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Level of motivation, responsiveness to rewards and punishment, invigoration of exploratory
behaviours, andmotor performance are subject to daily fluctuations that emerge from circadian
rhythms in neuronal activity of the midbrain’s dopaminergic system. While endogenous
circadian rhythms are weak in the ventral tegmental area and substantia nigra pars
compacta, daily changes in expression of core clock genes, ion channels, neurotransmitter
receptors, dopamine-synthesising enzymes, and dopamine transporters, accompanied by
changes in electrical activity, are readily observed in these nuclei. These processes cause
dopamine levels released in structures innervated by midbrain dopaminergic neurons (e.g., the
striatum) to oscillate in a circadian fashion. Additionally, growing evidence show that the master
circadian clock located in the suprachiasmatic nucleus of the hypothalamus (SCN) rhythmically
influences the activity of the dopaminergic system through various intermediate targets. Thus,
circadian changes in the activity of the dopaminergic system and concomitant dopamine
release observed on adaily scale are likely to be generated both intrinsically and entrainedby the
master clock. Previous studies have shown that the information about the value and salience of
stimuli perceived by the animal is encoded in the neuronal activity of brain structures innervating
midbrain dopaminergic centres. Some of these structures themselves are relatively
autonomous oscillators, while others exhibit a weak endogenous circadian rhythm
synchronised by the SCN. Here, we place the dopaminergic system as a hub in the
extensive network of extra-SCN circadian oscillators and discuss the possible
consequences of its daily entrainment for animal physiology and behaviour.

Keywords: dopamine, extra-SCN oscillators, circadian clock, ventral tegmental area, substantia nigra pars
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INTRODUCTION

Historically, the suprachiasmatic nucleus of the hypothalamus (SCN) has been considered the only, master
circadian clock which governs all rhythmic changes in physiology and behaviour occurring at a daily
timescale. However, evidence accumulating over the last 2 decades questions the supremacy of the SCN
(Yoo et al., 2004; Guilding and Piggins, 2007; Paul et al., 2020). With the discovery of intrinsic clock gene
expression in several extra-SCN brain nuclei, from the olfactory bulb (Abraham, 2005), through thalamic
(Chrobok et al., 2021a), epithalamic (Guilding et al., 2010), hypothalamic (Guilding et al., 2009) and
midbrain regions (Chrobok et al., 2021b), all the way to the hindbrain (Kaneko et al., 2009; Chrobok et al.,
2020), it is now believed that at least a part of the rhythmic control of homeostasis must be devolved to such

Edited by:
Etienne Challet,

Université de Strasbourg, France

Reviewed by:
Andrew Steele,

California State Polytechnic University,
Pomona, United States

Ralph E Mistlberger,
Simon Fraser University, Canada

*Correspondence:
Lukasz Chrobok

lukasz.chrobok@bristol.ac.uk
Tomasz Błasiak

tomasz.blasiak@uj.edu.pl

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Chronobiology,
a section of the journal
Frontiers in Physiology

Received: 29 April 2022
Accepted: 07 June 2022
Published: 23 June 2022

Citation:
Pradel K, Drwięga G, Chrobok L and
Błasiak T (2022) Racing and Pacing in

the Reward System: A Multi-Clock
Circadian Control Over

Dopaminergic Signalling.
Front. Physiol. 13:932378.

