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We have recently shown that physiological delay can induce a novel form of

sustained temporal chaos we call delay-induced uncertainty (DIU) (Karamched

et al. (Chaos, 2021, 31, 023142)). This paper assesses the impact of DIU on the

ability of the glucose-insulin system to maintain homeostasis when responding

to the ingestion of meals. We address two questions. First, what is the nature of

the DIU phenotype? That is, what physiological macrostates (as encoded by

physiological parameters) allow for DIU onset? Second, how does DIU impact

health? We find that the DIU phenotype is abundant in the space of intrinsic

parameters for the Ultradian glucose-insulin model—a model that has been

successfully used to predict glucose-insulin dynamics in humans.

Configurations of intrinsic parameters that correspond to high characteristic

glucose levels facilitate DIU onset. We argue that DIU is pathogenic for obesity

and type-2 diabetes mellitus by linking the statistical profile of DIU to the

glucostatic theory of hunger.
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1 Introduction

Clinical and laboratory practice throughout biomedicine and biochemistry proceeds

from the assumption that the dynamics of measured quantities are predictable. For

instance, a clinician administers medication to a patient based on the supposition that the

medical intervention will not induce an unexpectedly erratic response. The presence of

sustained temporal chaos would fundamentally undermine the assumption of

predictability. Such chaos has been observed in certain classical physiological models
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(Abarbanel et al. (1993); Li and Yorke (2004); Mackey and Glass

(1977); Glass et al. (1988); Glass and Malta (1990)).

We recently proposed a novel route through which

physiological delay can induce sustained temporal chaos for

concrete dynamical systems of interest in biomedicine

(Karamched et al. (2021)). We termed the resulting chaos

delay-induced uncertainty (DIU). We argued that DIU is

relevant for glycemic management in the intensive care

unit by exhibiting it for the Ultradian model, an archetypal

model of glucose-insulin dynamics (Sturis et al. (1991);

Drozdov and Khanina (1995)). Tools from the general

theory of nonuniformly hyperbolic dynamical systems and

the theory of rank-one maps yielded a precise characterization

of the dynamical and statistical profiles of DIU. Clinicians

may find DIU difficult to interpret because these profiles can

be subtle.

DIU is potentially relevant for any physiological system

wherein delayed regulatory feedback controls try to maintain

healthy homeostasis. Examples include pulmonary and

respiratory dynamics (Mackey and Glass (1977); Sottile

et al. (2018)), cardiac dynamics (Christini and Glass

(2002)), female endocrine dynamics (Graham et al. (2020);

Urteaga et al. (2019)), and neurological dynamics (Stroh et al.

(2020); Claassen et al. (2013); Hodgkin and Huxley (1952)).

Indeed, the use of mathematical physiology within medicine

has broad potential (Albers et al. (2018a); Zenker et al.

(2007)).

This paper is a first attempt to assess the impact of DIU on

the ability of the glucose-insulin system to maintain homeostasis

when responding to the ingestion of meals. We work with the

Ultradian model as we did before (Karamched et al. (2021)), but

in a different regime. Our previous work focused on glycemic

management in the intensive care unit (ICU) and therefore

considered the regime wherein the intrinsic (unforced) system

admits a glycemic oscillation (limit cycle). Here, we work in the

regime wherein the intrinsic system admits a stable stationary

state. In this regime, meals (glucose kicks) move trajectories away

from the stationary point. After each kick, the glucose-insulin

control system tries to efficiently return to the fixed point. We are

therefore interested in how DIU impacts return to equilibrium.

In the context of return to equilibrium, the recipe for DIU has

three ingredients. First, delay renders the unforced system

excitable by weakening the stability of the stationary point.

Second, shear is present near this stationary point. One can

think of shear as velocity gradients. Third, external forcing

(glucose kicking) interacts with shear during the relaxation

phase between kicks. This interaction stretches and folds the

phase space, creating hyperbolicity in the dynamics and

producing sustained temporal chaos.

Here, we show that the physiological architecture of the

glucose-insulin system possesses all three ingredients in the

DIU recipe. We offer substantial evidence for the following

two conjectures.

