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The application of machine learning algorithms in studying injury assessment

methods based on data analysis has recently provided a new research insight for

sports injury prevention. However, the data used in these studies are primarily

multi-source and multimodal (i.e., longitudinal repeated-measures data and

cross-sectional data), resulting in the models not fully utilising the information

in the data to reveal specific injury risk patterns. Therefore, this study proposed

an injury risk prediction model based on a multi-modal strategy and machine

learning algorithms to handle multi-source data better and predict injury risk.

This study retrospectively analysed the routine monitoring data of sixteen

young female basketball players. These data included training load,

perceived well-being status, physiological response, physical performance

and lower extremity non-contact injury registration. This study partitions the

original dataset based on the frequency of data collection. Extreme gradient

boosting (XGBoost) was used to construct unimodal submodels to obtain

decision scores for each category of indicators. Ultimately, the decision

scores from each submodel were fused using the random forest (RF) to

generate a lower extremity non-contact injury risk prediction model at the

decision-level. The 10-fold cross-validation results showed that the fusion

model was effective in classifying non-injured (mean Precision: 0.9932,

mean Recall: 0.9976, mean F2-score: 0.9967), minimal lower extremity non-

contact injuries risk (mean Precision: 0.9317, mean Recall: 0.9167, mean F2-

score: 0.9171), and mild lower extremity non-contact injuries risk (mean

Precision: 0.9000, mean Recall: 0.9000, mean F2-score: 0.9000). The

model performed significantly more optimal than the submodel. Comparing

the fusion model proposed with a traditional data integration scheme, the

average Precision and Recall improved by 8.2 and 20.3%, respectively. The

decision curves analysis showed that the proposed fusion model provided a

higher net benefit to athletes with potential lower extremity non-contact injury

risk. The validity, feasibility and practicality of the proposed model have been
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confirmed. In addition, the shapley additive explanation (SHAP) and network

visualisation revealed differences in lower extremity non-contact injury risk

patterns across severity levels. The model proposed in this study provided a

fresh perspective on injury prevention in future research.

KEYWORDS

injury prevention, machine learning, multimodal fusion, injury risk pattern, injury risk
prediction

Introduction

Sports injury is a hot issue in the sports science and sports

medicine communities and is also a practical problem that

urgently needs to be solved (López-Valenciano et al., 2019). It

has previously been observed that sports injuries often occur in

team ball games. The injury rate of basketball events has

increased annually, especially since the risk of sports injuries

in youth groups was extremely high. Non-contact injuries

accounted for 47.0% of training injuries in basketball players,

the incidence of non-contact injuries among centre players is as

high as 86.1%, and 28.0% of non-contact injuries resulted in

absences from the training of more than 7 days (Meeuwisse et al.,

2003; Agel et al., 2007). Several theories on sports injury

prevention have been proposed in sports science and sports

medicine communities. Nevertheless, there have been few

detailed investigations of injury risk assessment methods

based on data analysis that can effectively predict and assess

the injury risk of athletes, which significantly limits the

development of the athletic ability of elite athletes and the

scientific process of sports training. By studying injury risk

assessment methods based on data analysis, the risk patterns

of sports injuries can be effectively identified and recognised,

which is vital for developing good training programs and targeted

interventions and reducing sports injury rates.

The practical implementation of injury risk assessment

methods based on data analysis requires the establishment of

effective injury risk prediction models (Georgios et al., 2019).

However, a review conducted by (Ruddy et al., 2019) has pointed

out that the data collected during sports training monitoring

mainly originated from real-world research environments, which

included a large amount of data, many variables, and an uneven

distribution of injury samples. This made statistical modelling

methods based on parameterization slightly inadequate in the

application of injury risk factor discussion and injury risk

prediction, hindering the development of injury risk

assessment methods based on data analysis, resulting in sports

injury prevention strategies that are still based on empirical

judgement rather than data (Luo et al., 2020; Fiscutean, 2021).

In response to these issues (Fiscutean, 2021), pointed out in the

New Viewpoint of Sports Science in Nature that modelling and

analysing the relationship between athletes’ training data and

sports injury risk using machine learning algorithms would help

to assist in predicting athletes’ injury risk and provide a decision

basis for athletes’ training load adjustments. This has been the

main direction to solve the early warning of sports injury risk.

