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Diabetic foot complications have multiple adverse effects in a person’s quality

of life. Yet, efficient monitoring schemes can mitigate or postpone any

disorders, mainly by early detecting regions of interest. Nowadays, optical

sensors and artificial intelligence (AI) tools can contribute efficiently to such

monitoring processes. In this work, we provide information on the adopted

imaging schemes and related optical sensors on this topic. The analysis

considers both the physiology of the patients and the characteristics of the

sensors. Currently, there are multiple approaches considering both visible and

infrared bands (multiple ranges), most of them coupled with various AI tools.

The source of the data (sensor type) can support different monitoring strategies

and imposes restrictions on the AI tools that should be used with. This review

provides a comprehensive literature review of AI-assisted DFU monitoring

methods. The paper presents the outcomes of a large number of recently

published scholarly articles. Furthermore, the paper discusses the highlights of

these methods and the challenges for transferring these methods into a

practical and trustworthy framework for sufficient remote management of

the patients.
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1 Introduction

Nowadays, millions of people worldwide are living with diabetes. Mistreated diabetes

may lead to adverse situations, including the development of diabetic foot ulcers (DFU) or

appearance of regions susceptible to infection (Jaly et al., 2020). Infections can range from

mild (e.g., cellulitis) to severe ones, such as those affecting the bones (e.g., osteomyelitis).

A severe infection can lead to a life-threatening emergency situation (e.g., sepsis), that

requires treatment with antibiotics, administered intravenously, and surgical intervention

for drainage, debridement, or amputation (Lim et al., 2017). Nevertheless, these cases

could be prevented through regular assessment (Cousart and Handley, 2017).

On the one hand, DFU is treated by specialized medical experts. On the other hand,

patient’s self-care, outside the clinic, is of utmost significance (Bus and van Netten, 2016).

In that context, patient empowerment towards self-monitoring is considered of high-
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importance. Self-management and monitoring can contribute in

preventing an initial ulcer appearance, detecting susceptible signs

in a foot region, monitoring existing ulcers to prevent further

complications and possible recurrent ulcerations (Armstrong

et al., 2017).

There are multiple signs/symptoms related to diabetic foot

ulcer. These signs involve skin color change (redness),

temperature change, damage to the skin due to abnormal foot

plantar pressure, change in pain level or appearance of a new

pain, swelling, or odor (Schaper et al., 2016). Most of these

indication signs can be captured and, thus, monitored, using

various optical and/or laser sensors. Nowadays, red-green-blue

(RGB) and thermal sensors have relatively low acquisition costs,

are not bulky, and can be integrated to portable devices. Sensory

inputs, coupled with deep learning (DL) models, can provide

robust mechanisms for preventing undesirable or emergency

situations (Tulloch et al. (2020)).

DFU monitoring and prevention is an active research field

and there are many important publications in the area of study.

Machine learning models including both, shallow learning, and

DL approaches have been widely used to support DFU

monitoring techniques. (Goyal et al., 2020). Yet, to the best of

our knowledge, a sensor-driven survey, spanning multiple

monitoring capable ranges, is missing. In this paper, we

investigate how smart, low-cost devices (Najafi et al., 2020)

embedded with AI tools, could contribute to self-prevention

and monitoring of the DFU. This survey focuses on two

research topics: a) DFU pathology monitoring, through optical

sensors and b) analysis/interpretation of the sensor-oriented

data, using machine learning/AI tools.

The remaining of the paper is organized as follows: Section 2

describes the basic monitoring areas, regarding the DFU

pathology and clinical features related to DFU detection and

monitoring. Sections 3 summarizes the noninvasive sensors that

are utilized in DFU monitoring, whereas Section 4 is a brief

overview of the machine learning techniques that are applied in

DFUmonitoring. Section 5 summarizes and analyzes the sensors

along with the machine learning techniques that are utilized

focusing on Near-Infrared (NIR), Mid-Infrared (MIR) and Long-

Infrared (LIR) clinical studies. Section 6 concludes this work and

highlights the challenges towards a practical and trustworthy

framework for self-monitoring, AI-assisted DFU monitoring

approaches.

2 DFU monitoring fundamentals

2.1 DFU development risk factors

DFU is characterized by a complex multifactorial

pathogenesis. In the following paragraphs, the most prevalent

risk factors and parameters for foot ulcer recurrence (Armstrong

et al., 2017) are briefly described, since the medical history of the

patient is related to DFU development and progression. The risk

factors include: a) the duration of diabetes, b) the history of

vascular intervention, c) the amputation, and d) the existence of

callus. In the same study, factors such as age, gender, body mass

index, smoking, nephropathy, tinea pedis, and hyperkeratosis

were not related to DFU.

At first, the duration of diabetes and the blood glucose levels

are crucial factors and, thus, consist a key indicator for diabetic

foot monitoring (Cheng et al., 2021). Secondly, loss of sense in

the foot, due to diabetic neuropathy, in combination with foot

deformities, poorly fitting footwear, and excessive pressure, can

result in callosities formation that may lead to ulcers

development. Thirdly, the peripheral arterial disease (PAD)

can cause a decrease in blood circulation, which may cause

ulceration, or delay foot healing by reducing the oxygen

delivery to peripheral tissues. PAD maym, also, cause a reduce

in temperature on plantar foot. Lastly, oxygen concentration can

be indirectly calculated; given that hemoglobin-associated

oxygen accounts for roughly 97% of total oxygen being

transported, the dynamic relationship between oxygen and

hemoglobin levels can be assessed for primary determination

of oxygen transport.