1) The DIU phenotype is abundant in the space of intrinsic

parameters. In other words, a variety of physiological

macrostates (as encoded by intrinsic parameters) lead to

DIU emergence.

2) DIU is pathogenic for obesity and type-2 diabetes mellitus

(T2DM).

This paper is a call to action—a first step toward verifying

these conjectures.

Given the importance of elucidating obesity pathogenesis

(Schwartz et al. (2017)), the DIU pathogenicity conjecture is the

primary contribution of this work. The two-part argument

supporting it links the statistical distribution of glucose that DIU

induces to the glucostatic theory (Chaput and Tremblay (2009);

Mayer (1955)). First, when DIU is present, glucose level dips below

its mean more frequently. Second, glucostatic theory asserts that

such dips induce hunger. See Figure 1 for an illustration of this two-

part argument. This conjectured form of obesity pathogenesis acts

on long timescales (months and years). As we will show, DIU

becomesmore probable as intrinsic parameters move into regions of

parameter space that correspond to elevated characteristic glucose

levels. Development of early-stage obesity and T2DM would

therefore act as a feedback mechanism by promoting DIU,

leading to disease progression.

We work with the Ultradian model for two primary reasons,

validity and flexibility. The model includes two major negative

feedback loops describing effects of insulin on glucose use and

glucose production. Both loops include glucose-based stimulation of

insulin secretion. External forcing can include both meal ingestion

and glucose infusion. The Ultradian model can be tuned so that the

unforced system admits a limit cycle, as in (Karamched et al. (2021)),

or a stationary state. Importantly, it has been used to accurately

predict glucose dynamics in humans (Albers et al. (2017)).

2 The Ultradian model

In this section we describe the Ultradian glucose-insulin

model (Sturis et al. (1991); Drozdov and Khanina (1995);

Keener and Sneyd (1998)), the external forcing drive that we

use for simulations, and intrinsic system parameters that we

hypothesize can facilitate DIU onset.

The Ultradian model is a compartment model with three

state variables: plasma glucose (G), plasma insulin (Ip), and

interstitial insulin (Ii). See Figure 2 for the model schematic.

These three state variables are coupled to a three-stage linear

delay filter, producing a six-dimensional phase space. The model

includes two major negative feedback loops describing effects of

insulin on glucose use and glucose production. Both loops

include glucose-based stimulation of insulin secretion. The

Ultradian model includes physiologic delay, but the system is

finite-dimensional because the delay assumes the form of a three-

stage linear filter.
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The full model is given by

dIp
dt

� f1 G( ) − E
Ip
Vp

− Ii
Vi

( ) − Ip
tp

(1a)

dIi
dt

� E
Ip
Vp

− Ii
Vi

( ) − Ii
ti

(1b)

dG
dt

� f4 h3( ) + IG t( ) − f2 G( ) − f3 Ii( )G (1c)

dh1
dt

� 1
td

Ip − h1( ) (1d)
dh2
dt

� 1
td

h1 − h2( ) (1e)
dh3
dt

� 1
td

h2 − h3( ), (1f )

where f1(G) represents the rate of insulin production, f2(G) represents

insulin-independent glucose use, f3(Ii)G represents insulin-dependent

glucose use, and f4 (h3) represents delayed insulin-dependent glucose

use. The functional forms of f1, f2, f3, and f4 are given by

f1 G( ) � Rm

1 + exp −G
VgC1

+ a1( ) (2a)

f2 G( ) � Ub 1 − exp
−G
C2Vg

( )( ) (2b)

f3 Ii( ) � 1
C3Vg

U0 + Um − U0

1 + κIi( )−β( ) (2c)

f4 h3( ) � Rg

1 + exp α h3
C5Vp

− 1( )( ), (2d)

with

κ � 1
C4

1
Vi

− 1
Eti

( ). (3)

Table 1 summarizes the meaning of each model parameter

and provides the set of nominal parameter values.

2.1 Pulsatile glucose forcing drives

The term IG(t) in Eq.1c represents the external nutritional

drive. We call system (1) without this term the intrinsic system or

FIGURE 1
HowDIUmay be pathogenic for obesity and T2DM. When DIU is present, glucose level dips below its meanmore frequently (bottom row). The
glucostatic hypothesis asserts that such dips induce hunger. DIU would therefore impute elevated hunger frequency, leading to obesity on long
timescales.