Recently, researchers in sports science and sports medicine

communities have shown an increased interest in applying

machine learning algorithms to model the injury risk of

athletes from different research dimensions (Claudino et al.,

2019; Rossi et al., 2022a; Rossi et al., 2022b). For example

(Talukder et al., 2016), proposed a sports injury risk

prediction model based on the time sliding window and

random forest (RF), which could effectively use athletes’

technical and tactical statistics to predict athletes’ injuries

during the season. The study noted that average speed,

number of games, number of games played, average distance,

average game time, and average number of shots may be

important variables in predicting injury risk (Rossi et al.,

2018). constructed an injury prediction model based on GPS

monitoring data of Italian male professional soccer players and

decision tree algorithms and successfully predicted

approximately 80% of non-contact injuries by the model

(Rommers et al., 2020). used the extreme gradient boosting

(XGBoost) to predict and model the relationship among

pregame athletic quality assessment tests, anthropometric data

and injuries in 734 U10 to U15 soccer players and constructed

injury risk prediction models that could detect 85% of injury

conditions with 85% precision. Extensive research has confirmed

that machine learning algorithms can effectively predict sports

injuries. However, researchers have not treated this novel method

in much detail. First, the granularity of the data still needs further

refinement. Most of the existing studies consider the occurrence

of injury as the dependent variable without considering the

specific injury sites or injury severity (López-valenciano et al.,

2017; Rossi et al., 2018; Bryan et al., 2020). Second, there is a lack

of injury risk prediction model construction methods for multi-

source and multi-modal data. The data types involved in the

above studies are mostly longitudinal repeated measures data

with multiple time points in a single dimension, or cross-

sectional data with a single time point in multiple dimensions.

However, with the development of science and technology, data

in training practice are characterised by multi-source and

multimodal (i.e. containing both longitudinal repeated-

measures data and cross-sectional data). It makes the

traditional injury risk modelling methods may suffer from

insufficient data processing capability when handling data

(Baltrvaaitis et al., 2019; Luo et al., 2020). Last, injury risk
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patterns have not been explored. Sports injuries are the result of a

combination of multiple factors. However, due to the limitations

of conventional statistical methods and modelling strategies,

previous studies have only been able to obtain only

information reflecting some factors in the injury risk pattern

but not the complete picture of the injury risk pattern

(Waterkamp et al., 2016; Bello et al., 2020; Isern-Kebschull

et al., 2020). Therefore, this study proposes an injury risk

multimodal fusion model with generality, interpretability and

ease of implementation based on a multimodal fusion strategy to

suit the multi-source, multimodal data processing and analysis

needs in training monitoring. This will help coaches and team

doctors understand the risk patterns of lower extremity non-

contact injuries in basketball teams and are also essential for

developing reasonable training plans, adopting targeted

interventions, and reducing sports injury rates.

This study further investigates the injury risk prediction

method based on data analysis by using routine monitoring

data of young female basketball players in Fujian Province.

The monitoring indices were divided into multiple modalities

based on the evaluation dimensions, and the XGBoost was used

to construct unimodal submodels. The RF was used to fuse the

decision results of submodels of different modalities and propose

the final injury risk prediction model. The validity of the

proposed model was determined by comparing it with a

unimodal submodel and a prediction model using a

traditional fusion approach. SHAP was also used to analyse

the weights of monitoring indices in the submodels and the

weights of submodels in the fusion model to explain injury risk

patterns.

Materials and methods

Sixteen young female basketball players (age: 16.6 ± 1.3 years,

height: 175.4 ± 6.3 cm, weight: 65.7 ± 6.2 kg, years of training:

3.3 ± 1.7 years) participated in the study. All players were

affiliated with the Fujian Provincial Basketball and Volleyball

Centre. The data in this study came from 20 weeks of routine

monitoring of the players (November 2020 to April 2021),

including training load, perceived well-being status,

physiological responses, physical performance and player

injuries. The study was conducted with the approval of the

Fujian Provincial Basketball and Volleyball Centre. All

participants provided fully informed consent to participate in

this study by signing a written consent form.

Data collection

Monitoring and calculation of internal training load. This

study used the Borg-10 ratings of perceived exertion (RPE) scale

designed by (Foster et al., 1995) to quantify the perceived

exertion level of players after each training session. The

validity and reliability of this quantification method have been

confirmed in numerous studies (Chen et al., 2002). Within

30 min after each training session or competition, the player

was verbally asked how tired they were after completing that

session. The duration between the start of each training session

and the end of the training was recorded. Eq. 1 was used to

calculate the session rating of perceived exertion (sRPE) of a

single training session to quantify the training load of each

training session. The training duration unit was minutes, and

the RPE was an arbitrary unit (AU). In the study, the daily

training load of each player was calculated based on the

quantified data of the load of each training session, taking the

training day as the unit.

sRPE � duration × RPE (1)

Monitoring and calculation of perceived well-being status. The

perceived well-being status questionnaire designed by (Hooper et al.,

1995) was used to quantify players’ perceived well-being status in the

morning on training days. The scale used a Likert 5-level score, and

the scoring items included fatigue, sleep quality, muscle soreness,

stress level, and training desire. Each item ranged from “very bad” to

“very good”, with a value of 1–5 points. The daily menstrual

conditions of players were inquired about and recorded (0 is

negative/no period; 1 is positive/period).