doi: 10.3389/fphys.2022.932378

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9323781

PERSPECTIVE
published: 23 June 2022

doi: 10.3389/fphys.2022.932378

http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.932378&domain=pdf&date_stamp=2022-06-23
https://www.frontiersin.org/articles/10.3389/fphys.2022.932378/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.932378/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.932378/full
http://creativecommons.org/licenses/by/4.0/
mailto:lukasz.chrobok@bristol.ac.uk
mailto:tomasz.blasiak@uj.edu.pl
https://doi.org/10.3389/fphys.2022.932378
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.932378


local clocks. These circadian timekeeping centres vary in the degree of
their autonomy (Guilding and Piggins, 2007; Paul et al., 2020;
Chrobok et al., 2021c). An ‘autonomous oscillator’ displays
molecular and electrophysiological rhythms that are strongly
synchronised amongst its single cells due to highly-functional
connectivity within the structure. These coordinated single-cell
oscillations are therefore synchronised in phase what results in a
robust endogenous rhythmicity at the whole structure level. Similarly,
a ‘semi-autonomous oscillator’ shows intrinsic single-cell rhythmicity.
Though, as a cause of a sparse interconnectivity, it requires an
entraining input from the autonomous clock, synchronising its
components to produce high-amplitude rhythms. Last, a
“subordinate oscillator” lacks endogenous mechanisms to express
intrinsic oscillations. Rather, its rhythmicity reflects and relies on an
input from the autonomous or semi-autonomous clock.

Neurons located in the ventral tegmental area (VTA) and
substantia nigra pars compacta (SNc) have been suggested to
possess such circadian clock properties (Becker-Krail et al., 2022).
These are exhibited through circadian variation in clock gene
expression, electrical activity, and the concomitant dopamine
release in the targeted brain areas. It is still not clear whether
these day-night oscillations result from intrinsic properties of
dopaminergic neurons, extrinsic sources (such as SCN), or a
combination of both. Different evidence points to either of the
scenarios, but it is most plausible that dopaminergic system serves as
a semi-autonomous oscillator heavily entrained by other circadian
clocks. Most importantly, though, these day-to-night variations,
despite their origin, influence animal behaviour in a circadian
fashion, as dopamine is well positioned to control e.g., the
locomotor activity, goal-directed learning, and motivation. Since
most rodents are nocturnal, their locomotor activity is significantly
higher during dark phase and it decreases during the behaviourally
quiescent light phase. In line with this, animal motivation for food
seeking, water and food consumption increases during the active
phase (Boulos et al., 1980; Ding et al., 2018; Acosta et al., 2020).
Similarly, mating behaviour predominately occurs at night,
exhibiting clear circadian rhythmicity (Antle et al., 2005).
Additionally, drug self-administration has been found to undergo
similar daily changes (Roberts et al., 2002; Trujillo et al., 2009). All
these daily-regulated behaviours are under control of brain reward
system (Cools, 1986; Pfaus et al., 1990; Volkow et al., 2011a; Volkow
et al., 2011b; Berridge and Robinson, 2016).

In this perspective, we aim to explore possible sources of daily
and circadian rhythmicity in the dopaminergic system. We first
focus on abilities of dopaminergic neurons to express molecular
and electrophysiological rhythms around 24 h. Then, we describe
possible daily patterning of input to the dopaminergic system
from other extra-SCN clocks. Finally, we aim to position the
midbrain dopaminergic system as one of the hubs in the complex
network of brain circadian oscillators.

CIRCADIAN AND DAILY RHYTHMS IN THE
DOPAMINERGIC SYSTEM

The dopaminergic system of the ventral midbrain exhibits
circadian variation in the expression of core clock genes, such

as Per1, Per2, Per3, Bmal1 and Cry (Bussi et al., 2014; Wang et al.,
2019; Koch et al., 2020). Some evidence points out that
oscillations in clock genes expression are present within the
isolated substantia nigra (Natsubori et al., 2014) and VTA
(Landgraf et al., 2016) explant cultures. Other reports,
however, using similar methodology, show no or very weak
oscillations in the VTA (Abe et al., 2002; Myung et al., 2018)
and SNc (Hiler et al., 2008). Thus, even if the VTA/SNc can
sustain intrinsic rhythms in clock gene expression, their
endogenous timekeeping properties are not overtly robust.

