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Mobile-health solutions based on heart rate variability often require electrocardiogram
(ECG) recordings by inexperienced operators or real-time automatic analyses of long-term
recordings by wearable devices in free-moving individuals. In this context, it is useful to
associate a quality index with the ECG, scoring the adequacy of the recording for heart rate
variability to identify noise or arrhythmias. Therefore, this work aims to propose and validate
a computational method for assessing the adequacy of single-lead ECGs for heart rate
variability analysis that may run in real time on wearable systems with low computational
power. The method quantifies the ECG pseudo-periodic structure employing cepstral
analysis. The cepstrum (spectrum of log-spectrum) is estimated on a running ECGwindow
of 10 s before and after “liftering” (filtering in the cepstral domain) to remove slower noise
components. The ECG periodicity generates a dominant peak in the liftered cepstrum at
the “quefrency” of the mean cardiac interval. The Cepstral Quality Index (CQI) is the ratio
between the cepstral-peak power and the total power of the unliftered cepstrum. Noises
and arrhythmias reduce the relative power of the cepstral peak decreasing CQI. We
analyzed a public dataset of 6072 single-lead ECGsmanually classified in normal rhythm or
inadequate for heart rate variability analysis because of noise or atrial fibrillation, and the
CQI = 47% cut-off identified the inadequate recordings with 79% sensitivity and 85%
specificity. We showed that the performance is independent of the lead considering a
public dataset of 1,000 12-lead recordings with quality classified as “acceptable” or
“unacceptable” by visual inspection. Thus, the cepstrum describes the ECG periodic
structure effectively and concisely and CQI appears to be a robust score of the adequacy
of ECG recording for heart rate variability analysis, evaluable in real-time on wearable
devices.
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1 INTRODUCTION

Advancements in sensors technology are making it possible to monitor the electrocardiogram (ECG)
for long periods in unattended subjects through wearable systems, promoting solutions for
telemonitoring, home rehabilitation, mobile health, and ambient-assisted living applications.
Most of these applications quantify indexes of heart rate variability to provide information on
the autonomic control and cardiorespiratory interactions, based on ECG recordings performed by
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inexperienced users and on automatic analyses of ECG tracings.
In these cases, it is important to associate a quality score with the
recorded signals. In telemonitoring applications this would
indicate to inexperienced operators the need to repeat the
recording if the ECG quality is too low; in ambient assisted
living applications, this would allow expert systems not to take
decisions on the base of unreliable ECG signals. A further
requirement is to exclude arrhythmias if the aim is to quantify
heart rate variability, as during exercise-based rehabilitation
programs for restoring the autonomic control in cardiac
patients after heart surgery or in diabetic individuals with
autonomic neuropathy. A normal rhythm is indeed necessary
to correctly interpret the indices of heart rate variability.

In the frame of domotic applications aimed at developing a
smart environment for elderly people, we had to deal with the
definition of an automatic score of the ECG quality in normal
rhythm. The domotic application consisted of a first layer of
sensors and devices with low computational power to collect
physiological and behavioral data to be sent to upper
computational levels operating decisions in support of the
assistance staff (Gower et al., 2011). In particular, the ECG
had to be recorded for hours or days on freely moving
subjects for a continuous assessment of heart rate variability
with wearable ECG sensors (Di Rienzo et al., 2010). In this
context, the occurrence of arrhythmic episodes, artifacts, and
noise was expected, making important the dynamic assessment of
data reliability in real-time automatically. These requirements
demanded an algorithmworking on different leads separately and
running on low-power microprocessors on board the wearable
devices, to score the ECG quality, select the best lead, and identify

the presence of normal sinus rhythm for the online evaluation of
heart rate variability. To deal with these requirements, we
originally designed an algorithm to characterize the ECG
quality from its periodic structure (Castiglioni et al., 2011).

We further developed the original algorithm and this work
aims to illustrate the capability of cepstral analysis to characterize
the pseudo-periodicity of the ECG and to propose and validate a
cepstral method for devices with low-computing power that
scores the quality of ECG leads for heart rate variability
applications.