Physical performance. Refer to the physical performance test

and evaluation plan in “Sports Injury Management” (Joyce and

Lewindon, 2016). In this study, the squat 1RM test was selected

to assess the player’s maximum lower extremity muscle

strength; the 15 m × 17 round shuttle run test was selected

to assess the player’s speed endurance; the 5.8 m × 6 round

shuttle run test was selected to assess the player’s agility, and the

maximum vertical jump test was selected to assess the player’s

explosive and jumping ability.

Physiological response. Urine was collected from players

every Wednesday after training. Protein, specific gravity,

blood, urobilinogen, pH, and ketones in urine were detected

using the Siemens Clinitek Status Urine Analyser to assess the

physiological state of players. The assignment of the urine test

results is shown in Table 1.

Injury registration. Referring to the injury data collection

procedure of (Fuller et al., 2006), injuries were diagnosed by

medical personnel from the Fujian Provincial Basketball and

Volleyball Centre through medical examination and other

methods. The injury registry recorded information such as

location, nature, type, and occurrence of injury (contact, non-

contact) and diagnosis mode. Referring to the definition in the

literature (Bahr et al., 2020), this study defined lower extremity

non-contact injuries (LENCIs) as injuries to the lower extremity

area caused by mechanisms other than direct contact, including

overuse injuries and chronic injuries. The lower extremity

included the hips, thighs, knees, calves, ankles and feet.
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Referring to the definition by (Enright et al., 2019), the severity of

the injury was classified according to the time missed from

training as minimal (0–3 days), mild (4–7 days), moderate

(8–28 days) and severe (≥29 days) and assigned a value of

1–4, respectively.

Data Processing

Time sliding window. Research reports showed that the

players’ stimulus-response to training load and perceived

well-being recovery had the characteristics of accumulation

and decay over time. At the same time, there may be a delay

between peak training load fluctuations and increased risk of

injury (Hulin et al., 2016; Schwellnus et al., 2016; Soligard

et al., 2016; Watson et al., 2016). Therefore, this study used the

time sliding window technique to create an aggregation

sliding window and a prediction sliding window to

preprocess the dataset (Figure 1) and perform statistical

calculations on the variables within the aggregation sliding

window (Talukder et al., 2016). The training monotony (TM)

calculation method proposed by (Foster et al., 1995) was

referenced to calculate the degree of training load change

in the aggregation sliding window (Eq. 2).

TABLE 1 Assignment of indices and units.

Index Assignment Frequency Unit

sRPE Original value input day AU

Menses No = 0, Yes = 1 day AU

Fatigue Original value input day AU

Sleep Quality Original value input day AU

Muscle Soreness Original value input day AU

Stress Levels Original value input day AU

Desire Original value input day AU

Urine Protein Negative = 1; Microscale = 2; 0.3 g/L = 3; 1 g/L = 4; 3 g/L = 5 1-week AU

Urobilinogen 3.2 mg/dl = 1; 16 mg/dl = 5; 33 mg/dl = 10 1-week AU

Urine pH Original value input 1-week AU

Urine Specific Gravity ≤1.025 = 1; ≥1.030 = 2 1-week AU

Urine Blood Negative = 1; Microscale = 2; Ca25 Ery/µL = 3; Ca80 Ery/µL = 4; Ca200 Ery/µL = 6 1-week AU

Urine Ketones Negative = 1; Microscale = 2; 1.5 nmol/L = 3 1-week AU

Squat 1RM Original value input 4-weeks kg

15 m × 17 Shuttle Run Original value input 4-weeks s

5.8 m × 6 Shuttle Run Original value input 4-weeks s

Maximum Vertical Jump Original value input 4-weeks cm

Injury Severity Negative = 0; 0–3 = 1; 4–7 = 2; 8–28 = 3; ≥29 = 4 day AU

FIGURE 1
Schematic diagram of the aggregation and prediction sliding windows.
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TM �
1
7 (∑7

i�1Loadi)������������������������
1
7∑7

i�1(loadi − 1
7 (∑7

i�1Loadi))2√ (2)

The average of the training load index and the perceived well-

being index was calculated using the exponentially weighted

moving average (EWMA) suggested by (Bourdon et al., 2017)

(Eq. 3).

EWMAtoday � 2
N + 1

× Loadtoday

+ (1 − 2
N + 1

) × EWMAyesterday (3)

Notably, since the player’s perceived well-being status

questionnaire used in the study used a 5-point Likert scale,

the score value was low, and the daily variation range was

small. Hence, the indices of the change trends of players’

perceived well-being were not calculated. Additionally, since

there was no uniform standard for the selection of the time

sliding window length, referring to the existing research reports,

the aggregation sliding window time parameter was set to 7 days,

and the prediction sliding window time parameter were set to

7 days (Hulin et al., 2013; Hulin et al., 2016; Malone et al., 2018).