FIGURE 2
Schematic for the Ultradian model of glucose-insulin
dynamics. Note the important delayed regulatory feedback
between Ip and G.
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unforced system. In this paper, we consider an idealized

nutritional drive IG(t) that consists of pulsatile kicks. This

drive models meals that are eaten and digested

instantaneously. That is, we assume that the nutritional

content of each meal immediately affects the glucose state

variable in the Ultradian system. The idealized nutritional

drive is given by

IG t( ) � ∑∞
n�1

Anδ t − Tn( ), (4)

where δ(t) is the Dirac delta distribution (unit impulse), Tn is

the time of meal n, and An is the amount of carbohydrate in

meal n. Importantly, this pulsatile drive does not

overwhelm the intrinsic dynamics. On the contrary, it can

interact subtly with intrinsic shear to produce DIU, as we

will see.

The form of IG(t) in Eq. 4 induces the following dynamics.

Between two consecutive kicks (Tn−1 < t < Tn), Ultradian

dynamics evolve according to system (1) with IG(t) = 0. At

time Tn of meal n, the glucose state variable, G, undergoes the

instantaneous changeG↦G +An. That is, at time Tnwe pause the

flow generated by the intrinsic system and apply the

diffeomorphism

Ip, Ii, G, h1, h2, h3( ) ↦ Ip, Ii, G + An, h1, h2, h3( ) (5)

to the phase space. We call this diffeomorphism followed by flow

of the intrinsic system cycle the kick-relaxation cycle.

In reality, meals produce glucose perturbations that are

temporally localized but not instantaneous. Nevertheless, we

have strong evidence that the emergence of DIU (or the

absence of such emergence) is sensitive to neither the exact

timing of the pulses nor to their shape. In previous work

(Karamched et al. (2021)), we examined the emergence of

DIU for the Ultradian model when the delay parameter td is

tuned so that the intrinsic system admits a limit cycle (sustained

oscillatory dynamics). There, we showed that DIU can emerge

when each inter-meal time is drawn from an exponential

distribution (Poissonian inter-meal timing) and when the

drive 4) is replaced with square pulses of duration 30 min that

arrive at 8 a.m., noon, and 6 PM. Here, we elect to work with

drive 4) and consider only periodic pulsing (Tn = nT, where

T ∈ R>0 is the inter-kick time) with constant kick amplitude

(An = A for all n ∈ ZP0) in order to focus on how intrinsic

parameters impact DIU emergence. Our previous work indicates

that our new results for periodic pulsatile forcing will continue to

hold for more complex forcing drives.

TABLE 1 Full list of intrinsic parameters for the Ultradian glucose-insulin model (Albers et al. (2017)). Note that IIGU and IDGU denote insulin-
independent glucose utilization and insulin-dependent glucose utilization, respectively.

Ultradian model parameters

Name Nominal value Meaning

Vp 3 L plasma volume

Vi 11 L interstitial volume

Vg 10 L glucose space

E 0.2 L min−1 exchange rate for insulin between remote and plasma compartments

tp 6 min time constant for plasma insulin degradation (via kidney and liver filtering)

ti 100 min time constant for remote insulin degradation (via muscle and adipose tissue)

td 10.5 min delay between plasma insulin and glucose production

Rm 209 mU min−1 linear constant affecting insulin secretion

a1 6.6 exponential constant affecting insulin secretion

C1 300 mg L−1 exponential constant affecting insulin secretion

C2 144 mg L−1 exponential constant affecting IIGU

C3 100 mg L−1 linear constant affecting IDGU

C4 80 mU L−1 factor affecting IDGU

C5 26 mU L−1 exponential constant affecting IDGU

Ub 72 mg min−1 linear constant affecting IIGU

U0 4 mg min−1 linear constant affecting IDGU

Um 94 mg min−1 linear constant affecting IDGU

Rg 180 mg min−1 linear constant affecting IDGU

α 7.5 exponential constant affecting IDGU

β 1.772 exponent affecting IDGU
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2.2 Key intrinsic parameters for DIU
emergence

We hypothesize that intrinsic (unrelated to the forcing drive)

parameters directly linked to G, the glucose state variable, play a

key role in DIU onset. This hypothesis is partially inspired by

recent work that established a positive correlation between mean

glucose levels and glucose variance (Albers et al. (2018b)). Our

numerical experiments examine the impact of the following

parameters on DIU emergence.

