al., 2020) had higher PEDro scores. Single- or
double-blinding procedures are important to avoid bias. It has
been demonstrated that trials without double-blinding yielded
larger estimates of treatment effects than trials using double-

FIGURE 2 |Bubble plot of the n = 81 included studies. Green dots represent studies with “good”methodological quality and a PEDro score ≥6 points. Red bubbles
represent studies with lower PEDro scores of <6 points, indicating “fair” (4–5 points) or “poor” (<4 points) methodological quality. The size of the bubbles is related to the
proportion of studies having the same PEDro score at a specific time point. The black line represents the linear regression line as a function of time.

FIGURE 3 | Absolute frequency distribution of the total PEDro scores of all included studies.
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blinding procedures (Schulz et al., 1995). From a theoretical
perspective, studies that compared the effects of different
partial pressures of inspired oxygen and barometric pressure
could reach a maximum score on the PEDro scale (10/10). In
particular, studies using closed chamber systems, where
barometric pressure and the fraction of inspired oxygen can
be controlled, are particularly predisposed to reaching the
maximum methodological score on the PEDro score. It is
nearly impossible to blind participants, therapists, or assessors,
in case a study evaluates the difference between terrestrial altitude
and a laboratory condition at the sea level. The use of mask
systems or oxygen tents might help contribute to the blinding
procedure, but barometric pressure can only be simulated in a
closed chamber or at a real altitude. Studies that investigated the
difference between terrestrial altitude (or did not have an
environmental chamber system) and a laboratory setting at the
sea level could only have reached a maximum PEDro score of 7/
10 since the blinding of participants, therapists, and assessors
could be a problematic issue in those setups. In the articles
analyzed in the present study, only five works, representing
around 6% of the included 81 studies, reached a PEDro score
of seven or higher (Wehrlin and Hallen, 2006; Faiss et al., 2013;
DiPasquale et al., 2015; Brocherie et al., 2016; Nell et al., 2020).
Following the PEDro database, only these 6% could be considered
to have good methodologic quality (PEDro, 1999; Cashin and
McAuley, 2020). The modal PEDro score was 5 and the mean
score was 5.1, suggesting that the overall methodological quality
of these studies can be rated as “fair” (Cashin and McAuley,
2020).

Interestingly, none of the included studies concealed their
sample allocation or failed to describe it based on their PEDro
score. Random allocation is known to be an important method to
ensure that the groups being compared are on an equivalent basis
at the study start (Schulz, 2001). This point could be easily

achieved because a point is awarded for this category even if it
is not stated in the work that allocation was concealed. In this
case, the study must state that allocation was via sealed opaque
envelopes or that allocation involved contacting the holder of the
allocation schedule who was “off-site” (PEDro, 1999). Only 11%
of the included studies received a point for comparing groups that
were similar at baseline for the most important prognostic
indicators. Here, the ratings could be theoretically higher as at
a minimum the report must describe at least one measure of the
severity of the condition being treated and at least one (different)
key outcome measure at baseline. The rater must be satisfied that
the groups’ outcomes would not be expected to differ based on
baseline differences in prognostic variables alone by a clinically
significant amount (PEDro, 1999). However, on the other site, the
meaningfulness of statistical testing for baseline differences has
been questioned (Harvey, 2018).

Random allocation was satisfactory in 74% of the included
studies. Although this number is relatively high, it should be
considered with caution from a methodologic quality perspective.
An article receives a point for this item just by mentioning that
the allocation was random without further explanation. Good
methods of generating a random allocation sequence include
using a random-number table or a computer software program
(Dettori, 2010). Less recommended methods to achieve random
allocation are tossing a coin, drawing lots, or throwing a dice
(Dettori, 2010). Quasi-randomization allocation procedures such
as allocation by hospital record number, birth date, or alternation
do not satisfy this criterion (PEDro, 1999).

The PEDro scale is used to assess the methodological quality of
trials and to specifically identify those trials with good internal
validity (PEDro items 2–9) that report enough data to make their
results interpretable (PEDro items 10–11) (Moseley et al., 2020).
Looking into the results section we assume that the results of the
included studies can be rated as interpretable, as item 10

FIGURE 4 | Relative frequency distribution of all included studies for each PEDro item. Orange bars represent items 10 and 11 of the PEDro score, which represent
the interpretability of the data. Blue bars represent items 2–9, which are used to evaluate internal validity. The gray bar represents item 1, which evaluated external validity
and was not used to calculate the total PEDro score.
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(between-group statistical comparison) and item 11 (point
estimates and variability) achieved nearly perfect fulfillments.
However, the specific items that define good internal validity
demonstrate a wide range of scores among the included studies.
Using the linear regression formula, it can be expected that
“good” mean methodological quality as defined by a PEDro
score of 6 (Cashin and McAuley, 2020) will be reached in the
year 2063. However, this process could be accelerated, if
upcoming studies in this area, especially consider items two to
nine of the PEDro score. The number of published articles in the
field of exercise under hypoxic conditions is increasing.

Our article not only demonstrates that the mean methodologic
quality of studies is “fair” and increasing over time but also
demonstrates that clear guidelines are needed to further increase
the methodologic quality in the field. To increase internal validity,
researchers should ensure careful study planning and
implementation strategies. The results of our analysis
demonstrate that adequate blinding procedures should be
incorporated into studies whenever possible. However, as already
mentioned, blinding procedures are now always easy to implement
in studies investigating the effects of hypoxia, especially when no
closed chamber systems are available or in the case the study is
performed during terrestrial altitude. The results of the current
analysis further show that future studies in this area are advised to
realize concealed allocation and ensure baseline comparability, to
increase their internal validity. It is important to mention that
internal validity, the extent to which the design and conduct of a
trial eliminate the possibility of bias, is a prerequisite for external
validity (Moher et al., 2010). The effective use of external validity has
the potential to speed up the implementation of worthwhile
innovations and avoid unworthwhile efforts (Dyrvig et al., 2014).

It should be acknowledged that the PEDro score is only one
tool for evaluating the methodological quality of clinical trials that
is typically used (but not limited to) in current practice methods
in physiotherapy. The use of the summary score from the PEDro
scale has also been critically questioned, as it showed poor
construct validity in addition to other limitations (Albanese
et al., 2020). Other methodological quality assessment tools are
available in the literature, such as the Cochrane risk of bias 2.0
tool, the EPOC risk of bias tool, and the CASP checklist, which
can be found elsewhere (Ma et al., 2020). Researchers should
therefore carefully choose and report the methodological quality
assessment tool that they chose to use and try to achieve the

highest score for their internal validity. A limitation of the current
study might be that only studies written in English were used, and
the inclusion of studies was limited to the aforementioned search
strategies. Therefore, the current findings might over- or
underestimate the true methodological quality of the entire
current literature in this field.

CONCLUSION

The mean PEDro score of trials investigating the difference
between different hypoxic and normoxic conditions during
exercise over the last 40 years is 5.1 ± 0.9, indicating “fair”
methodological quality. This work’s linear regression showed a
small positive trend toward higher scores in the future, with an
increase of 0.1 point each decade. “Good” mean methodological
quality in this research field can be expected in the year 2063 at
the earliest given current trends. Although the results of the
studies are interpretable, future studies in this field should
incorporate adequate blinding procedures (if possible),
concealed allocation, and baseline comparability. Future
studies should consider including the relevant criteria during
the planning of the study to achieve the highest possible
methodological quality score.
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