It has also been shown that the electrical activity of VTA
neurons changes in the circadian cycle (Luo et al., 2008;
Domínguez-López et al., 2014; Fifel et al., 2018). The firing
rate of dopaminergic neurons in vivo was reported to oscillate
in a 12 h cycle (with peaks at the beginning of phases) and the
number of spontaneously active dopaminergic neurons to change
in a 24 h cycle (with the peak at the end of the dark phase)
(Domínguez-López et al., 2014). Additionally, a new population
of fast-firing non-dopaminergic and non-GABAergic cells was
reported within the VTA, which are active only during the active
phase (Luo et al., 2008). The activity of the VTA is also elevated
during the night in freely moving mice; in case of the SNc only a
non-significant trend was observed (Fifel et al., 2018).
Importantly, multiunit recordings were used for data
collection, thus distinguishing between cell types contributing
to the daily firing alterations was not possible. Nonetheless, night-
time increase in firing agrees with reports showing more cFos-
immunoreactive dopaminergic cells within the VTA during the
night (Baltazar et al., 2013) as well as increased night-time glucose
utilization within the SNc (Room and Tielemans, 1989). The
disruption in the molecular clock (Clock knockout) elevated both
firing rate and bursting of dopaminergic neurons in vivo
(Mcclung et al., 2005). Overall, these data suggest that the
electrical activity of dopaminergic neurons undergoes circadian
changes, but to what extent this variability depends on changes in
their clock genes expression, and to what extent it reflects
rhythmic changes in the inputs to the dopaminergic system,
remains unclear.

In line with that, studies congruently demonstrate that
dopamine concentration is elevated in the striatum during the
active phase (Owasoyo et al., 1979; Smith et al., 1992; Paulson and
Robinson, 1994; Castañeda et al., 2004; Hampp et al., 2008; Bussi
et al., 2014; Ferris et al., 2014; Koch et al., 2020). However, the
level and pattern of electrical activity of midbrain dopaminergic
neurons does not exhibit as pronounced circadian rhythmicity as
it would be expected from the dopamine release rhythm. Thus, it
may suggest that other mechanisms of dopamine release
regulation may additionally contribute to this phenomenon.
Indeed, the expression of genes responsible for synthesis and
turnover of dopamine show clear day-night variation. The
expression of monoamine oxydase (MAO), which increases
dopamine turnover and decay, is lower during the night in
both the striatum and VTA (Hampp et al., 2008). Similarly,
dopamine transporter (DAT) was shown to be crucial for daily
variation in dopamine release (Ferris et al., 2014). Accordingly,
the expression of tyrosine hydroxylase (TH), a limiting enzyme in
dopamine biosynthesis, is higher during the night in the striatum
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(Sleipness et al., 2007; Webb et al., 2009; Bussi et al., 2014; Ferris
et al., 2014; Koch et al., 2020). Overall, these studies demonstrate
that dopamine release increases during night-time, which may be
due to daily changes in the activity of dopaminergic neurons and/
or the mechanisms that control synaptic dopamine release. In any
of these scenarios, the enhanced dopaminergic drive during the
dark phase has clear behavioural consequences.

Indeed, it has been shown that the period of locomotor activity in
VTA-lesioned rats is significantly decreased (Isobe and Nishino,
2001). Moreover, a lack of D1 dopamine receptor (D1R) in mice
attenuates the rate of circadian entrainment (Grippo et al., 2017) and
impairs food anticipatory activity (Gallardo et al., 2014). On the
other hand, disturbances in themolecular clock influence dopamine-
related behaviours, e.g., selective VTA Clock-knockouts exhibit
increased locomotor activity in the novel environment
(Mukherjee et al., 2010). Moreover, drug abuse studies have
confirmed that mice lacking Clock or Per2 genes were more
strongly rewarded by cocaine administration (Abarca et al., 2002;
Mcclung et al., 2005). Conversely, mice with Per1 knockdown
experience no reward after cocaine injection (Abarca et al., 2002).
Altogether, these studies reveal intrinsic clock properties of the
dopaminergic system that influence daily and circadian rhythms
in animal behaviour.