2 METHODS

2.1 The Power Cepstrum
The Power Spectrum PS(f) of a signal s(t) is the squared
magnitude of its Fourier Transform:

PS(f) � |F[s(t)]|2 (1)
The Power Cepstrum PC(τ) of s(t) is the power spectrum of the

logarithm of PS(f):

PC(τ) � ∣∣∣∣F[logPS(f)]
∣∣∣∣
2

(2)
The Power Cepstrumwas introduced to identify signals echoes

(Bogert et al., 1963; Oppenheim and Schafer, 2004). In fact, the
Fourier spectrum of the superposition of a signal and its echo
after τ seconds is the product between the spectrum of the signal
and a periodic function with period 1/τ Hertz. The logarithm
converts the product into a sum and the following Fourier

FIGURE 1 | Power spectra and power cepstra of a sinusoid, sawtooth function and synthesised ECG. The signals were sampled at 200 Hz, the spectra were
calculated over 2048 points by Fast Fourier Transform (FFT) and the cepstra were calculated by FFT of the log-transformed spectra between 0 and 100 Hz (for clarity,
spectra are plotted up to 40 Hz, signals and cepstra up to 4 s). The cepstra of the sawtooth function and synthesized ECG show peaks at 1, 2, and 3 s representing the
train of power spectrum harmonics multiple of the fundamental frequency f0 = 1 Hz; the sawtooth cepstrum also shows peaks at 0.24 s and its multiples
representing the modulation with period of 4.2 Hz visible in its log-spectrum; the ECG cepstrum shows a large peak at the lowest quefrency representing the decreasing
spectral trend.
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analysis identifies the echo delay as a spectral peak at “frequency”
τ. The domain of the spectrum of the log-spectrum is treated as a
“frequency domain”, but after two Fourier transforms its units are
those of time, in seconds, not of frequency, in Hertz. For this
reason, it is referred to as the “quefrency” domain. Like
“cepstrum” and “liftering”, this term was coined by
interchanging consonants of familiar words (“frequency”,
“spectrum” and “filtering”) to emphasize that time-domain
methods are applied to functions of the frequency.

The cepstral approach, however, also gives us a concise way
of describing the harmonic structure of periodic signals. This is
illustrated in Figure 1, which compares power spectra and
power cepstra of three periodic functions with a period of 1 s.

The first function is a sinusoid: its power spectrum is composed of
a single peak at 1 Hz and, consequently, its cepstrum shows very-low
quefrency power only. The second signal is a sawtooth function: the
power spectrum consists of a sequence of harmonics at multiples of
the fundamental frequency f0 = 1Hz.When plotted in a log scale, this
train of peaks appears modulated by a slower oscillation with a
“period” of 4.2 Hz. These components are clear in the cepstrum:
harmonics at quefrencies τmultiples of τ0 = 1/f0, i.e. at τ equal to 1, 2,
and 3 s, represent the train of spectral peaks; and cepstral peaks at τ =
1/4.2 Hz−1 (i.e., 0.24 s) and its multiples represent the slower spectral
periodicity. The third periodic function is a synthesized ECG: in this
case, the log-spectrum appears as a quasi-sinusoidal train of peaks that
decays at frequencies higher than 20Hz. Like the sawtooth cepstrum,
the ECG cepstrum shows peaks at τ = 1, 2, and 3 s that represent the
train of harmonics.

2.2 Synthesized Electrocardiogram
To identify the parameters that better describe the cepstral
peaks of the ECG, we made use of synthesized ECG signals.

The same synthesized ECGs also allow us to quantify the
effects of added noise and deviations from pseudo-
periodicity. To synthesize ECG waves with realistic shapes,
we started with real recordings. One lead ECG (Einthoven II
lead, 200 Hz) was recorded in eight young volunteers (4 males/
4 females, age 21–38 years) resting supine for 10 min by a
Cardioline Delta 1 plus (REMCO ITALIA, Milan, Italy)
electrocardiograph. An ECG template was obtained from
each recording by R-peak synchronized average. About 600
beats were averaged for each template, virtually removing any
type of noise asynchronous with the R peak (baseline drift,
muscular noise, or 50/60 Hz power noise). A synthesized ECG
was generated from each template sequentially appending
copies of the template, spaced evenly. The mean R-R
interval of the 8 recordings ranged between 738 and
1126 ms and the distance between consecutive R peaks was
equal to the mean R-R interval of each original recording. In
this way, the 8 synthesized signals preserved the original heart
rate and ECG shape (see an example in the lower-left panel of
Figure 1).