• Rg - the uninhibited hepatic glucose production rate

• Ub - the maximal insulin-independent glucose usage rate

• U0 - the basal insulin-dependent glucose usage rate

• α - the inhibition of hepatic glucose production

• a1 - the basal glucose-based insulin inhibition

• C1 - the sensitivity of insulin production to glucose

Importantly, each of these intrinsic parameters has a concrete

physiological interpretation.

3 Methods

The maximal Lyapunov exponent as a diagnostic tool. We

use the maximal Lyapunov exponent, Λmax, as a DIU diagnostic:

Λmax > 0 indicates DIU whereas Λmax < 0 indicates its absence.

Computing Λmax requires solving system (1). We do this in the

following way. During the relaxation intervals (Tn−1, Tn) between

kicks, we integrate the unforced differential equations using the

MATLAB ode23s solver. At kick times Tn, we pause the

differential equation solver and apply the diffeomorphism of

phase space induced by the kick (see Eq. 5).

We compute the maximal Lyapunov exponent in the

following way. We track two solutions to system (1), initially

separated by d0 = 10–8. One of these solutions can be thought of as

a base solution and the other as a perturbation. After the first

kick-relaxation cycle, we compute the separation d1 between the

solutions and store the quantity log (d1/d0) in a vector. We then

renormalize by rescaling the secondary orbit so that the distance

between the solutions resets to d0. We proceed in this manner for

105 kick-relaxation cycles. This produces a vector containing 105

values of log (d1/d0). Averaging over the vector produces Λmax.

The maximal Lyapunov exponent consequently quantifies the

amount of expansion per kick-relaxation cycle.

4 Results

We have designed our numerical experiments to support two

primary conjectures. These conjectures are the animating force

behind this paper.

1) The DIU phenotype is abundant in the space of intrinsic

parameters. In other words, a variety of physiological

macrostates (as encoded by intrinsic parameters) lead to

DIU emergence.

2) DIU is pathogenic for obesity and T2DM.

4.1 Numerical experiments: Design,
rationale, and expectations

Tuning of intrinsic parameters. To support the conjecture

that the DIU phenotype is abundant in the space of intrinsic

parameters, we begin by setting the intrinsic parameters in the

unforced Ultradian model to the nominal values listed in Table 1.

Crucially, the delay timescale td acts as a bifurcation parameter

for the intrinsic system. There exists a value td* at which the

intrinsic system undergoes a supercritical Hopf bifurcation. The

intrinsic system admits a stable stationary point (Ip,eq, Ii,eq, Geq,

h1,eq, h2,eq, h3,eq) for td < td* (homeostasis) that gives birth to a

stable limit cycle (glycemic oscillation) for td > td* . For our

numerical experiments, we set td to the nominal value

10.5 min, a value strictly less than td* , thereby placing the

intrinsic system in the stable stationary point regime. This is

the appropriate regime for our current study because we are

interested in how the dynamical variables relax to homeostatic

levels between glucose kicks.

Using the nominal values of the intrinsic parameters as a

starting point, we look for DIU along six one-dimensional slices

of parameter space. We select a parameter from the list given in

Section 2.2 and then vary this parameter while holding all other

intrinsic parameters fixed.

Testing for DIU onset. Having set the intrinsic parameters,

we test for DIU onset by tuning the external pulsatile forcing

drive (4). For the sake of simplicity, we select a kick amplitude A

and set An = A for all n ∈ ZP0. We work with periodic kicks, so

we set Tn = nT, where T is the time between consecutive kicks.

The forcing drive 4) for the experiments is therefore given by

IG t( ) � A∑∞
n�1

δ t − nT( ). (6)

To test for DIU onset, we compute the maximal Lyapunov

exponent Λmax as a function of T.

Expectations. DIU may or may not emerge as T increases,

depending on the dynamics of the intrinsic flow near the

stationary point. If contraction to the stationary state is strong

and shear near the stationary state is weak, DIU will not emerge.