As such, clinical studies suggest that patients, who have

developed or are at risk of developing a diabetic foot ulcer,

should periodically monitor and assess the following four

factors: a) blood glucose levels (Kateel et al., 2018), b) foot

deformity/foot pressure (Yazdanpanah et al., 2018), c) foot

temperature (Mejaiti et al., 2018) and d) hemoglobin

concentration (Salman et al., 2017). Moreover, the duration

of diabetes, the medication history of the patient, and the

history of vascular interventions (if any) are also important

factors for foot ulcer recurrence.

2.2 DFU clinical features

A diabetic foot ulcer is an open wound with a circular

appearance, located on the bottom of the foot and often

preceded by a haemorrhagic subepidermal blister. Tissue

around the ulcer may become black, and in some cases

may gangrene will developed. Foot ulcers are usually

painless, leading to delay visits to health professionals.

Pedal pulses may be absent and reduced sensation can be

demonstrated.

3 Non-invasive sensor technologies
for DFU monitoring

The widespread acceptance of non-invasive sensor

technologies is essential for the following reasons: a) to

monitor major risk factors associated with diabetic foot ulcer,

b) to empower patients in self-care, and c) to effectively deliver
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the remote monitoring and multi-disciplinary prevention needed

for those at-risk people and d) to address the health care access

disadvantage that people living in remote areas (Najafi and

Mishra (2021)). Harnessing sensor technologies to remotely

manage diabetic foot is of major importance. In this section

we summarize both the sensor technologies and spectrum’s rage

that had been used to this day, for monitoring purposes.

3.1 Techniques in the visible spectrum

Visible spectroscopy (VIS) is defined by the luminous

efficiency functions ranging between wavelengths of λ =

380 nm and λ = 780 nm (Salman et al., 2017). These sensors

measure the surface wound size, or identify the wound boundary/

area, since they are visible effects under the light. Moreover, RGB

sensors distinguish multiple types of skin deformities (van

Netten et al., 2017). Therefore, digital images are utilized for

monitoring the wounds’ characteristics.

RGB images are usually identified in computer applications,

hand-held devices andmobile applications for wound assessment

and monitoring. Monitoring devices equipped with RGB (red-

green-blue) sensors is a low cost solution, which can be applied

easily for self-monitoring or in primary prevention. However,

they do not yield oxygenation or birefringence-related

characteristics compared to other approaches. VIS cannot

support temperature, glucose, or hemoglobin concentration

monitoring. Nevertheless, if we move beyond the visible

spectrum, near-/mid-/far-infrared wavelengths can support

clinical diagnostics. Figure 1 illustrates the ranges of sensors

under consideration in this study. Spectral information other

than optical can also be referred to as hyperspectral.

3.2 Techniques in the near-infrared
spectrum

NIR spectroscopy provides a viable approach for monitoring

saturation levels under the skin. Tissues are relatively transparent

to near-infrared light and the absorption of light dependents on

the oxygenation status of the tissue (Nouvong et al., 2009).

Furthermore, the absorption, scattering, and reflection

properties of the propagation of light in a tissue are affected

by the wavelength. Yet, the difference between oxygenated and

deoxygenated blood can be easily identified in the NIR spectrum.

In particular, NIR spectroscopy (700nm − 1300 nm) captures

hemoglobin saturation (HbO2, Hb) and peripheral/tissue oxy

saturation (StO2, SpO2), or deoxy levels, which are important

indicators for DFU early detection (Xie et al., 2021).

3.3 Thermal infrared imaging technologies

Infrared (IR) imaging techniques are utilized for tissue

assessment. IR detectors produce a heat map of the foot

surface and are utilized for the assessment of the temperature

variations in the plantar region. Thermal imaging has been

previously used for the diagnosis of many medical conditions,

including skin/breast cancer, arthritis, allergy, burns, among

others (Gurjarpadhye et al., 2015).

FIGURE 1
The electromagnetic spectrum along with the imagery techniques for the diabetic foot monitoring.
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3.4 Hyperspectral imaging technologies

Hyperspectral imaging (HSI) provides information about the

chemical properties of materials and their spatial distribution

(Khan et al., 2018). HSI covers a continuous portion of the light

spectrum, including infrared, near-, mid- and far-infrared (FIR)

spectral ranges. Thus, HSI captures the subtle spectral differences

under different pathological conditions (Fei, 2020), contrary to

multispectral imaging, which supports a limited number of

discrete spectral bands. HSI data structures involve multiple

2D images (spatial information) at discrete wavelengths

(spectral information) to produce a hypercube (x, y, λ); each

pixel in the image is described by a diffuse reflectance spectrum.

However, low-cost smartphone-based hyperspectral imaging

systems are not mature yet, even though there is a rapid

progress in this field Stuart et al. (2021). Thus, hyperspectral

imagery data sources provide rich information for different ulcer

characteristics, however the equipment that is needed is

expensive.

3.5 Comparison of the different optical
imaging techniques

Considering the major factors to monitor and the capabilities

of the previously described sensors, we could advocate favorably

that diabetic feet monitoring using non-invasive sensors is a

feasible solution. Yet, successful monitoring requires the

combination of different types of sensors, covering multiple

ranges, including VIS, near-, mid-, and far-infrared. Table 1

summarizes the range of wavelengths for the investigated

sensors.

VIS (400–700 nm) captures different skin color and texture

properties. NIR spectroscopy (700nm − 1300 nm) can capture

hemoglobin saturation (HbO2, Hb) and peripheral/tissue oxy

saturation (StO2, SpO2), or deoxy levels, which are important

indicators for DFU early detection (Xie et al., 2021). Thermal

Infrared spectroscopy can detect hyperthermia (or hypothermia),

among ROIs of a foot (or comparatively between right/left foot),

that consist major factors for microcirculation and edema

assessment in DFU (Rubins et al., 2019). Finally, the Mid-IR

absorbance (5.7 μm − 9.3 μm) spectrum contains rich

information about the proteomics, lipidomics and

metabolomics (e.g., glucose) (Kottmann et al., 2012).