2.3 Electrocardiogram Cepstral Estimator
We first introduced the ECG cepstral analysis in a conference
presentation as a new tool for assessing the quality of
electrocardiographic recordings (Castiglioni et al., 2011). In
the present work, we evaluate critically the performance of the
cepstral approach by applying it to synthesized ECG signals, to a
large number of real ECG recordings from public databases, and
to specific ECG tracings selected from our previous works as
being representative of specific physiological or pathological
conditions. However, before applying the cepstral analyses on
synthesized and real ECGs, this paragraph shows how we

FIGURE 2 | Definition of data windows for ECG cepstral analysis. (A): power spectrum of a synthesised ECG (dotted line) with interpolation of the maxima at the
fundamental harmonic and its multiples (continuous line). (B): average and 95% confidence interval of the lines interpolating the spectral maxima of 8 synthesised ECG.
The average interpolating line is relatively constant up to 20 Hz and rapidly decreases at higher frequencies, suggesting to limit the length of the frequency-domain data
window up to 20 Hz. (C): relative power of the main cepstral peak: median and interquartile range over 8 synthesised ECGs calculated by six different time-domain
data windows and by smoothing the spectral lines using moving average filters with bandwidth between 98 and 684 mHz. The best performance is obtained with the
Blackmann window and smoothing bandwidth between 250 and 500 mHz.
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empirically optimized some parameters of the cepstral estimator.
In particular, the power cepstrum estimator depends on the type
of data windowing and spectral smoothing, like the traditional
Fourier periodogram. Since the cepstrum consists of two
consecutive Fourier spectra, the length of the data windows
should be defined in the time domain for the first Fourier
Transform, selecting the duration of the ECG segments, and
in the frequency domain for the second Fourier Transform,
selecting the frequency range of the log-spectrum. The
window length in the time domain was set equal to 10 s as a
trade-off between frequency resolution, which should be
sufficiently high to distinguish ECG harmonics, and amplitude

of heart rate changes, which should be relatively small to locally
preserve the pseudo-periodicity of the signal.

The optimal window length in the frequency domain was
identified as the frequency band where the height of ECG spectral
peaks remains relatively constant. This choice avoids introducing
very low quefrency components in the cepstrum due to slow
decreasing trends in the train of harmonics. The band was
identified by calculating the power spectrum for consecutive
10-s segments of each synthesized ECG and by interpolating
the maxima (Figures 2A,B). The interpolating function is
relatively stable below 20 Hz and decreases at higher
frequencies, coherently with the literature (Golden et al.,

FIGURE 3 | Examples of ECG cepstral analysis. Left: 10-s ECG segments from the Physionet/Computing in Cardiology datasets of the 2011 (A–C) and 2017 (D)
Challenges; centre: log-spectra with polynomial trends (red line); right: cepstra before (dotted black) and after (red) liftering by polynomial detrending, with τ0 the
quefrency of the estimated first harmonic. (A) shows a high quality ECG and a cepstrumwith a single harmonic; the corresponding CQI is 91.1%. (B) shows a high quality
ECG, its cepstrum with 3 harmonics multiple of τ0, and CQI is 67.2%. (C) shows a low-quality ECG with a single harmonic identifiable in the liftered cepstrum and
CQI is 29.3% due to consistent low-quefrency noise. (D) shows a high quality ECG during atrial fibrillation: the log-spectrum does not have a periodic structure, the
liftered cepstrum does not show a clear first harmonic, and CQI is 22.1% only. When a clear cepstral first harmonic is identifiable (A–C), its quefrency τ0 practically
coincides with the mean R-R interval, RRm.
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1973). This suggests setting the length of frequency-domain data
windows between 0 and 20 Hz.

The type of window function critically defines the proper
combination between power leakage and main-lobe amplitude of
the Fourier spectrum (Marple, 1987), determining the relative
power of the cepstral peak at the quefrency τ0 corresponding to
the mean R-R interval. To choose the time-domain data window,

the relative amplitude of the main cepstral peak was calculated
using six different windows (rectangular, triangular, 10%-cosine,
Hann, Hamming, and Blackman) and by smoothing the resulting
spectral lines with moving average filters of different orders. The
best performance was obtained with the Blackmann window
(Figure 2C): about 90% of the cepstral power is concentrated
in the main cepstral peak if the Blackman window is used in the

FIGURE 4 | Effects of noise and deviations from periodicity on CQI. CQI median and interquartile range over 8 synthesised ECGs. (A): CQI at decreasing levels of
signal-to-noise ratios, SNR (SNR =∞means no noise, SNR = 0means noise only) with * indicating statistically significant difference vs. SNR = 0 at p < 0.05; the inset is an
example of ECG with SNR = 4. (B): CQI at increasing values of variation coefficient, VC, of R-R interval when the heart rate dynamics consists in monotonic ramps (solid
circles) or random changes (open circles): median and interquartile range over 8 synthesised ECGs with * indicating statistically significant difference between ramp
and random changes at p < 0.05. (C): CQI without or with 1, 2 or 3 premature beats, with * indicating statistically significant difference vs. no premature beats at p < 0.05:
inset is an example of simulated supraventricular premature beat.