Dataset division. The data collection in training practice was

easily affected by various factors, such as coach cooperation, player

compliance and research sustainability. In addition, the data

collection frequencies of the training load quantification, perceived

well-being status, physiological response and physical performance

test in the original dataset were different. The physiological response

and physical performance data were missing in the complete time

series (Table 1). If these indices were to be removed, this could result

in missing information on physiological adaptations and exercise

capacity. This study reconstructed the original dataset to generate

dataset A with training weeks as the collection frequency and dataset

B with training days as the collection frequency. Among them, the

missing values in the physiological response data and physical

performance test data of dataset B were filled by the adjacent

value imputation method at the individual level.

Z-score normalization. Since each player is an independent

individual, there are significant differences in the stimulation

response to the training load and the perceived well-being

recovery of different players. Therefore, This study normalizes

the independent variables using the Z-score transform (Eq. 4) for

each athlete to facilitate cross-sectional comparisons.

Z � X − μ

σ
(4)

where x is the original data, μ is the mean value of the original

data, and σ is the standard deviation of the original data.

Class imbalance processing. People with potential risks are the

focus of injury risk assessment. However, because the injury that

occurred in the actual situation has a largely skewed distribution,

there is a class imbalance problem, which causes the model to fail

to correctly classify the minority class samples (Han et al., 2005).

The synthetic minority oversampling technique (SMOTE) was

used in the study to synthetically sample the training set in each

fold of the cross-validation. To reduce the negative impact of the

class imbalance problem on model training. The SMOTE is an

improved scheme based on the random oversampling that can

effectively solve the problem of insufficient model generalization

caused by the random oversampling (Chawla et al., 2002). The

algorithm obtained its k-nearest neighbours by calculating the

Euclidean distance from each minority class sample d to all the

minority class samples. A sampling ratio was set according to the

sample imbalance ratio, several samples dn were selected from the

k-nearest neighbours of each minority class sample, and a new

sample dnew was generated by Eq. 5.

dnew � d + rand(0, 1)*(d − dn) (5)

Model construction

In this study, the monitoring indices were divided into four

modalities based on the evaluation purpose: training load, perceived

well-being status, physiological response and physical performance

test. Use the occurrence of a LENCI in the next week as the

dependent variable. The proposed multimodal fusion model

construction process for LENCI risk prediction is shown in

Figure 2. First, the submodels of each modality were initially

constructed using dataset A. The decision-level fusion of the

decision results for each submodel was made to determine the

model parameters of the fusion model, which was named

wFusionModel. Second, the submodels for training load and

perceived well-being states were constructed using dataset B.

Finally, it was replaced with the submodels of training load and

perceived well-being status in wFusionModel to form the final injury

risk prediction model, which was named dFusionModel.

The XGBoost was chosen to construct the unimodal

submodel in the study. XGBoost is a machine learning further

optimized by (Chen and Guestrin, 2016) based on gradient

boosting decision tree (GBDT). The algorithm enhanced the

classification ability by integrating the prediction results of

multiple decision tree models and making the predicted values

of samples as close to the actual values as possible, with better

prediction performance and training speed. Its objective

optimization function is shown in Eq. 6.

Obj � ∑N

n�1(L(yn, ŷn) + Ω (f n)) (6)

yn in Eq. 6 is the actual value and ŷn is the predicted value of the

model output. The first part of the Equation L(yn, ŷn) represents
the loss function of the actual and predicted values, which is a

differentiable convex loss function that measures the difference

between the ŷn and yn. The second part Ω (fn) is a regular term
added to control the complexity of the model. The additional

regularization term helps to smooth the final learnt weights to
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avoid over-fitting. The selection of hyperparameters for the

models is shown in Supplementary File.

The RF was chosen to construct a multimodal fusion model.

The algorithm took m samples of the training set using the

bootstrap method with randomized put-back, and random

features were selected for each decision tree based on bagging.

These m samples were used to build m decision tree models.

Eventually, the results were voted upon by these decision tree

models (Breiman, 2001). Since randomness was introduced in

selecting samples and feature subspaces, the overfitting problem

can be better avoided and improve classification accuracy. The

decision function of the RF is shown in Eq. 7.

H(x) � argmax∑
k

I[hk(x) � y] (7)

In Eq. 7, hk(x) is the decision tree model, y is the

classification result of the decision tree, and I(·) is the index

function. Since there was a class imbalance problem in the

dataset, this study improved the impact of the class imbalance

problem on model construction by introducing a sample weight

parameter in the RF (Chen, 2004), as shown in Eq. 8.

weight � n sample
n class × N

(8)

In Eq. 8, n sample is the total sample size, n class is the

number of label categories, and N is the number of samples per

category.

Model validation

This study used a 10-fold stratified cross-validation evaluation

strategy to evaluate the model’s performance proposed in the study.