Besides intrinsic circadian timekeeping properties of the VTA, it
receives an indirect input from the master clock. It has been shown
that the median preoptic nucleus (MPON) serves as a relay between
the SCN and the VTA (Luo and Aston-Jones, 2009; Mendoza and
Challet, 2014). In return, the VTA directly innervates the master
clock, with dopamine able to regulate the rate of photoentrainment of
the SCN (Isobe and Nishino, 2001). It has been also shown that this
connection plays a key role in brain development, as it synchronises
the circadian rhythmicity of the mother and her offspring (Grippo
et al., 2020) and, by disruption of food intake timing, can induce
overconsumption (Weaver et al., 1992; Viswanathan et al., 1994).
Moreover, it is worth mentioning that dopaminergic signalling may
be driving the expression of some extra-SCN circadian rhythms, for
example in the synthesis of clock protein PERIOD2 in the dorsal
striatum (Hood et al., 2010). Importantly, dopaminergic system was
shown to be important for maintaining ultradian (~4 h) locomotor
rhythm as either DAT knockout, metamphetamine treatment or
chemogenetic activation of dopaminergic neurons lengthened its
period (Blum et al., 2014; Bourguignon and Storch, 2017).
Moreover, haloperidol had an opposite effect and striatal
dopamine levels were shown to correlate strongly with this
rhythm. Congruently, dopaminergic system is posed to be
important in the control of anticipatory activity rhythms (Steele
andMistlberger, 2015; de Lartigue andMcDougle, 2019; Mistlberger,
2020). Thus, we hypothesise that the indirect SCN input to the VTA
may synchronise its semi-autonomous rhythms and entrain them to
the changing light-dark cycle, but we also highlight the reciprocal
character of this connection.

Circadian Rhythmicity in the Input Pathways
to the Dopaminergic System
As mentioned above, the last 2 decades have brought discoveries
of several extra-SCN neuronal populations of circadian oscillators

with varying degrees of autonomy, which participate in shaping
daily changes in physiology, behaviour, and cognitive processes.
Unsurprisingly, at least some of these extra-SCN clocks are
among the building blocks of the incredibly extensive,
monosynaptic inputome of the ventral midbrain dopaminergic
neurons (Watabe-Uchida et al., 2012; Ogawa et al., 2014). This
may have a twofold effect on the functioning of the dopaminergic
system.

First, the circadian rhythmicity in the electrical activity present
in these input structures may translate into changes of similar,
hourly dynamics in the level of dopaminergic neuron firing and
concomitant dopamine release in target brain regions as
described above. Indeed, such circadian changes have been
observed in multiple brain nuclei innervating dopaminergic
neurons; with these neuronal centres being the source of those
inputs spread throughout the whole cerebrum and carrying
information of various kinds. Some of them are involved in
maintaining homeostasis of the organism (e.g., dorsomedial
hypothalamus; LH, lateral hypothalamus; NTS, nucleus of the
solitary tract; Figure 1) (Kirouac and Ciriello, 1997; Leinninger
et al., 2009; Mejías-Aponte et al., 2009; Leinninger et al., 2011;
Tyree and de Lecea, 2017; Alhadeff et al., 2019) processing of
sensory information (e.g., SC, superior colliculus) (Peter and
Kevin, 2006; Redgrave et al., 2010; Chrobok et al., 2021b;
Pradel et al., 2021), controlling general states of arousal (e.g.,
LH; tuberomammillary nucleus) (Azeez et al., 2018; Heiss et al.,
2018), and carrying out cognitive processes (e.g., PFC, prefrontal
cortex; Figure 1) (Carr and Sesack, 2000; Chun et al., 2015;
Calabrese et al., 2016; Chen et al., 2016; Seney et al., 2019).