FIGURE 5 | Examples of multi-lead ECGs from the dataset of Physionet/Computing in Cardiology 2011 Challenge. The recordings were classified as “acceptable”
(left) or “unacceptable” (right). CQI scores of individual leads correctly detect Lead I of sufficient quality for heart rate variability analysis in the “unacceptable” recording
and Lead V6 as inadequate for heart rate variability analysis in the “acceptable” recording.
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time domain and the resulting spectral lines are smoothed with
moving average filters of order between 250 and 500 mHz.

As regards the data window in the frequency domain, we
selected the 10%-cosine taper (Bingham et al., 1967) because the
window length is relatively short (up to 20 Hz only, implying a
relatively large main lobe) and the cosine taper reduces leakage
with a small increase only of the width of the main lobe.

2.4 A Cepstral Score of the
Electrocardiogram Quality in Normal Sinus
Rhythm
The evidence that the harmonic structure of synthesized ECGs
produces cepstra with a dominant peak at the quefrency τ0
corresponding to the average R-R interval, suggests taking the

relative power of this cepstral peak (and its higher harmonics if
present) as the index of ECG signal quality. To obtain a Cepstral
Quality Index (CQI), first the ECG cepstrum and its total power are
estimated as follows:

1. a 10-s ECG segment is selected, linearly detrended and
Blackman windowed, s(t);

2. the FFT power spectrum of s(t) is calculated, P(f);
3. P(f) is truncated at 20 Hz, smoothed averaging contiguous

lines over a frequency band of 300 mHz and log-transformed,
log P(f);

4. log P(f) is linearly detrended by least-square fitting a regression
line and windowed by the 10%-cosine taper, log P(f)CT;

FIGURE 6 | Physionet/Computing in Cardiology Challenge 2011 datasets. CQI median and interquartile range for each of 12 leads of ECG recordings classified as
“acceptable” (A) or “unacceptable” (B): for each lead, the * indicates statistically significant difference between groups at p < 0.01.

FIGURE 7 | Physionet/Computing in Cardiology Challenge 2017 datasets. (A) CQI as median and interquartile range for single-lead ECGs manually classified as in
normal rhythm, atrial fibrillation or noisy recording. The * indicates a statistically significant difference vs. the normal rhythm group at p < 0.01 (B) ROC analysis on 5050
recordings adequate for heart rate variability analysis (normal rhythm) vs. 1022 recordings inadequate for heart rate variability analysis (in atrial fibrillation or noisy); the red
dot on the curve identifies the classification cut-off (CQI > 47%) according to the Youden’s criterion; AUC = Area Under the Curve.
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5. the FFT power spectrum of log P(f)CT is calculated obtaining
the cepstrum CP(τ) at quefrencies τ≥ 0.05 s (inverse of 20 Hz,
highest frequency in the log spectrum);

6. the total cepstral power TOT is calculated by integrating
CP(τ) up to τ = 3 s.

Figure 3 shows examples of power cepstra CP(τ) from real
ECG recordings selected from the datasets of the PhysioNet/

Computing in Cardiology 2011 Challenge (Silva et al., 2011) and
2017 Challenge (Clifford et al., 2017). Figures 3A,B show high-
quality ECG in normal sinus rhythm: their cepstrum consists of
the main harmonic at the quefrency of the mean R-R interval and
possibly higher harmonics. By contrast, Figure 3C shows that
noise may produce spurious cepstral peaks with larger power
than the true ECG peak; in this case, high-pass “liftering”
(i.e., filtering in the frequency domain) the log-spectra may
help identifying the true peaks. Thus, to properly calculate the

FIGURE 8 | Examples of discarded ECG segments by running cepstral analysis. Colors represent four CQI levels. (A): low CQI values identify a short burst of
muscle noise and a following movement artefact. (B): low CQI values detect signal loss likely due to a poor contact between textile electrodes and skin. (C): premature
beats in a high quality recording are locally associated to low CQI values. (D): atrial fibrillation is associated to persistently low CQI even in high quality ECG recording.
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power associated with the ECG cepstral harmonics, a liftered
cepstrum is also estimated as follows:

7. log P(f) (calculated at step 3) is “liftered” by least-square
fitting and removing a polynomial of order 10, log P(f)L;

8. the 10% cosine taper is applied to log P(f)L obtaining log
P(f)LCT;

9. the FFT of log P(f)LCT is calculated obtaining the liftered
cepstrum CPL(τ);

10. a moving average over a quefrency band of 0.20 s further
improves the statistical consistency of CPL(τ);

Figure 3 shows that liftering removes very-low quefrency
power due to noise without affecting the true ECG cepstral