The original dataset was randomly divided into ten subsets, and the

ten subsets were used as the validation set in turn, while the

remaining subsets were used as the training set of the model.

The average of the model performance evaluation results after

ten iterations was calculated as the model’s overall performance.

Experiments were conducted in two ways to illustrate the model’s

validity in this study.

1) Comparison with unimodal submodels: We compared the

performance of different unimodal submodels and

multimodal fusion models with unimodal submodels.

2) Comparison with different fusion schemes: No research

has been reported on multimodal fusion strategies in

studying sports injury risk prediction models.

Therefore, the proposed fusion model in this study was

compared with the traditional data integration approach

to illustrate the effectiveness of the model. The model

building process of the traditional data integration

approach is shown in Figure 3. By fusing features of

different modalities, they were processed by data

normalization and synthetic sampling before being

input into the model.

Model evaluation

In the problem of injury prediction, the cost of missed

diagnosis was much higher than injury misdiagnosis and

using accuracy alone as a model evaluation index was not

appropriate. Therefore, this study used Precision, Recall and

F2-score as indices for model performance. They were calculated

in the following manner:

Precision � TP
TP + FP

(9)

FIGURE 2
Schematic diagram of the multimodal model architecture.
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Recall � TP
TP + FN

(10)

F2 − score � 5 × Precision × Recall
4 × Precision + Recall

(11)

TP, FP, TN, and FN indicate true positives, false positives,

true negatives, and false negatives. It is worth noting that the

predictor variables in this study are multi categorical variables,

and simply calculating the global indices by counting the total

number of true positives, false negatives and false positives or

using rolling averages to calculate the performance assessment

indices for each label is not a useful for evaluating model

performance. Thus, this study calculated indices for each label

and found their average weighted by support (the number of

actual instances for each label) as the final result of the model

evaluation.

In addition, the prediction model allowed us to classify

exposure situations into two categories: predicted positive and

required intervention and predicted negative and did not require

intervention. True-positive (TP) exposure and false-positive (FP)

exposure were possible within the predicted positive situation.

Interventions for the true-positive exposure situation will bring

benefits, while interventions for the false-positive exposure

situation will cause unnecessary wastage of medical resources

and affect the training pace and schedule. Therefore, the pt

(probability threshold) of the model needed to be evaluated to

assess the clinical utility in training practice. Our research used

decision curve analysis (DCA) to evaluate the prediction model

(Vickers and Elkin, 2006; Vickers and Holland, 2021). The net

benefits of the positive group (Eq. 12) and the negative group (Eq.

13) were calculated to determine the net benefit of the

intervention for all predicted positive exposures (Eq. 14) by

determining the numerical relationship between the output

probability pi and pt of the prediction model. The decision

curve was drawn using the probability threshold as the horizontal

coordinate and the net benefit as the vertical coordinate.

net benefit treated � TP
n

− FP
n

× ( pt
1 − pt

) (12)

net benefit untreated � TN
n

− FN
n

× (1 − pt
pt

) (13)

net benefit treat all � TP + FN
n

− TN + FP
n

× ( pt
1 − pt

) (14)

Features importance

Unlike classical statistical modelling methods, XGBoost is a

black-box model based on gradient boosting, and its internal

working mechanism is challenging to understand. However, the

interpretability of the model is very important in training

practice. An injury risk model must be understandable and

interpretable. Ideally, it should be able to explain the complete

logic that provides the corresponding decision to all parties

involved. This can help coaches and team doctors develop

good training programs and adopt targeted interventions

(Ruddy et al., 2019). Therefore, this study used shapley

additive explanations (SHAP) for attribution analysis of the

prediction model (Lundberg et al., 2020), calculating the

absolute weight of each variable according to Eq. 15. We

calculate the relative weight of each variable (i.e. the ratio of

the absolute weight of a single variable to the sum of the absolute

weights of all variables) to facilitate cross-sectional comparisons.

We performed model construction, training, validation and

analysis of important variables in the Python

3.6 programming environment.

FIGURE 3
Comparison of reference integration solutions.
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Mean[SHAP] � ∑N
i�1(|SHAP|i)

N
(15)

Network visualisation

Previous studies have reported that intricate interactions

between injury risk factors may allow for differences in the

pattern of LENCI risk at different severities levels. In this

study, the relationship between the marginal effects of

different variables was described in the form of a network to

reveal the different levels of LENCI risk pattern. This study

assumes that the marginal effects of the variables on injury risk

are statistically correlated, and the Spearman correlation

coefficient was used as a measure of statistical correlation to

analyse the marginal effects of the different variables. The

network was plotted using concentric nodes to facilitate cross-

sectional comparisons.

Statistical analysis

Statistical analysis of the data was carried out using STATA

15.0 software. Welch’s t-test was used to test for differences in

LENCI risk for each index at different injury severities.