Second, it has been shown that the motivational aspects of
stimuli perceived by the animal are encoded in the electrical
activity of dopaminergic neurons, based on information from
other regions of the brain, which often carry a partially or fully
encoded value or salience of the stimulus (Tian et al., 2016; de
Jong et al., 2019). Circadian changes in electrophysiological
properties of the elements building the internal neural
networks of such structures may affect the information passed
on to the dopaminergic neurons. In fact, daily changes in gene
expression (including clock genes) and/or electrical activity have
been observed in many structures and neuronal pathways
involved in encoding the motivational and salient features of
stimuli, including the medial prefrontal cortex (Chun et al., 2015;
Calabrese et al., 2016), dorsal and ventral striatum (Masubuchi
et al., 2000; Ángeles-Castellanos et al., 2007; Wang et al., 2019),
lateral habenula–rostromedial tegmental nucleus pathway (LHb-
RMTg) (Zhao and Rusak, 2005; Guilding et al., 2010; Sakhi et al.,
2014; Baño-Otálora and Piggins, 2017), LH (Marston et al., 2008;
Azeez et al., 2018), dorsal vagal complex (Kaneko et al., 2009;
Chrobok et al., 2020; Chrobok et al., 2021d; Chrobok et al., 2021e;
Chrobok et al., 2021f) and dorsal raphe nucleus (Abe et al., 2002;
Paul et al., 2020) (Figure 1). It is noteworthy, that in case of some
important inputs to the dopaminergic system we lack even basic
information about their potential circadian rhythmicity (e.g.,
pedunculopontine tegmental nucleus, laterodorsal tegmental
nucleus, RMTg).

Therefore, it seems that the circadian changes in the
electrophysiological properties of the structures innervating
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dopaminergic neurons may translate into long-scale (occurring in
hours) changes in the basal activity of the dopaminergic system,
as well as changes in the short-scale (occurring in milliseconds or
seconds) phasic responses of DA neurons that encode value and/
or salience of the perceived stimuli. Likewise, circadian changes in
long-scale and short-scale dopaminergic activity should be
apparent at the level of the animal’s behavioural states and
behaviours.

Importantly, daily changes in the dopaminergic system
happening on the long timescale seem to depend
predominantly on the intrinsic brain mechanisms (i.e., clock
genes expression along with multi-clock network activity);
notably, these are shaped by the long-lasting environmental
conditions (i.e., light/dark cycle) (Mendoza and Challet, 2014;
Becker-Krail et al., 2022). On the other hand, the dopaminergic
system functioning on the short timescale is extremely sensitive to
brief cues appearing in the environment (e.g., reward-associated
stimuli) (Schultz, 2016). Additionally, these short responses may
also be modulated by the current electrophysiological state of
dopaminergic neurons, which is a manifestation of long timescale
circadian oscillations.

OPEN QUESTIONS AND FURTHER
RESEARCH DIRECTIONS
Circadian Changes in Fast and Slow
Dynamics of the Dopaminergic System
The pattern of electrical activity that a dopaminergic neuron
exhibits at a given moment can be positioned on a spectrum
ranging between two extremes: tonic, pacemaker-like firing of
action potentials and, on the other end, generation of action