FIGURE 9 | Examples of running cepstral during ramp-like heart-rate changes. Upper panels: ECG (A), R-R intervals, RRI (B), and respiratory movements of the
thorax (C) during sleep apneas; color codes represent the CQI levels. Even if apnea/deep breathing events produced large ramp-like changes of heart rate, the CQI score
remained relatively high classifying the data segment of good quality for heart rate variability analysis. Lower panels: R-R intervals (D) and ECG (E) during an incremental
exercise test on the cycloergometer: the ECG was in normal sinus rhythm (see insets) and the CQI score remained high even when RRI progressively decreased
during the exercise.
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peaks. Readers may find a detailed description of the MATLAB
code implementing steps from 1 to 10 in the Supplemental
Material. We define the quality score as the power of the
liftered cepstral peaks relative to the total power of the
unliftered cepstrum as follows:

11. the power of CPL(τ) first and second harmonics, H, is
calculated;

12. the cepstral quality index is the ratio between H and TOT:
CQI = H/TOT.

In our application, the main ECG peak is identified between
0.30≤ τ ≤ 2.5 s (the quefrency band where τ0 corresponding to the
average R-R interval is expected) by comparison with a threshold
equal to the 90% percentile of the liftered cepstrum: the peak of
the ECG first cepstral harmonic should overcross this threshold.
A second cepstral peak that falls in the quefrency band
corresponding to twice the band of the main harmonic is
recognized as a genuine second harmonic. CQI may therefore
range between 100% (when all the power of the cepstrum is
contained in the first and second harmonics of the ECG
cepstrum) and 0% (when no ECG peaks are identified in the
cepstrum).

When the hypothesis of ECG pseudoperiodicity does not hold,
as during arrhythmias episodes, a cepstral main harmonic might
not be detected even in a high-quality ECG. Figure 3D shows an
ECG segment during atrial fibrillation: the power spectrum does
not have a periodic structure, cepstral harmonics cannot be

correctly associated with a spectral periodicity, and the
resulting CQI is remarkably low.

When the ECG recording is longer than 10 s, continuous,
second-by-second CQI estimates are calculated for the whole
duration of the recording performing the cepstral analysis on
90%-overlapped, running ECG segments of 10-s length.

2.5 Validation on Synthesized and Real
Electrocardiograms
We quantified the effects of noise and deviations from
pseudoperiodicity on CQI using the synthesized ECGs. The
effect of broadband noise was evaluated by adding increasing
levels of white noise to the synthesized ECGs, with signal-to-noise
ratio, SNR (ratio between the ECG power and the power of added
noise), between 9 and 1/9. The effects of deviations from
periodicity were evaluated on synthesized ECGs appending the
ECG templates at uneven periods. Two types of heart rate
changes were simulated preserving the original mean heart
rate: monotonic ramps, with R-R intervals increasing or
decreasing linearly in time, and random fluctuations, with
independent changes of R-R intervals from one beat to the
next. Monotonic heart-rate ramps during normal sinus
rhythm can be observed in 10-s ECG tracings following
cardiac sympathetic or vagal activations, as well as during
deep breathing episodes. Random heart-rate changes may
somehow model the disordered cardiac rhythm in atrial
fibrillation. The variation coefficient, VC (ratio between

FIGURE 10 | Overall quality of very long-term ECG recordings from the distribution of running CQI values. Distributions (relative frequencies) of CQIs calculated
second-by-second on ECG Holters recorded for 7 consecutive days continuously with a wearable device (RootiRx

®
, Rooti Labs Ltd., Taipei, Taiwan) at 250 Hz in two

subjects. The recording of the subject on the right (#1556) is almost completely analysable having good quality (CQI > 50%) for 97% of the time; by contrast, assessing
heart rate variability in the recording on the left (#38F) might be problematic for a not negligible fraction of the time, being the quality “very low” or “unacceptable”
(CQI ≤ 40%) for 12% of the recording.
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standard deviation and mean) of the original R-R intervals in
healthy volunteers was 4.5% when calculated over 10-s segments
and the ECGs were synthesized with VC between half and twice
this physiological value. Premature beats may also alter the ECG
pseudo-periodicity. Supraventricular beats were simulated by
removing the portion of the template before the QRS complex
which includes the P wave. One, two, or three altered templates
were added randomly to the equispaced sequence of
synthesized ECGs.