4 Machine learning techniques for
DFU monitoring

4.1 Overview of the machine learning
techniques for DFU

4.1.1 Supervised learning techniques
Machine learning and signal processing methods can

contribute significantly in early diagnosis, predictive

modelling, analytics, and characterization of the diabetic foot

(Tulloch et al., 2020; Yap et al., 2021). ML approaches focusing

on DFU detection have received renewed attention, mostly

thanks to the increased number of datasets with RGB images

(Yap et al., 2022). To this day, various models have been

developed using supervised learning methods to detect/localize

abnormalities on medical images related to diabetic foot (Zhang

et al., 2022). These tasks may involve: (i) classification (Goyal

et al., 2020; Xu et al., 2021), (ii) object detection (Cassidy et al.,

2021), and (iii) semantic segmentation (Rania et al., 2020;

Kendrick et al., 2022). Depending on the scenario, different

types of training sets are used, and a minimum but sufficient

amount of data is required.

Nowadays, research depends, mainly, on deep learning

approaches for solving complex problems. The main

advantage lies in the capability to discover hidden patterns in

the data or establish a better understanding of intricate

relationships among many interdependent variables. Given the

sensors availability, and the spectral bands range per sensor, we

have large amounts of data appropriate for training purposes.

Consequently, deep learning approaches occurred naturally as an

application scenario in DFU monitoring, based on optical

information (Voulodimos et al., 2018).

In medical applications, the availability of labeled training

data is extremely limited owing to the nature of the data

containing protected health information. However, supervised

machine learning requires a great amount of labeled data to train

a model, which is at the origin of the main bottleneck in model

development. In literature, the studies address the lack of labeled

TABLE 1 Sensing techniques for DFU monitoring.

Non-invasive sensor technique Measurements/Features of interest

RGB imaging clinical features of the diabetic foot complications (epidermal thickness, melanin concentration, ruddiness)

Hyperspectral imaging oxygen saturation of foot tissues

Thermal imaging temperature variations

Techniques in the near-infrared spectrum hemoglobin saturation (HbO2, Hb) and peripheral/tissue oxy saturation (StO2, SpO2), or deoxy levels
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data by proposing alternative methods to overcome this problem

(Alzubaidi et al., 2021). As shown in sub-sections that follow,

unsupervised or semi-supervised schemes are efficient for these

scenarios.

4.1.2 Unsupervised learning techniques

Unsupervised learning based models have been used to

surpass the problem of labelled data, since these algorithms

can infer adequate feature representations of input values,

without using labelled data. Typically, in healthcare related

studies unsupervised learning manifests as clustering

techniques, which detect hidden patterns or groupings in

data Tulloch et al. (2020). Extracting meaningful features

from the original raw values is useful for reducing the

dimension of feature space and achieving better clustering

performance Ji et al. (2020).

4.1.3 Semi-supervised learning techniques

Other approaches may involve tensor-basedMakantasis et al.

(2021) and semi-supervised learning Protopapadakis et al.

(2021). Both techniques exploit feature space projections,

which allow for better handling of sets of high-order data

and/or limited training sets. The former case, i.e., tensor-based

learning, imposes canonical/Polyadic (CP) decomposition of

rank-R on its weights, leading to a significant reduction of the

number of hyperparameters during training. The later case,

couples labeled and unlabeled data to form additional

regularization terms, resulting in higher performance models.

4.2 Identified sensor/AI tools synergies

Diabetic foot can cause severe morbidity in diabetic patients

with a subsequent increased cost for the health care system.

Prevention and early diagnosis are the keys to decrease the

prevalence of diabetic foot. Due to Covid-19 pandemic

evolution, public health guidelines should be reconfigured to

support and manage diabetic foot patients including remote

consultations. Self-foot assessment is a critical tool for the

highly beneficial early detection of ulcers. Development and

proper usage of an objective tool that can assess the foot of a

diabetic patient are key interventions towards prediction and

early diagnosis of diabetic foot with significant benefits for the

patient and the health care system. Various sensory systems can

be used towards this direction. Table 2 highlights the most

important conclude remarks per sensory system.

5 Grouping of the machine learning
approaches in DFU monitoring
depending on the range of the
electromagnetic spectrum

Non-invasive sensors have contributed in a great extend for

diabetic foot monitoring. In addition, the recently released

datasets captured from these sensors provide a breeding

ground for the application of machine learning algorithms. In

this section, we group the literature works and the proposed

approaches, based on the type of sensor that is utilised during

capturing and the electromagnetic spectrum that is covered. In

particular, we divide the literature work in four main categories

that is works dealing with: i) data captured from the visible

TABLE 2 Synergies between machine learning tools and non-invasive methods for DFU monitoring.

Noninvasive
sensor
technique

Measurements Algorithms Sensors/Cameras Criteria

RGB imaging color, size, shape,
texture in DFU ulcers

Supervised object detection (region
of the ulcer) or binary classification
algorithms (health or ulcer)

Kodak DX4530, Nikon D3300 and
Nikon COOLPIX P100

Sensitivity, specificity, precision,
accuracy, F-Measure, AUC score for
accurate detection or classification

Infrared/Thermal
imaging

Temperature Classification or clustering
techniques, image processing and
edge detection algorithms

Pixels (320H × 240V), measuring range
(starts from −20 °C up to +150 °C),
spectral range (8.0 μm–14.0 μm), field
of view (1.2 μRad), resolution (> 16bit)

Temperature differences in foot:
ulcerous IF > 2.2 °C and noninfected
and nonischemic foot ulcer IF < 2.2°C

HSI Oxygen saturation of
foot tissues

Unsupervised techniques (PCA) for
dimensionality reduction and ML
classification techniques (e.g., SVM,
ANN, CNN, etc.)