Differences in model performance and the weights of variables

in the models were analysed using Welch’s analysis of variance

(ANOVA). All hypothesis tests were conducted using two-sided

hypothesis tests, setting α in the hypothesis test to 0.05 and

considering p > 0.1 as not significant, p < 0.1 as marginally

significant, p < 0.05 as significant and p < 0.01 as highly

significant.

Results

Dataset and details of LENCIs

Twenty-seven LENCIs were recorded during the study

period, accounting for 62.8% of the total injuries. Among

them, approximately 14.8% were non-contact injuries of the

knee, 18.5% were non-contact injuries of the thigh, 37.0%

were non-contact injuries of the lower leg, and 29.6% were

non-contact injuries of the foot. The LENCIs severity is

shown in Table 2. Most LENCIs resulted in 1–3 days of

missed training, and only 18.5% of LENCIs resulted in more

than 4 days of missed training.

The number of LENCIs per week is shown in Figure 4.

The incidence of LENCIs at weeks 1–5 of routine monitoring

was 48.2%. LENCIs in weeks 6–14 and weeks

15–20 accounted for 25.9 and 25.9% of total LENCIs

respectively.

The raw data were preprocessed using the time-sliding

window algorithm. Due to the calculation needs of the time-

sliding window algorithm, the data from the first and last

weeks were excluded. At the same time, because urine

metabolism during the menstrual period of female athletes

will affect the assessment of functional status, urine data

during this period were excluded. Descriptive analysis was

conducted on the preprocessed dataset, in which the training

load and perceived well-being data contained a total of

1813 valid data, the urine data contained 267 valid data,

and the physical performance test contained 64 valid data.

The basic information of the data of each index is shown in

Table 3.

TABLE 2 Descriptive information on the incidence of non-contact injuries of all lower extremities.

1–3 days minimal 4–7 days mild 8–28 days moderate >29 days severe Count

Hip 0 0 0 0 0 (0.0)

Knee 2 2 0 0 4 (14.8)

Thigh 5 0 0 0 5 (18.5)

Calf 10 0 0 0 10 (37.0)

Ankle 0 0 0 0 0 (0.0)

Foot 5 2 1 0 8 (29.6)

FIGURE 4
A week of LENCI occurrence.
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Model performance evaluation of fusion
models

Prediction models were constructed using Table 3 as

independent variables and the severity of LENCI in the coming

week as dependent variables (including non-injured, minimal

LENCI risk and mild LENCI risk). According to the

multimodal fusion model construction process proposed in this

study, the original dataset was reconstructed to generate dataset A

with the training week as the acquisition frequency and dataset B

with the training day as the acquisition frequency. The output

variable imbalance ratios in datasets A and B were 81:5:1 and 80:

5.3:1, respectively. The XGBoost was used to construct submodels

for each mode, and the RF was used to fuse the decision results of

submodels of different modalities. The performance levels of the

submodel and the fusion model are shown in Table 4.

The wFusionModel constructed based on dataset A was used

to predict dataset B. The Precision of the model was 0.9012 ±

0.0287, the Recall was 0.8978 ± 0.0507, and the F2-score was

0.8960 ± 0.0464. The confusion matrix is shown in Figure 5A.

WFusionModel has many missed and misdiagnosed cases

predicting minimal and mild LENCI risk.

The submodel was trained using dataset B’s perceived well-

being and training load data. The Precision of the SubModel

(dPW) constructed based on the perceived well-being data in

dataset B was 0.8754 ± 0.0321, the Recall was 0.8166 ± 0.1354,

and the F2-score was 0.8211 ± 0.1188. The Precision of the

SubModel (dTL) constructed based on the training load data in

dataset B was 0.8663 ± 0.0143, the Recall was 0.8183 ± 0.0345,

and the F2-score was 0.8271 ± 0.0301. The results of Welch’s

ANOVA showed that the performance levels of SubModel

(dPW) and SubModel (dTL) were significantly better than the

submodel constructed using the perceived well-being data and

training load data from dataset A. SubModel (dPW) and

SubModel (dTL) were replaced with SubModel (wPW) and

SubModel (wTL) to form the dFusionModel.

TABLE 3 Distribution of each variable in the primary dataset.