To validate the proposed cepstral score on real ECG tracings,
we considered recordings from two datasets provided by the
Physionet Community at the MIT Laboratory for Computational
Physiology (Goldberger et al., 2000). To test the effects of noise
and artifacts on real ECG recordings, CQI was evaluated on “set-
A” of ECG recordings made available for the Physionet/
Computing in Cardiology 2011 Challenge (Silva et al., 2011).
The recordings consisted of 12 ECG leads (I, II, III, aVR, aVF,
aVL, V1-V6) sampled at 500 Hz, 16 bit with 5 μV resolution, and
standard diagnostic bandwidth (0.05–100 Hz). The overall
quality of each multi-lead recording was manually scored by a
group of annotators. Combining their scores, ECG recordings
were classified as having “acceptable” (n = 773) or “unacceptable”
(n = 225) signal quality.

To systematically check how the CQI score detects
arrhythmias, the cepstral analysis was applied to the training
dataset of the PhysioNet/Computing in Cardiology 2017
Challenge (Clifford et al., 2017). The dataset is composed of
single-channel (equivalent to lead I) ECGs recorded with the
AliveCor devices at 300 Hz and 16 bit, with 0.5–40 Hz bandwidth,
visually classified by experts into 4 groups: noisy, or in normal
rhythm, or in atrial fibrillation, or in any “other” rhythm. From
the whole dataset, we considered the 5050 normal-rhythm
recordings, the 738 atrial fibrillation recordings, and the 284
noisy ECGs. Their duration ranged between 9 and 61 s, with a
median value of 30 s. The running cepstral analysis was applied
and the second-by-second estimates were averaged to obtain a
single CQI score for each recording. The Area Under the Curve
(AUC) of Receiver-Operator Characteristic (ROC) analysis
measured how CQI classifies between cases for which heart
rate variability analysis is feasible (i.e., normal rhythm
recordings without excessive noise), and cases to be excluded
from heart rate variability analysis (i.e., atrial fibrillation or too
noisy recordings). The Youden index, calculated as in (Goksuluk
et al., 2016), provided the cut-off value for the classification.

Statistical comparisons between groups were performed with
the Wilcoxon matched-pairs test.

Additionally, we illustrated the performance of the
proposed score by applying the running cepstral analysis on
ECG tracings collected in our previous experiments, which
included long-term recordings in free-moving volunteers at
high altitudes (Lombardi et al., 2013; Caravita et al., 2015). The
experiments were approved by the ethic committee of Istituto
Auxologico Italiano, IRCCS (EudraCT No. 2010-019986-27)
and conducted in agreement with the principles of the
Declaration of Helsinki, after having received informed
consent.

3 RESULTS

3.1 Validation on Synthesized
Electrocardiograms
Figure 4A shows the effect of broadband noise on CQI. The index
progressively decreases from values greater than 90%, when noise
is absent, to 68% when SNR = 1. CQI falls more rapidly when
SNR < 1 and at SNR = 1/9 it is statistically indistinguishable from
CQI of pure noise. Figure 4B illustrates the effects of increasing
levels of heart rate variability, quantified by VC, on CQI,
comparing random changes with ramp-like changes. In both
cases, CQI decreases with increasing levels of VC, but the effects
depend on the type of heart rate dynamics, being more important
for random than monotonic changes. As to the effects of
premature beats on CQI, Figure 4C shows that even a single
ectopic beat in the 10-s ECG segment reduces CQI importantly.

3.2 Validation on Real Electrocardiograms
3.2.1 Physionet/Computing in Cardiology 2011
Challenge
The effects of noise and artifacts on real ECG recordings were
tested systematically on the Physionet/Computing in Cardiology
2011 Challenge dataset (Silva et al., 2011). Figure 5 shows two
examples of multi-lead ECGs, one classified as “unacceptable”
and one as “acceptable”; the CQI of each lead is reported. Since
the Physionet classification regards the quality of multi-lead
ECGs as a whole, a single lead might have sufficient quality
for heart rate variability analysis even in a multi-lead recording
scored as globally unacceptable: this is the case of lead I of
#2722184 recording. Similarly, individual leads may
occasionally have poor quality even in globally “acceptable”
recordings, such as lead V6 of #2984955 recording. In these
two examples, the CQI scores allow automatically selecting the
proper ECG leads for heart rate variability discarding
inadequate leads.

Figure 6 shows the results of cepstral analysis for the whole
dataset. The median CQI score of each lead is coherent with the
manual classification through visual inspection of the recordings,
being close to 70% for all the leads of the “acceptable” group and
much lower for all the leads of the “unacceptable” group (close to
30% for limb leads, to 7% for chest leads).

However, the CQI interquartile range is remarkably wide for
the “unacceptable” group, suggesting that leads with a sufficient
CQI score for heart rate variability analysis may be identified in
most cases even in this group, as the example of Figure 5A
suggests.