Spectral range: 400–720 nm Detector:
CCD Dispersive device:LCTF
Acquisition Mode: Staring
Measurement Mode: Reflectance

Differences (D) in oxyhemoglobin [D
(OXY)] > 18 and deoxyhemoglobin [D
(DEOXY)] > 5.8 between the target
and the neighbor regions are significant

Mid-IR spectroscopy Glucose concentration Signal processing and statistical
methods, no ML methods yet

Quantum Cascade Laser (EC-QCL).
QCL MIR glucose absorption

glucose concentration more than
100 mg/dl

Abbreviations are listed in Appendix A.
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spectrum, ii) hyper-spectral imaging data, iii) thermal imaging

data, and iv) data from the middle-IR spectrum.

In every single subsection, the respective research works are

structured in a table format. The columns of each table are: i) an

identifier of the presented work, ii) information about the

equipment that is utilized from data capturing as well as

information about the environmental conditions during the

data capturing process, iii) the number of the participants in

the clinical study, their inclusion/exclusion criteria if available

and the participants number in total, in the forth column we have

iv) the adopted modelling approach/pipeline and finally, we

present v) the experimental results, the utilized metrics and

the final findings of the study.

5.1 AI techniques and imagery data of the
visible spectrum

In this subsection, we summarize the literature works that

process imagery data of the visible spectrum (RGB). The research

interest in DFU is growing, as the number of reported cases of

diabetes is also grown at a worldwide level. Early attempts in

training machine learning models in this domain have shown

promising results. Wang et al. (2019) use four different support

vector machines (SVMs) to determine wound area in images.

Yap et al. assessed the reliability of an application to standardize

the image capture of DFUs Yap et al. (2018). Nanda et al. (2022)

evaluate the performance of different shallow learning

techniques, including Random Forests (RF), SVM, Naive

Bayes (NB), K-nearest neighbour (KNN) methods, for the

identification of the risk factors associated with development

of diabetic foot ulcer. Recently, the release of the Diabetic Foot

Ulcers Grand Challenge (DFUC 2020) dataset consisting of

labelled images has attracted the interest for applying machine

learning algorithms in diabetic foot monitoring applications. The

dataset consists of 2,496 ulcers in the training set and 2,097 ulcers

in the testing set.

With the entrance of new labelled datasets, the

implementation of deep learning approaches is feasible. As

regards the classification, in the work of Alatrany et al. (2022),

they used a deep learning autoencoder as a feature extractor

and subsequently trained multiple ML models to accurately

classify healthy and DFU skin regions. Feature fusion

techniques that combine low- and high-level information

could be combined as proposed in Das et al. (2022), to

improve the capabilities in identification of DFU normal

and abnormal classes. As regards semantic segmentation

tasks, Cui et al. compare SVM algorithms among with two

convolutional neural networks (CNN)-based network

architectures (U-Net and a patch-based CNN), showing

that the U-Net approach yields the best performance

compared to others Cui et al. (2019). Another work that

supports these findings is the work of Ohura et al. (2019),

who compared four different CNN architectures and

identified U-Net as the best performing method, with

sensitivity of 85.8% and specificity of 98.8% on the DFU

dataset. Recently, the modern implementations in DFU

detection methods include the popular deep learning

models for object detection, such as Faster R–CNN,

YOLOv3, YOLOv5, and EfficientDet (Yap et al., 2021).

Also, ensemble method are proposed in the literature as

well as networks consisting of cascade attention networks

((Cai and Vasconcelos, 2019)).

Table 3 summaries the literature works where RGB imaging

data used for diabetic foot applications, along with the analysis

procedure followed and the findings of each study. Both shallow

and deep learning methods are considered.

5.2 AI techniques and hyperspectral
imagery data

Near-infrared radiation can be transmitted through the body,

since it is not absorbed by water or hemoglobin Pasquini (2003).

The near infrared spectra consist of vibrational overtones and

combination absorption features with spectral signatures that

allow identification and mapping of different materials.

Oxygenation/deoxygenation of hemoglobin, oxidized

cytochrome c oxidase, and oxygenated/deoxygenated

myoglobin have a unique absorption spectrum in the NIR

region Ciurczak and Igne (2014). The diagnostic potential of

NIR spectroscopy has been previously used to study a range of

diverse conditions, including diabetes mellitus chronic

complications Aitchison et al. (2018), atherosclerotic occlusive

disease Saito et al. (2018), Alzheimer’s disease Khagi et al.

(2018), etc.

Triggered by the different absorption spectra of oxygen and

deoxyhemoglobin, in biomedical HSI, most of the researchers

have utilized reflectance spectra to estimate oxygen saturation

(SpO2) values from peripheral tissue (Yang et al., 2018).

Hyperspectral tissue oxygenation measurements can readily

indicate changes in tissue surrounding the ulcer, when

comparing ulcers that heal and ulcers that do not heal.

Hyperspectral data have various spectral bands. However,

due to the curse of dimensionality, the existence of multiple

spectral bands may decrease the performance of the classification

algorithms (Zhang et al., 2020). Principal component analysis

(PCA) is a common technique for dimensionality reduction in

medical hyperspectral datasets.

Then, ML algorithms automatically classify ulcers as healing

or non-healing. Techniques, such as SVMs and neural networks

(NN) or even CNNs, are widely used for medical hyperspectral

image classification. HSI technique was used for healing

prediction in routine practice. The data were analyzed to

detect differences between patients with DFUs that healed and

those with DFUs that did not heal. Table 4 summarizes the
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research on diabetic foot monitoring in the near infrared

spectrum.