Encoding Feature Mean ± SD Minimum Maximum N

PW-1 Menses 0.160 ± 0.367 0 1 1813

PW-2 Fatigue (EWMA) 3.019 ± 0.409 2.004 4.570 1813

PW-3 Sleep (EWMA) 3.094 ± 0.448 2.049 4.500 1813

PW-4 MS (EWMA) 3.252 ± 0.453 1.381 4.380 1813

PW-5 Stress (EWMA) 3.044 ± 0.537 1.157 4.410 1813

PW-6 Desire (EWMA) 2.988 ± 0.173 1.610 3.980 1813

TL-1 TM (sRPE) 1.525 ± 0.468 0.267 2.690 1811

TL-2 sRPE (EWMA) 1083.5 ± 265.0 13.885 1685.7 1813

PR-1 Urine Protein 1.719 ± 1.011 1 4 232

PR-2 Urobilinogen 2.056 ± 2.343 1 10 232

PR-3 Urine pH 6.727 ± 0.624 5 8 232

PR-4 Urine Specific Gravity 2.446 ± 0.498 2 3 232

PR-5 Urine Blood 1.854 ± 1.305 1 5 232

PR-6 Urine Ketones 1.330 ± 0.640 1 3 232

PP-1 Squat 1RM 80.592 ± 17.535 60 110 59

PP-2 5.8 m × 6 Shuttle Run 9.747 ± 0.603 8.69 11 59

PP-3 15 m × 17 Shuttle Run 67.637 ± 1.946 63.78 74.16 59

PP-4 MVJ 284.732 ± 6.738 267 295 59

TABLE 4 Performance levels of submodels and fusion models in dataset B.

Model Dimension Weighted-average precision Weighted-average recall Weighted-average F2-score

SubModel (wPW) Perceived Well-being 0.8657 ± 0.0305 0.8118 ± 0.1141 0.8172 ± 0.1011

SubModel (wTL) Training Load 0.8776 ± 0.0572 0.7355 ± 0.0702 0.7589 ± 0.0646

SubModel (wPR) Physiological Response 0.8605 ± 0.0468 0.7315 ± 0.1458 0.7507 ± 0.1306

SubModel (wPP) Physical Performance 0.8601 ± 0.0325 0.8352 ± 0.0410 0.8399 ± 0.0378

wFusionModel 0.9835 ± 0.0521 0.9731 ± 0.0851 0.9750 ± 0.0792
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The dFusionModel’s Precision was 0.9881 ± 0.0423, the

Recall was 0.9912 ± 0.0312, and the F2-score was 0.9903 ±

0.0348 by 10-fold cross-validation. dFusionModel’s confusion

matrix is shown in Figure 5B. The performance evaluation

indices of the dFusionModel model were better than those of

the wFusionModel (p < 0.01). The decision curve analysis of

dFusionModel is shown in Figure 6.

Comparison between the fusion and
integration schemes

This study compared the proposed fusion model with

traditional data integration methods. The logistic regression

(LR), support vector machine (SVM), k-nearest neighbour

(KNN), Gaussian Naïve Bayes (NB), decision tree (DT), RF and

XGBoost algorithms are commonly used in research reports, were

selected as the base classifiers for the data integration scheme.

Furthermore, to compare these classifiers’ ability to identify

different levels of LENCI risks, we constructed a dummy

classifier (DC) which randomly assigns a class to an example

by respecting the distribution of the classes. The experimental

results are shown in Table 5. The performance evaluation indices

of the dFusionModel proposed in this study were better than those

of the prediction models constructed by the data integration

scheme. This showed that the fusion model proposed in this

study could obtain more accurate results in predicting the

severity of LENCI in adolescent female basketball players in

Fujian Province. Details of precision, recall and F2 scores for all

categories can be found in the Supplementary File.

Feature importance

Welch’s ANOVA was used to perform the variation analysis

of the relative weights of each submodel in the dFusionModel

model. The results showed (Figure 7) that the weights of

SubModel (dPW), SubModel (dTL), and SubModel (wP) in

different degrees of injury risk were significantly different (p <
0.01), while the weights of SubModel (wU) in different degrees of

injury risk were not significantly different (p > 0.05). SubModel

(dPW) and SubModel (wU) had higher weights, indicating that

perceived well-being and physical performance are important

factors affecting LENCI risk.

Attribution analysis was performed on the submodels in

dFusionModel using SHAP, evaluating the weight of each feature

in the submodels. Figure 8 shows the relative weights of each

feature in the submodel. Analysis of variance in the relative

FIGURE 5
Confusion matrix: (A) wFusionModel; (B) dFusionModel.

FIGURE 6
Decision curve analysis.
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weights of indices in each classification using Welch’s ANOVA

revealed that, compared to the situation in which young female

basketball players in Fujian Province did not present a risk of

LENCI when presenting a risk of minimal LENCI, the stress

(EWMA) (PW-5) index in SubModel (dPW), the sRPE (EWMA)

(TL-2) index in SubModel (dTL), the urine protein (PR-1) and

urobilinogen (PR-2) indices in SubModel (wU), and the squat

1RM (PP-1) index in SubModel (wP) had significantly higher

weights (p < 0.01). In contrast, the sleep (EWMA) (PW-3) and

desire (EWMA) (PW-5) indices in SubModel (dPW), the TM

(sRPE) (TL-1) index in SubModel (dTL), the urine ketones (PR-6)

index in SubModel (wU), and theMVJ (PP-4) index in SubModel

(wP) had significantly lower weights (p < 0.01).