3.2.2 Physionet/Computing in Cardiology 2017
Challenge
Figure 7A compares CQI values in the three groups of recordings
of the PhysioNet/Computing in Cardiology 2017 Challenge
(Clifford et al., 2017). These three groups were selected to
quantify the effects of deviations due to noise or atrial
fibrillation from the pseudoperiodicity of the normal rhythm.
Most of the recordings in normal rhythm have CQIs greater than
50%, as the “acceptable” recordings of the 2011 Challenge. Atrial
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fibrillation or noise substantially reduces CQI, which is lower
than 40% in most of these recordings.

The ROC curve that was calculated to quantify the capability
of CQI to identify an ECG recording as adequate for heart rate
variability analysis, was associated with a consistently high AUC
(Figure 7B). The Youden criterion identified in CQI > 47% the
cut-off to classify an ECG recording as adequate, with 79.0%
sensitivity and 85.2% specificity.

3.2.3 Running Cepstral Analysis
Figure 8 shows examples of running cepstral analysis on ECGs
collected with wearable/mobile devices affected by different types
of noise. A four-level color code is used to represent the CQI
values estimated second by second. Based on the cut-off defined
by ROC analysis (Figure 7B), we classified the ECG as having
good quality when CQI > 50%, representing the time window in
green color, and as having “acceptable quality” when 40 < CQI ≤
50%, representing the time window in yellow. ECG classified with
“very low” or “unacceptable” quality are associated with 25 < CQI
≤ 40% and CQI ≤ 25%, and are represented in magenta and red
respectively.

Panel a) is a segment of 24-h ECG (250 Hz sampling, 16 bit) in
a healthy volunteer during daily-life activities with a wearable
device (Faros 360 Mega, Kuopio, Finland). The ECG shows a
short burst of muscular noise followed by a movement artifact:
the running analysis associates both the events with locally low
CQI values.

Panel b) is a segment of ECG recorded in a healthy
volunteer during night-time sleep at a high altitude
(Lombardi et al., 2013). The ECG (200 Hz, 12 bit) was
recorded with the MagIC device, a wearable system with
woven ECG electrodes, a textile plethysmograph for
measuring respiratory movements of the thorax, and a
sternal accelerometer (Di Rienzo et al., 2010), connected to
a pulse oximeter (Nonin Xpod®, Nonin Medical, Inc.,
Plymouth, MN, United States). The running analysis
classified unacceptable (CQI ≤ 25%) a data segment with a
temporary signal loss, likely due to a bad contact between
textile electrodes and skin. The recovery of the ECG waveform
was identified by classifying the signal as having CQI > 50%.

Panel c) is a high-quality ECG with frequent premature beats
recorded by MagIC in a volunteer resting at a high altitude
(Caravita et al., 2015). While most of the recording is associated
with high CQI values, each premature beat causes a dramatic local
fall in the quality score. These beats are classified as
“unacceptable” for heart rate variability analysis.

Panel d) is an example of running cepstral analysis during
random heart-rate variations due to the lack of normal sinus
rhythm. The ECG was recorded with a mobile electrocardiograph
(AliveCor Inc., Mountain View, CA, United States) by a patient in
atrial fibrillation (#A00027 of the PhysioNet/Computing in
Cardiology Challenge 2017 dataset). The whole signal is
associated with very low CQI values indicating that it is
unacceptable for heart rate variability.

Figure 9 shows examples of running cepstral analysis on ECG
tracings in normal sinus rhythm with large ramp-like changes in
heart rate. The upper panels regard a segment of a sleep recording

at a high altitude by the MagIC device. The low barometric
pressure at high altitude induced frequent apneas/hypopneas
events followed by deep breathing, which caused wide ramp-
like changes in R-R intervals and fluctuations of the ECG
baseline. These wide heart rate fluctuations occurred in
normal sinus rhythm and did not prevent the cepstral analysis
to quantify high CQI scores and classify the segment as acceptable
for heart rate variability analysis.

The lower panels of Figure 9 regard an ECG recording
(1000 Hz sampling rate, PowerLab 8/35 Bioamp—Data
Acquisition System, ADInstruments, Dunedin, New Zealand)
during an incremental exercise test up to exhaustion on the
cycle ergometer (Ergoselect 100, ergoline GmbH, Bitz,
Germany). The test was performed by a 14-year-old male
participant with an increasing exercise load at 12W/min. Even
if the R-R intervals decreased progressively during the test with a
ramp-like pattern as the load increased, the CQI score remained
sufficiently high and classified the ECG quality as “good” or
“acceptable” throughout the test.