5.3 Mid-infrared sensing for DFU

Mid-IR photoacoustic (PA) spectroscopy techniques utilize

wavelengths of light in a range that allows monitoring glucose

concentration levels in epidermal skin. However, MIR

spectroscopy does not penetrate in deep skin layers and it is

usually observed signal deterioration due to the strong

absorption of water, which is in abundance in human body.

To overcome this limitation, Kottman et al. Kottmann et al.

(2012) proposed a hybrid setup that consists of a photoacoustic

device and a tunable quantum cascade laser (QCL) to track

glucose in deep epidermal layers. This dual-wavelength approach

yields a considerably improved stability and lower uncertainty

compared to the traditional MIR spectroscopic techniques

(Table 5).

5.4 Infrared thermal sensing for DFU

Long Wavelength Infrared cameras can be utilized for

temperature inspection applications, due to their capability in

detecting distinct temperature differences. Infrared

thermography (IRT) is a fast, passive, contactless and non-

invasive technique for temperature monitoring, for various

parts of the human body (Vardasca et al., 2019a). Body’s

temperature distribution is an important indicator for various

disease patterns, and thermography stands as an adequate and

flexible procedure, which is easy to use and has a low-cost

(Sarawade and Charniya, 2018).

A thermal camera consists of five components: the optic

system, the detector, the amplifier, the signal processing

component, and the display (Sarawade and Charniya, 2018).

Medical Infrared Thermography output is a two-dimensional

digital image that provides data about the physiology of tissues

(Hillen et al., 2020). Currently, multiple studies focus on the

diagnosis of diabetic foot diseases using skin temperature

variation (van Netten et al., 2013). A commonly adopted

approach involves the division of the images into Regions of

Interest (ROIs) and, then, the comparison of the relative

difference in temperature, between the right and the left foot

respectively.

Given the thermal imaging of the two feet, the mean

temperature difference (ΔT) between each ROI of the right

foot and the respective ROI of the left foot is calculated.

Having computed the mean absolute temperature difference

between corresponding points in both feet, various machine

learning techniques are proposed for automatic diagnosis of

diabetic foot. The detection is based on various criteria. Some

of them compare the temperature between the studied feet and

the healthy participant’s feet, while others compare the relative

difference of the temperature in the homologous ROI points of

the two feet. Also, there are a few studies that use unsupervised

techniques to cluster the severity risk of diabetic foot ulcers for a

single foot (Khandakar et al. (2022)). Table 6 provides a summary

TABLE 3 Summary of the literature for diabetic foot monitoring using RGB imagery data.

Study Basic Equipment and
Environmental
Conditions

Participants (number and
characteristics) or dataset
description

Algorithms and methods Experimental Results and
performance evaluation

Cui
etal.,2019

high resolution images of the
wound provided by New York
University (NYU)

445 RGB images CNN segmentation (U-Net) The proposed method achieves
precision = 0.768, sensitivity = 0.937,
specificity = 0.960

Ohura
etal.,2019

- - various segmentation models (such
as, SegNet, LinkNet, UNet and
UNet–VGG16)

U–Net achieves accuracy = 0.997,
specificity (0.943) and sensitivity
(0.993)

Goyal
etal.,2018)

3 RGB cameras (Kodak DX4530,
Nikon D3300 and Nikon
COOLPIX P100)

1775 foot images with DFU collected
from the Lancashire Teaching Hospitals

Faster-RCNN and R-FCN deep
learning methods. DFU regions
detection

Mean average precision (mAP)
considering a correct detection of foot
ulcer. mAP = 90.1%

Cassidy
etal.,2021

3 RGB cameras (Kodak DX4530,
Nikon D3300 and Nikon
COOLPIX P100)

Diabetic foot images from the
Lancashire Teaching Hospitals
including in total 1775 diabetic foot
images

Faster-RCNN
YOLOv5 EfficientNet

Mean average precision (mAP)
considering a correct detection of foot
ulcer. mAP = 0.66% [Faster R-CNN]

Davradou
etal.,2022

- DFUC 2020 dataset 4,000 images, with
2000 used for train

super resolution and denoising
using DL models

RMSE, PSNR and SSIM metrics.
SSIM = 0.93% [ISR model]

Tzortzis
etal.,2022

- DFUC 2020 dataset 2000 images, with
1,000 used for train

Spectral, kmeans and Meanshift
region clustering on DL features

Cluster based metrics and IoU.
IoU = 0.7%

Frontiers in Physiology frontiersin.org07

Kaselimi et al. 10.3389/fphys.2022.924546

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.924546


TABLE 4 Summary of the literature for diabetic foot monitoring using hyperspectral imagery data.

Study Basic Equipment and
Environmental Conditions

Participants (number and
characteristics) or dataset
description

Algorithms and methods Experimental Results and
performance evaluation

Yudovsky
etal.(2010)

Characteristics: (i) seven broadband
visible LEDs (ii) a spectral separator
(LCTF-10–20) tunable over the range
of 400–720 nm (iii) a CCD and (iv) a
25 − mm focal-length imaging lens

66 volunteers at the Olive View
Medical Center (Olive View-UCLA
IRB No. 05H-609300)

Binary classification between
healing and non-healing ulcers.
Two classes are created: ulcers that
healed within 24 weeks and (ii)
ulcers that did not heal within
24 weeks

Tissues at risk of ulceration with
0.95 sensitivity for images were
taken 58 days before tissue damage
is apparent to the naked eye. The
maximum differences in
oxyhemoglobin |MD (OXY)| > 18
and in deoxyhemoglobin |MD
(DEOXY)| > 5.8 are statistically
significant

Khaodhiar
etal.,2007

HyperMed CombiVu-R System uses a
spectral separator. The spatial
resolution of the HT images was 60m