potentials in purely bursting manner (Grace and Bunney,
1984). These two firing modes are controlled by different
input signals and their contribution to the basal activity of
dopaminergic neurons differs amongst behavioural states
(Robinson et al., 2002; Lodge and Grace, 2006; Geisler
et al., 2007; Tsai et al., 2009; Zweifel et al., 2009; Watabe-
Uchida et al., 2012). Relatively slow changes in dopaminergic
neuron excitability occurring on a scale much longer than
seconds or minutes may affect the functioning of the
dopaminergic systems in two ways. First, by alerting the
propensity to generate action potential bursts and thus
setting the ratio of tonic to burst firing, it determines the
basal dopamine release in target structures. This in turn affects
some aspects of the general behavioural state of an animal (e.g.,
level of arousal, behavioural invigoration, tendency to effort,
and energy expenditure) (Parsons and Justice, 1993; Floresco
et al., 2003; Cagniard et al., 2006; Niv et al., 2007; Wang et al.,
2021). Second, changes in excitability may affect how short
synaptic events translate into momentary changes in
dopaminergic neuron firing and thus into phasic increases
and/or decreases in dopamine release. Such brief changes in
dopamine release, usually lasting less than a second, encode
the value and/or salience of stimuli perceived by the animal at a
given moment and are the basis of many cognitive processes
such as experience-based learning, decision-making, and
directing attention (Schultz et al., 1979; Stuber et al., 2005;
Day et al., 2007; Stuber et al., 2008; Sunsay and Rebec, 2008;
Dreyer et al., 2010; Jastrzebska et al., 2016; Stojakovic et al.,
2018; Budygin et al., 2020). Although slow and fast dynamic
changes in the dopaminergic system have been extensively
described in the literature, the open question remains and how
they are affected by the circadian clock.

FIGURE 1 | Circadian properties of the VTA/SNc inputs. Presence and autonomy of circadian rhythmicity in the most important brain regions innervating VTA/SNc
presented on the sagittal section of rat brain. Brain regions are divided according to the type of information they provide dopaminergic systemwith—green: homeostatic,
red: value/salience, yellow: both. The schematic wave next to each brain region represents its circadian rhythmicity. Solid line indicates high level of autonomy
(autonomous/semi-autonomous oscillator) and dotted line indicates low level of autonomy (subordinate/weak oscillator) while question mark shows that we
currently lack the knowledge about circadian properties of a given brain region. VTA, ventral tegmental area; SNc, substantia nigra pars compacta; DS, dorsal striatum;
VS, ventral striatum; LHb, lateral habenula; RMTg, rostromedial tegmental nucleus; LDTg, laterodorsal tegmental nucleus; PPTg, pedunculopontine tegmental nucleus;
RN, raphe nucleus; SC, superior colliculus; LH, lateral hypothalamus; DMH, dorsomedial hypothalamic nucleus; DVC, dorsal vagal complex; PFC, prefrontal cortex.
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Our current knowledge sheds light on the contribution of the
circadian clock machinery to some of the slow changes observed
in the activity of the dopaminergic system.Mostly, it describes the
diurnal variation in the clock gene expression, overall electrical
activity, concomitant dopamine release, as well as daily changes
in the animal behaviour. These observations are consistent with
the fact that in many neuronal populations circadian clock gene
expression is accompanied, often causally, by changes in the
expression of genes determining the membrane properties,
neuron responsiveness to neurotransmitters, and the
effectiveness of further signal transmission (Paul et al., 2020).
In fact, it has been shown that the expression of genes coding
some potassium channels, subunits of glutamate and GABA
receptors, and proteins related to dopamine release in
dopaminergic neurons depend on molecular clock (Mcclung
et al., 2005). Such changes in the electrophysiological
properties of neurons should directly translate into circadian
alterations of both slow and fast dynamic phenomena occurring
in the dopaminergic system and related behaviours. Still, there are
many gaping holes in our current knowledge on the subject. We
still know very little about whether and how the circadian, slow
changes in the properties of neurons affect the fast processes
taking place in the dopaminergic system, such as encoding value
or salience stimuli. Moreover, as it will be discussed in more detail
in the next section, it is likely that the circadian changes in VTA/
SNc input structures involved in the calculation of the reward
prediction error are also reflected at the level of dopaminergic
system.