4 DISCUSSION AND CONCLUSION

In the last years, several methods have been proposed for
evaluating the quality of ECG recordings: the principles on
which they are defined and comparisons among methods are
reported in two recent reviews (Satija et al., 2018; Rahman et al.,
2022). These reviews highlight that the accuracy of each method
depends on the medical context for which it is proposed.
Therefore, while some methods are aimed at the correct
identification of the QRS complex only, others require a more
detailed morphological identification of specific ECG features,
like amplitudes and intervals between waves (Satija et al., 2018).
Furthermore, the accuracy depends on the testing dataset because
the type of artifacts and noises affecting mobile ECGs for
telemonitoring applications differ from those expected for
wearable ECG devices or ECGs recorded in the doctor’s office
or in intensive care units (Rahman et al., 2022). In this context,
the usefulness of our cepstral approach is to address a specific
aspect of the ECG signal quality that has not been explicitly
considered by other methods: the acceptability of ECG recordings
for heart rate variability analysis. In this frame, an ECG segment
should be considered not acceptable even in absence of noise
components or artifacts if it does not occur during normal sinus
rhythm, a condition not considered by other indexes of signal
quality. In addition, our work was motivated by the need to
evaluate the ECG adequacy for heart rate variability analysis
continuously onboard wearable devices with low computational
power.We found the cepstral analysis to be a promising approach
because the power cepstrum describes the periodic structure of
ECG recordings in a simple way (i.e., with the main harmonic at
τ0 and very few multiples at most) that can be calculated and
interpreted easily. This makes the power cepstrum a potentially
useful tool in heart rate variability studies to identify and discard
noisy ECG recordings or recordings not in normal sinus rhythm.
The estimation of the power cepstrum does not require important
computational resources and consent defining a simple score,
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CQI, evaluable by the wearable systems themselves. In multi-lead
ECG recordings, CQI could allow selecting and transmitting the
ECG lead with the best quality only (that is the lead with the
highest CQI), reducing the flow of redundant information within
the monitoring system and the power consumption for signal
transmission.

The dataset of the Physionet/Computing in Cardiology 2017
Challenge demonstrated that CQI is useful to distinguish ECGs in
normal rhythm from unacceptable recordings due to noise or
arrhythmias, and provided us with an objective cut-off threshold
for the classification. In ambient-assisted living applications,
thresholds on running CQI estimates may be employed to
send alerts from the wearable device to upper computational
levels, which may apply more sophisticated analysis tools,
possibly integrating other physiological, behavioral, and
environmental signals, to properly manage the alarm. On
very-long term monitoring, comparing the distribution of CQI
values with cut-off thresholds provides an effective way to
summarize the overall quality of the ECG recording, as in the
example of Figure 10.

It is worth noting that deviations from the ECG periodicity
may occur also in normal sinus rhythm due to physiological
changes in heart rate. Even if most applications of heart rate
variability require stationarity, which assures a stable mean heart
rate, time-varying methods are employed to describe autonomic
activations that induce rapid changes in the cardiac rhythm.
These changes appear as heart-rate ramps in the short running
window used for cepstral analysis and they should not be
excluded from the evaluation of heart rate variability. Results
on synthesized ECGs (Figure 4B) showed that a chaotic heart-
rate pattern decreases CQI significantly more than a ramp-like
pattern with the same variation coefficient. As Figure 9
exemplifies, this means that even marked ramp-like changes in
the heart rate may be correctly classified as adequate for
evaluating the heart rate variability if they occur in normal
sinus rhythm, in absence of artifacts or noise.

4.1 Limitations and Future Perspectives
We defined CQI to assess recordings in adults or the elderly
during daily activities. Therefore, the parameters defining our
method should be modified to properly monitor subjects with
much higher heart rates, such as neonates or young athletes
during maximal exercise. This can be done easily because the
parameters are easily interpretable. For instance, let’s consider the
frequency data window we defined between 0 and 20 Hz and the
cepstral band for identifying the peak at τ0 between 0.3 and 2.5 s;
if the heart rate is 180 bpm, only 6 harmonics fall in the frequency
data window and τ0 is very close to the lower limit of the cepstral
band. Thus, if such high average heart rates are expected, it may
be desirable to increase the upper limit of the frequency window
above 20 Hz and to shift the cepstral band toward quefrencies
lower than 0.3 s to better capture the cepstral power around the

mean R-R interval. Moreover, a limit of CQI is that it does not
distinguish between noise and arrhythmias, being similarly low in
the case of noise and atrial fibrillation (Figure 7A), even if the
causes for the deviations from the ECG periodicity are rather
different in the two cases. More detailed quantification of the
cepstral morphology than CQI might better characterize the
chaotic rhythm of atrial fibrillation, possibly integrating
traditional spectral methods to distinguish among types of
atrial fibrillation and between atrial fibrillation and noise.
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