10 type 1 diabetic patients (21-foot
ulcer sites) and 13 type 1 diabetic
patients without ulcers and a control
nondiabetic group with
14 participants. Visits 4 times over a
6-month period

Oxyhemoglobin (HT-oxy) and
deoxyhemoglobin (HT-deoxy)
measurements at or near the ulcer
area and on the upper and lower
extremity distant from the ulcer. An
HT healing index for each site was
calculated

HT oxygenation measurements,
comparing healed and non-healed
ulcers (p < 0.001). Changes in HT-
oxy for all the three risk groups in
the metatarsal area of the foot (p <
0.05) and the palm (p < 0.01)

Yang etal.
(2018)

HSI setup with: Illumination of the
foot was 16 × 1 W white LEDs with
8 units. Push-broom type. A Peltier
cooled CCD coupled to an imaging
spectrograph. 3D data cube contained
2D spatial images (120x170 pixels)
over a 430–750 wavelength range

43 volunteers in total. 12 women and
31 men; mean age was 62.7 years 6 out
of 43 had type 1 diabetes and 37 had
type 2 diabetes; 9 were smokers and
39 patients have neuropathy

Hyperspectral images of 43 patients
were analysed using the SpO2 data
processing and PCA techniques

PCA (sensitivity = 87.5% and
specificity = 88.2%) outperformed
SpO2. ROC analysis revealed an
area under the curve of 0.88 for PCA
compared with 0.66 using SpO2

Greenman
etal. (2005)

HSI uses a spectral separator.
HyperCal-1 calibrator. The spatial
resolution of the MHSI images was
60 μm

108 patients (21 control non-diabetic
individuals, 36 diabetic patients who
did not have neuropathy and
51 patients with both diabetes and
neuropathy)

Haemoglobin saturation (S(HSI)O2

through medical HSI imaging; % of
oxyhaemoglobin in total
haemoglobin) in the forearm and
foot

In the foot at resting S(HSI)O2 was
higher in the control (38 [std = 22])
and non-neuropathic groups
(37 [std = 12]) than in the
neuropathic group (30 [std = 12],
p = 0.027)

Jeffcoate
etal.(2015)

- 43 patients (37 Type 2 and 6 Type
1 diabetes) with foot ulcers were
included in the clinical study

Tissue scattering of light and
validation using blood samples of
varying oxygen saturation and
blood gas analysis

Strong correlation between the
results of HSI and blood gas analysis
(r = 0.994). Positive correlation
between oxygenation and time to
healing was observed (p = 0.03)

Nouvong
etal.(2009)

HSI system uses wavelengths between
500 and 660 nm to include oxy and
deoxy absorption peaks

54 patients (with type 1 or type
2 diabetes) with 73 ulcers; at 24 weeks,
54 ulcers healed while 19 ulcers did
not heal

Linear discriminant analysis was
used to develop the threshold for
separating the healed and non-
healed DFU groups

Healing index to predict healing
with 0.8 sensitivity, 0.74 specificity
and 0.9 positive predictive value.
Correlation between cutaneous
tissue oxygenation and wound
healing in diabetic patients

TABLE 5 Summary of the literature for diabetic foot monitoring using mid-infrared spectroscopy.

Study Basic Equipment and
Environmental Conditions

Participants (number and
characteristics) or dataset
description

Algorithms and
methods

Experimental Results and
performance evaluation

Kottmann
etal.,2012

Tunable Quantum Cascade Laser (EC-
QCL), continuous-wave laser light. QCL
chip covers a range of glucose absorption
in the Mid-IR. The maximal average laser
power 20–130 mW

Patients/children from the
University Childrens Hospital of
Zurich

Glucose detection in
epidermal skin samples.
Decision support methods
utilized

The photoacoustic signal linearly
depends on the glucose concentration
within the large concentration range of
0 to 10 g/dl the dual-wavelength
approach yields an uncertainty of
±30 mg/dl of the blood glucose
concentration level with a confidence
level of 90%
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TABLE 6 Summary of the literature for diabetic foot monitoring using imagery data from thermal sensors.

Study Basic Equipment and
Environmental Conditions

Participants (number and
characteristics) or dataset
description

Algorithms and methods Experimental Results and
performance evaluation

van Netten
etal.,(2013)

RGB camera, Canon Eos 40D with
EF−s17 − −85mm lens, and IR
Thermal camera, FLIR SC305

15 diabetes patients ΔT between feet for each ROI
(Kruskal–Wallis test).

ΔT < 2, small temperature
differences. ΔT > 2°C, a noninfected
and nonischemic foot ulcer. ΔT >
3°C, a foot ulcer with osteomyelitis
or a Charcot foot.

Liu etal.,(2015) RGB camera, Canon EOS 40D and
IR camera, FLIR SC305

76 diabetes patients (Type I Diabetis
Mellitus [7 patients] and Type II
[69 patients])

K-means clustering, EM
algorithm for foot segmentation,
registration, and detection

ΔT between contralateral points,
Average, SD. Segmentation
technique in the thermal images
achieve accuracy 97.9% ± 1.1% and
98.3% ± 0.5%.

Petrova
etal.,(2018)

thermal imaging device,
(Photometrix Imaging Ltd) and
infrared spot thermometer

105 participants (52 males and
53 females; age range 18 to 69 years)

Threshold for image
segmentation. Repeated
measurements Regression
analysis

ΔT for each predefined ROI 1st toe
0.04, 4th toe 0.03, 1st metatarsal −
0.01, 3rd metatarsal 0.11 and 5th

metatarsal 0.21

Maldonado
etal.,(2020)

IR FLUKE TI32 IRT camera 17 volunteers (108 images) Mask R–CNN model for
segmentation

Temperature differences detection
and classification as ulcerous if
> 2.2°C and necrotic if < − 2.2°C.