Circadian Changes in Dopaminergic
System Upstream and Downstream
Structures
As already described above, dopaminergic system receives inputs
from multiple regions distributed throughout the whole brain.
Since presumably both the baseline activity and responsiveness to
environmental cues of these inputs alter across day/night cycle,
magnitude of dopaminergic system excitation/inhibition evoked
by those inputs should be affected as well. More precisely, it is
important to establish how the parameters (such as amplitude,
duration, latency, or even polarity) of responses of dopaminergic
neurons to value/salience information provided by different
inputs (e.g., PFC, SC, LHb, LH; Figure 1) change at different
times of a daily cycle. Assuming that the dopaminergic system
acts as a hub that computes and sums incoming information, and
the circadian oscillation of VTA/SNc inputs change the weight of
information they carry, the output information from the
dopaminergic system should be appropriately adjusted. The
question posed above needs an urgent answer because
previous experiments on the responses of dopaminergic
neurons to manipulations of its inputs were not designed to
measure differences between light and dark phases of the
circadian cycle. Additionally, it should be delineated to what
extent the dopaminergic signalling is affected by its endogenous
circadian rhythmicity (and concomitant changes in
electrophysiological properties), or by external circadian
rhythmicity within individual VTA/SNc input structures.

Notably, almost none of the inputs that reach dopaminergic
system are homogeneous biochemically and structurally. Thus,
understanding how daily oscillations within particular brain
region as a whole might be insufficient to explain its real
impact on the neuronal activity of the dopaminergic system
across 24 h; different cellular populations within one brain
region which often fulfil different functions and convey
different information might undergo dissimilar circadian
changes.

It is expected that both basal dopamine levels as well as value/
salience encoding should differ in active and inactive phases as
they pose different behavioural challenges to animals. For
example, the impact of the ambient light level and
environmental cues on the activity of the dopaminergic system
during both phases should differ; indeed, it was shown that the
activity of superficial layers of the SC is lower during the night
(Chrobok et al., 2021b). The same should apply for the
homeostatic information provided by various hypothalamic
regions as well as the NTS (Chrobok et al., 2021d; Chrobok
et al., 2021f), as the food intake along with the motivational drive
to eat varies strongly between active and inactive phases. Some of
these hypothalamic structures also regulate the general arousal
state so the daily variation in their activity is also anticipated to
affect the activity of the dopaminergic system to a great extent.
The way dopaminergic neurons respond to aversive and
threatening stimuli in active and inactive phase most likely
differ as distinct rodents’ predators lurk at different times of a
day. Moreover, alertness to such information is different while the
animals are resting. For that reason, daily changes in the LHb and
RMTg responsiveness (and baseline activity) should not come as
a surprise. Indeed, it was shown that the activity of the LHb varies
across 24 h cycle (Baño-Otálora and Piggins, 2017). As a result of
the multi-input circadian oscillations, the change in the activity of
the dopaminergic system in both short and long timescales
should translate into daily dopamine release alterations in the
target brain areas, such as the striatum. This relation, however,
does not have to be linear as various daily changing factors at the
level of the striatum itself might influence the dopamine release
(e.g., activity of cortical inputs or dopamine level controlling
enzymes expression).

CONCLUDING REMARKS

The current development in understanding central circadian
timing mechanisms, shifting from the uni-clock concept of the
omnipotent SCN towards the more complex multi-clock theory,
provides new insights in the regulation of discrete neuronal
systems. The dopaminergic system serves as an interesting
example. The combination of intrinsic circadian timekeeping
in the dopaminergic system itself with the circadian
fluctuation of multiple inputs to the VTA/SNc from local
brain clocks (exhibiting a range of autonomy from the SCN),
ensures much more flexibility than a single, circadian input from
the master clock. This assumption can be further strengthened by
the fact, that these different “ticking” inputs are entrained by
different environmental stimuli. With the SCN being a light-
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entrainable oscillator poorly entrained by feeding, the input from
other extra-SCN clocks may provide information e.g., on the
circadian patterning of food intake, valuable for the dopaminergic
system functioning. Thus, considering the dopaminergic system
as a hub in the intricate network of circadian oscillators, drawn in
our perspective article, offers novel research opportunities in both
reward and circadian neuroscience.
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