The maximal Lyapunov exponent Λmax will indicate this by

remaining negative as T increases. In fact, Λmax will decrease

as T increases because the phase space has more time to contract

between kicks as T increases.

On the other hand, if contraction to the stationary state is

weak and shear near the stationary state is strong, then DIU can
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emerge as T increases. This can happen because when T is large,

shear has a long time to act between kicks. Shear causes the phase

space to stretch and fold, thereby producing DIU. In our

experiments, a transition from Λmax < 0 to Λmax > 0 as T

increases indicates that DIU has emerged.

4.2 The DIU phenotype is abundant in the
space of intrinsic parameters

Figure 3 illustrates how Λmax varies with T as we individually

tune each of the six parameters identified in Section 2.2. Each

panel corresponds to tuning a single parameter while holding all

other intrinsic parameters fixed at the nominal values.

Importantly, DIU emerges in every one of the six panels

when we tune the selected parameter so as to increase

characteristic glucose levels in the intrinsic dynamics.

Figure 4 confirms the expected link between strength of

contraction to the stationary point, shear near the stationary

point, and DIU emergence. For Figure 4, we replace the periodic

pulsatile forcing used to generate Figure 3 with a forcing signal

that consists of three kicks (meals). After the final kick, the

glucose variable converges to the equilibrium level Geq as t→∞.

The panels in Figure 4 indicate that our experiments have

captured two behaviors. Either we see rapid convergence to

Geq (as in Figure 4D (top)), or we see slow convergence to

Geq by way of a damped oscillation (as in Figure 4D (bottom)).

Notice that in each panel of Figure 4, we tune the same parameter

that we tune in the corresponding panel of Figure 3, while

holding all other intrinsic parameters fixed at the nominal values.

Comparing Figures 3, 4 shows that without exception, the

geometry of the glucose trajectory predicts whether or not DIU will

emerge. If we observe rapid convergence to Geq, as in Figure 4D

(top) for instance, then DIU does not emerge. If, however, we

observe slow convergence to Geq by way of a damped oscillation,

as in Figure 4D (bottom) for instance, then DIU emerges.

Figure 5 illustrates the DIU dynamical profile and acts as a

companion to Figure 4. Each glucose trajectory in Figure 5 results

from forcing with periodic pulsatile kicks 6) and corresponds to a

companion glucose trajectory in Figure 4 (produced by applying

only three kicks). When contraction toward the equilibrium

glucose level Geq is strong (Figures 4A–F (top)), driving with

periodic pulsatile kicks produces rhythmic behavior (Figures

5A–F (top)). When periodic pulsatile kicks produce DIU,

glucose trajectories exhibit sustained temporal chaos (Figures

5A–F (bottom)).

FIGURE 3
TheDIU phenotype is abundant in the space of intrinsic parameters. Plots show themaximal Lyapunov exponentΛmax as a function of inter-kick
time T for the time-T map induced by the Ultradian system (1) with T-periodic pulsatile forcing (6). DIU is present when Λmax > 0 and absent when
Λmax < 0. As T increases, DIU emerges when intrinsic parameters are tuned so as to increase characteristic glucose levels. Intrinsic parameters are set
to the nominal values in Table 1 except for the single intrinsic parameter that is tuned in each panel: (A) Rg; (B)Ub; (C)U0; (D) α; (E) a1; (F)C1. Kick
amplitude: A = 10 mg/dl.
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4.3 DIU is pathogenic for obesity and
T2DM

We have established that the DIU phenotype is abundant in

the space of intrinsic parameters for the Ultradian model. But

why does this matter? Delayed regulatory feedback pathways are

common in mathematical physiology. Since DIU emerges in a

natural way for the Ultradian model, it may appear in a variety of

physiological models. When present, DIU can profoundly impact

medical practice because medicine proceeds from the assumption

that the outcome of an intervention can be predicted when the

state of the patient at the time of intervention is known. Sustained

temporal chaos undercuts this assumption. See (Karamched et al.

(2021)) for an assessment of the impact of DIU on glycemic

management in the intensive care unit.