Eid etal.,(2018) IR FLIR ONE thermal camera,
Additional Equipment: Samsung
Note five smartphone, temperature
and humidity sensor, etc.

50 volunteers (without any
complications, with local foot
complications, with deep ulcer or
Charcot’s foot, with amputation)

Classifiers used for segmentation:
(i) k-Nearest Neighbor; (ii)
Support vector machine, and
Decision tree

Mean absolute ΔT between the
corresponding points of both feet
divided in classes: ΔT < 1.5°C,
1.5°C < ΔT > 2°C, 2°C < ΔT > 3°C,
ΔT > 3°C.

Cruz-Vega
etal.,(2020)

- 110 thermograms of DM subjects Automatic segmentation. CNNs
models for multi-class
classification of the thermograms.
Five categories of the temperature
change in foot

Five categories (medial plantar
artery, lateral plantar artery, medial
calcaneal artery, and lateral
calcaneal artery) of the relative
change in temperature of the
plantar regions.

Vardasca etal.,
(2019b)

FLIR thermal camera (FPA sensor
array(320x240), NETD of < 50mK
at 30°C)

39 patients:(14 appear ischaemic
wound, 25 had a healing wound)

k-NN, SVM, ANN techniques k-NN with accuracy 0.81,
0.80 specificity and 1.0 sensitivity

Adam
etal.,(2018)

Thermographic System VarioCAM©
hr head 680/30mm positioned at 1m
distance from the feet

51 healthy individuals and
66 patients with diabetes (the half of
them having neuropathy)

Thermograms image
segmentation with wavelet
transform. Feature extraction.
Image classification using k-NN

The thermal image analysis method
succeeds 93.16% accuracy, 90.91%
sensitivity and 98.04% specificity

Petrova
etal.,(2020)

standard digital RGB + Portable
Infrared thermal camera

110 people with diabetes. 61 for the
control group, 49 for the intervention
group n = 49, study period
12 months

Uni– and multivariate modelling
of the likelihood of ulcer
recurrence during the studied
period

Change in temperature
between ≥ 2.2°C.

van Doremalen
etal.,(2020)

3 thermal infrared cameras from
smartphone devices. medical 3D
imaging system

8 patients with diabetic foot ulcer Creation of 3D thermographs
using a passive photogrammetry
technique

3Dmodelling from the thermal foot
images to assess the temperature of
the diabetic foot.

Astasio-Picado
etal.,(2018)

Infrared camera model FLIR E60bx 277 patients (138 men-139 women),
in four groups (with neuropathy,
vasculopathy, neurovasculopathy,
and healthy feet)

IBM SPSS Statistics statistical
program

Lower T values are observed under
the ROIs in both feet of the patients
in the neuropathy, vasculopathy,
and neurovasculopathy groups
relative to the healthy feet group.

Yavuz
etal.,(2019)

Infrared thermal cameras FLIR
T650sc (FLIR Systems Inc,
Wilsonville, Oregon) or Fluke TiR2
(Fluke Corp, Everett, Washington)

37 participants: 9 with DFU, 14 with
diabetic neuropathy (DN), and
14 with nonneuropathic
control (DC).

Mean T was determined in four
regions-hallux and medial,
central, and lateral forefoot- linear
models with specified contrasts
among the DFU, DN, and DC
groups.

Mean T in each foot region was
higher than 30.0°C in DFU and DN
and lower than 30.0°C in the DC
group. Mean differences
werehigher in the DFU and DC
groups, ranging from 3.2°C in the
medial forefoot to 4.9°C in the
hallux.

(Continued on following page)
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on the thermal/infrared imaging systems used for diabetic foot

applications, along with the analysis procedure followed and the

findings of each study.

6 Discussion

In this paper we focused on comparing noninvasive

techniques and approaches for DFU monitoring, and to

highlight their advantages and disadvantages. There are

multiple sensors, which can support efficiently the monitoring

process, resulting in an improvement of patient’s life. Yet, the

type of raw data provided, including spectral range and

resolution, remains a topic of debate, susceptible to limitations

related to cost and portability of the monitoring devices. In total,

four crucial monitoring factors have been identified namely: a)

glucose levels, b) foot deformity/wounds, c) temperature, and d)

hemoglobin concentration. All these factors can be currently

monitored with the usage of various sensors. Currently, none of

the existing sensors that are commercially available supports a

holistic self monitoring, including measurements for all the

above mentioned factors. In particularly, RGB sensors can be

used to distinguish deformities on the skin, NIR spectroscopy

(700nm − 1300 nm) can capture haemoglobin saturation,

thermal infrared spectroscopy can detect hyperthermia (or

hypothermia), among ROIs of a foot, and the Mid-IR

absorbance (5.7 μm − 9.3 μm) spectrum provides rich

information about the proteomics, lipidomics, and

metabolomics (e.g., glucose).

6.1 Challenges on data acquisition

As regards the cost-effectiveness of the sensory systems, it

heavily depends on the type of sensors that each system is

equipped with. On the one hand, self-monitoring devices are

usually equipped with RGB cameras or with sensors in thermal

infrared spectrumGonzález-Pérez et al. (2021) and both cases are

considered low-cost. On the other hand, HSI equipment is more

expensive than the traditional methods and it is not

recommended for self-monitoring cases López-Moral et al.

(2022).

High quality visible and infrared (thermography) images can

be acquired through portable devices (e.g., cell-phones or even

lightweight and low-cost equipment). As regards hyperspectral

imagery data in DFUmonitoring, the high volume of HSI images

is an obstacle for applying these techniques to be used in

conjunction with the smartphone applications. However,

recently there are appeared relevant studies that propose

solutions where acquiring HSI images through smart phone

devices could be feasible Stuart et al. (2021). Hyperspectral

images are capable of accurate spectral and spatial data

TABLE 6 (Continued) Summary of the literature for diabetic foot monitoring using imagery data from thermal sensors.