Here, we conjecture that DIU is pathogenic for obesity and

T2DM. This conjecture is based on how the statistical signature

of DIU links to the glucostatic theory. The glucostatic theory

asserts that drops in blood glucose levels induce hunger and

therefore energy intake (Chaput and Tremblay (2009); Mayer

(1955)). If such drops are frequent in time and sizable in

magnitude, excess energy intake could result.

Figure 6 shows that DIU induces frequent, sizable drops in

blood glucose levels! We start with all intrinsic parameters set at the

nominal values and we then tune Rg, the uninhibited hepatic glucose

production rate. Figure 6 shows glucose distributions for the time-T

map induced by Ultradian dynamics 1) with T-periodic pulsatile

forcing (6). That is, each histogram gives the distribution of

G nT( ): n ∈ ZP0{ } (7)

for a different value of Rg. We set T = 100 min. When Rg =

120 mg/min (Figure 6A), a value for which DIU is absent, the

glucose distribution is essentially a Dirac measure concentrated

at the mean. (Blue indicates the mean of the glucose distribution

and orange indicates the distribution itself.) However, when Rg =

180 mg/min (Figure 6B), a value for which DIU is present, the

glucose distribution is approximately Gaussian. This is as it

should be—the mathematical theory behind DIU predicts

Gaussian statistics when DIU is present. Notice that the

variance of the approximately Gaussian distribution is large.

This means that the glucose level frequently drops well below

its mean. In light of glucostatic theory, this observation directly

supports the conjecture that DIU is pathogenic for obesity

and T2DM.

FIGURE 4
Glucose trajectories generated by the Ultradian system (1) with forcing that consists of three glucose kicks spaced 100 min apart. After the final
kick, the glucose level converges to the equilibrium value Geq. Convergence is either rapid (top of each panel) or via a slow damped oscillation
(bottom of each panel). Intrinsic parameters are set to the nominal values in Table 1 except for the single intrinsic parameter that is tuned in each
panel: (A) Rg; (B) Ub; (C) U0; (D) α; (E) a1; (F) C1. Kick amplitude: A = 10 mg/dl.
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FIGURE 5
Sustained temporal chaos associated with DIU. Plots show glucose trajectories produced by the Ultradian system (1) with T-periodic pulsatile
forcing (6). Each trajectory in Figure 5 corresponds to a companion trajectory in Figure 4. When DIU is absent, T-periodic pulsatile forcing results in a
rhythmic glucose signal (top of each panel). When DIU is present, we observe sustained temporal chaos (bottom of each panel). Intrinsic parameters
are set to the nominal values in Table 1 except for the single intrinsic parameter that is tuned in each panel: (A) Rg; (B) Ub; (C) U0; (D) α; (E) a1; (F)
C1. Forcing parameters: A = 10 mg/dl, T = 100 min.

FIGURE 6
Support for the conjecture that DIU is pathogenic for obesity and T2DM. Distributions of the glucose variable (7) for the time-Tmap induced by
the Ultradian system (1) with T-periodic pulsatile forcing (6). Blue bar indicates mean. (A) When Rg = 120 mg/min, DIU is absent and the glucose
distribution concentrates at the mean. (B)When Rg = 180 mg/min, DIU is present. Consistent with the mathematical structure of the DIU profile, the
glucose distribution is approximately Gaussian. All of the other intrinsic parameters are set to the nominal values in Table 1. Forcing parameters:
A = 10 mg/dl, T = 100 min.
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4.4 DIU emerges for generic pulsatile meal
drives

Our results do not depend on the precise form of the pulsatile

forcing that appears in (6). The forcing need not be periodic, and

it need not consist of δ-pulses. DIU should emerge for a generic

pulsatile forcing drive as long as the forcing interacts with

intrinsic shear1.

To support this claim, we have varied the intrinsic parameter

Rg to test for DIU emergence after replacing 6) with

IG t( ) � A∑∞
n�1

Θ t −mn( )e−υ t−mn( ), (8)

where A > 0 denotes meal amplitude, Θ(t) is the Heaviside

function, υ > 0 is a constant, and mn denotes the time of meal n.

For this set of experiments, meals are consumed daily at 8 a.m.,

noon, and 6 p.m. Figure 7A shows Λmax as a function of meal

amplitude A for three values of Rg. For two of the three values of

Rg, the top Lyapunov exponent becomes positive as A increases,

indicating DIU onset. For Figure 7bc, we replace (8) with a single

day of meals (three meals) in order to show that the nature of

return to equilibrium correlates with DIU onset. Rapid return to

equilibrium correlates with the absence of DIU (Figure 7B), while

slow, oscillatory return to equilibrium correlates with the

presence of DIU (Figure 7C).

5 Discussion

We have found that DIU is abundant in the space of

parameters for the Ultradian glucose-insulin model. Such DIU

could result in obesity and T2DM if induced low-glucose

excursions produce excess hunger frequently enough, but

much work remains to verify the conjecture that DIU is

pathogenic for obesity and T2DM. Crucially, DIU and the

theory behind it must be anchored to data. Methods for DIU

detection directly from data should be developed for the clinical

and self-care settings. The impact of DIU on the techniques by

which models are fit to data should be assessed.

We have assumed in this paper that the intrinsic parameters

in the Ultradian model do not vary over time. On long timescales,

however, DIU may affect physiological state. At the modeling

level, this would correspond to DIU causing intrinsic model

parameters to drift (perhaps slowly) over time. Such drift might

enhance the pathogenicity of DIU through a feedback

mechanism: When DIU is present, intrinsic parameters may

slowly drift into a region of parameter space that is even more

favorable for DIU. A mathematical investigation of this

phenomenon would involve developing a theory of DIU for

nonstationary dynamical systems.

We have shown here that the DIU phenotype is abundant in

the space of intrinsic parameters for the Ultradian model. An

important next step will be to precisely characterize the DIU

phenotype in terms of physiological architecture. Such a

characterization may reveal the most essential physiological

mechanisms that lead to DIU onset. Mathematically speaking,

FIGURE 7
DIU phenotype for a realistic nutritional driver. (A) We have replaced (6) with the exponential-type drive in (8). Meals are consumed daily at
8 a.m., noon, and 6 p.m. Plot shows Λmax as a function of meal amplitude A for three values of Rg (B,C)We replace (8) with a single day of meals (three
meals). Rapid return to equilibrium correlates with the absence of DIU, while slow, oscillatory return to equilibrium correlates with the presence of
DIU. Here, A = 50 mg/(dL · min) and υ = 1/120 min−1.

1 Here we compute Λmax by averaging over time intervals of length 12 h.
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we must quantify shear near stationary states of flows. Shear near

limit cycles has received considerable attention (Ott and

Stenlund (2010); Wang and Young (2003)). Shear near

stationary states, though, has only been quantified in

dimension two (Ott (2008)).

The rigorous mathematical theory behind DIU is known as

the theory of rank-one maps. This theory has been developed for

finite-dimensional dynamical systems (Wang and Young (2001,

2008; 2013)). The Utradian model is finite-dimensional as a

dynamical system because the delay in the Ultradian model takes

the form of a three-stage linear filter. The theory of rank-one

maps therefore characterizes the sustained temporal chaos that

we see in the Ultradian model. However, models that include

explicit delays—systems of nonlinear delay differential

equations—permeate mathematical physiology. Models that

include explicit delays are infinite-dimensional when viewed

as dynamical systems. Important infinite-dimensional analogs

of the Ultradian model have been studied (Li et al. (2006); Li and

Kuang (2007)). The theory of rank-one maps must be extended

to infinite-dimensional dynamical systems in order to analyze

delay differential equations in the DIU context. See (Lu et al.

(2013)) for an approach that combines the existing theory of

rank-one maps with invariant manifold techniques.

When assessing the impact of DIU on a given

physiological system, one should ask the following

questions. Are we interested in precisely predicting the

temporal evolution of individual orbits, or do we care more

about the statistics of the system? What are the relevant

timescales? For the glucose-insulin system, we have now

studied two contrasting settings. In the ICU context, we

showed that DIU can disrupt single-orbit prediction on

short timescales (Karamched et al. (2021)). In the present

paper, we have argued that over long timescales, DIU-induced

glucose statistics may be pathogenic for obesity and T2DM.
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