Study Basic Equipment and
Environmental Conditions

Participants (number and
characteristics) or dataset
description

Algorithms and methods Experimental Results and
performance evaluation

Fraiwan
etal.,(2018)

mobile thermal camera.
homogeneous background, room
temperature (20 − −25°C)

- Image pre-processing. Ulcers
detection. Foot sole segmentation
method Thresholding (Otsu)
(temperature matrix).

Test whether ΔT is greater
than 2.2°C.

Neves
etal.,(2015)

High-resolution infrared camera
(FLIR Systems Inc. Model SC 2000;
320 × 240 pixels)

44 volunteers in total (22 women and
22 men; 66.70 ± 6.26 years of age)
with type 2 diabetes (diagnosed at
11.84 ± 8.22 years)

ROIs: first finger, fifth finger and
the heel. Pearson’s correlations
between the variables (body mass,
body height, BMI and body fat)
and ΔT values per ROI.

ROIs higher ΔT ≥ 2.20°C. A positive
association is observed either of
BMI (r = 0.399, p = 0.007) either of
body fat percentage (r = 0.432, p =
0.003), with diabetic foot risk in
patients with type 2 diabetes.

Keenan
etal.,(2017)

FLIR A325 infrared camera. Spatial
resolution (instantaneous field of
view) of 1.36 mrad and sensitivity of
70 mK at 30°C.

11 patients with non-infected DFUs
and 3 patients with non-diabetic
wounds.

Measurements of the different
temperatures over the ROI.
Emissivity metric was calculated
per pixel.

The emissivity of wounds has range
0.01 − 0.03 with an average value of
0.9 ± 0.03, and with lower values at
wound edges (on average 0.02 lower
than intact skin).

Ilo etal.,(2020) IR camera (FLIR A325sc) with 320 ×
240 pixels and 0.05°C thermal
resolution

118 patients with DM and 93 healthy - -.

Munadi
etal.,(2022)

two infrared cameras (FLIR E60 and
FLIR E6)

167 plantar thermograms
(122 diabetic and 45 non-diabetic
subjects)

fused CNNs for classification of
diabetic or healthy images

accuracy, recall, precision,
F-measure metrics
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collection and have the potential for future deployment

combined with smartphones for DFU monitoring applications.

Portability and user-friendly setup of this devices is of major

concern, in order to make it a valuable instrument to assist the

decision process of the doctors. However, these solutions are yet

immature and future development and improvements in this

area of research is necessary in order to provide commercial

products and ready-to-use solutions.

6.2 Challenges on machine learning
algorithms

Machine learning and computer vision methods, including

detection, segmentation and classification, are used to analyse the

diabetic foot ulcer images. Usually, DFU is addressed as a binary

classification problem; we either have a DFU or not, or we have

the appearance of a specific factor, correlated to DFU. To assess

the usability of these models, it is important to incorporate them

on mobile and cloud or even edge-based technologies. Given the

significant and growing impact of DFU, mobile health solutions

that target this condition could assist in improving patient quality

of life (Cassidy et al., 2022). Taking this into consideration,

trustworthiness in AI solutions for DFU monitoring is an

important aspect.

The performance evaluation of the ML model aims to assess

the method’s effectiveness in the accurate detection of DFU.

There are various metrics for ML models, which can be often

combined to evaluate a model (Zhang et al., 2022). Cross-

validation technique is also an important part of the

evaluation process, because it provides an insight into the

model’s precision level and is a necessary part of the

algorithmic process to ensure the models’ stability and to

define the confidence intervals of the proposed method. The

machine learning approaches should always keep the trade-off

between the complexity of the model/architecture and the

accuracy improvement. CNNs have had a great success in the

recent past, due to the advent of faster GPUs and vast amount of

memory access, however, deploying deep learning applications

on the edge has constrains as regards the computational

resources. Thus, it is important to make models feasible for

constrained devices, such as mobile phones. In health care

systems, deep-learning models largely rely on sufficient and

diverse training data gathered from patients. However,

leveraging AI-based technologies to improve the management

of diabetic foot ulcers is usually challenging due to limits arising

from the legislation on patient’s privacy and data security. Thus,

safety and privacy issues may imply fewer data available;

therefore, additional challenges for training supervised AI

algorithms with good performance appear. However, recently,

federated schemes have emerged as the state-of-the-art

techniques in order to achieve personalized recommendations

in health care systems with state-of-the-art accuracy, while

ensuring privacy preservation for the patient (Rieke et al., 2020).
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Appendix A

Abbreviations

ANN, Artificial neural network; BMI; Body mass index;

CCD, Charge-coupled device; CNN, Convolutional neural

network; DFU, Diabetic foot ulcer; DM, Diabetes Mellitus;

EC-QCL, External cavity-quantum cascade laser; EM,

Expectation maximization; GAN, Generative Adverserial

neural network; HSI, hyperspectral imaging; IRT; Infrared

thermography, k-NN; k-nearest neighbours; LCTF, Liquid

crystal tunable filter; MaP, Mean average precision; MIR, Mid

- infrared; NIR, Near - infrared; PAD, Peripheral arterial disease;

PCA, Principal component analysis; PSNR, Peak signal-to-noise-

ratio; QCL, Quantum cascade lasers; RCNN, Region-based

Convolutional Neural Network; RMSE, Root Mean Square

Error; ROI, Region of interest; SSIM, Structural similarity

index measure; SVM, Support vector machines; VSI, Visual

spectrum imaging.
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