When there was a risk of mild LENCI, the menses (PW-1)

and sleep (EWMA) (PW-3) indices in SubModel (dPW), the

TABLE 5 Performance evaluation results of the fusion and integration schemes in dataset A.

Model Weighted-average Precision Weighted-average Recall Weighted-average F2-score

DC 0.8670 ± 0.0143 0.3506 ± 0.0116 0.3857 ± 0.0089

LR 0.8906 ± 0.0223 0.5638 ± 0.1150 0.5916 ± 0.1048

SVM 0.9206 ± 0.0269 0.9045 ± 0.0351 0.9050 ± 0.0330

KNN 0.8961 ± 0.0175 0.8023 ± 0.0365 0.8140 ± 0.0322

NB 0.9007 ± 0.0260 0.6223 ± 0.1208 0.6422 ± 0.1163

DT 0.9026 ± 0.0260 0.8244 ± 0.1105 0.8324 ± 0.1003

RF 0.9169 ± 0.0355 0.9183 ± 0.0898 0.9152 ± 0.0833

XGBoost 0.9141 ± 0.0322 0.8813 ± 0.0600 0.8835 ± 0.0517

dFusionModel 0.9881 ± 0.0423 0.9912 ± 0.0312 0.9903 ± 0.0348

FIGURE 7
The feature importance of the dFusionModel.

FIGURE 8
The feature importance of each submodel.
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urobilinogen (PR-2) and urine blood (PR-5) indices in SubModel

(wU), and the squat 1RM (PP-1) and 5.8 m × 6 shuttle run (PP-2)

indices in SubModel (wP) had significantly higher weights

(p < 0.01). In contrast, the weights of the fatigue (EWMA)

(PW-2) and MS (EWMA) (PW-4) indices in SubModel

(dPW), the urine protein (PR-1), pH (PR-3), SG (PR-4) and

urine ketones (PR-6) indices in SubModel (wU), and the 15 m ×

17 shuttle run (PP-3) andMVJ (PP-4) indices in SubModel (wP)

were significantly decreased (p < 0.01).

Network visualization of injury severities

To facilitate the observation of differences in the patterns of

different levels of LENCI risk, we calculated the statistics of

Welch’s t-test for each variable in the minimal and mild LENCI

risk with the non-injured case, using the nodes of the non-injured

network as standard nodes, and calculated the node size of each

variable in the network by the Welch’s t-test statistics. The

network was visualised to construct the network for the three

cases of no impairment, minimal LENCI risk and mild LENCI

(Figure 9). Larger nodes in Figures 9B,C indicate a positive

Welch’s t-test statistic for that node compared to no LENCI risk.

We found differences in the overall means of the different

variables and in the strength of the associations between the

variables in each case. Among them, the overall means of menses

(PW-1), fatigue (EWMA) (PW-2), sleep (EWMA) (PW-3), desire

(EWMA) (PW-6), squat 1RM (PP-1),MVJ (PP -4), TM (sRPE) (TL-

1), and sRPE (EWMA) (TL-2) decreased significantly in minimal

LENCI risk (p < 0.05). The decrease in the MS (EWMA) (PW-4)

index was marginally significant (p < 0.1). The overall mean values

of the 15 m × 17 shuttle run (PP-3) and urobilinogen (PR-2)

increased significantly (p < 0.05). While the overall mean values

of the fatigue (EWMA) (PW-2), sleep (EWMA) (PW-3), desire

(EWMA) (PW-6), and SG (PR-4) indices showed significant

decreases (p < 0.05) in the risk of mild LENCI, the overall mean

values of 15 m × 17 shuttle run (PP-3),MVJ (PP-4), and pH (PR-3)

indices showed significant increases (p < 0.05). The changes in the

remaining indices were not significant (p > 0.1).

Discussion

This study investigates the modelling method of sports injury

risk prediction models based on data from multiple sources in

training practice. To a certain extent, this research work can fill

the gaps in existing studies and provide the necessary reference

for preventing non-contact injuries to the lower extremity of

youth female basketball players in Fujian Province. There are two

main findings: firstly, the study proposes a LENCI risk prediction

model based on multimodal fusion and machine learning

algorithms, which can effectively predict LENCI risk for

different injury severities levels. Secondly, by performing

feature attribution analysis and network visualisation analysis

on the model, differences in LENCI risk patterns with different

severity were identified.

FIGURE 9
Network analysis of the relationship between SHAP values of
independent variables: (A) non injured; (B) minimal LENCI risk
versus non injured; (C) mild LENCI risk versus non injured.
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Advantages of multimodal modelling
strategies

In recent years, the application of machine learning

algorithms in sports injury risk prediction has become a

hot topic of interest in sports science research. Some

scholars have succeeded in exploring the effectiveness of

machine learning algorithms in sports injury risk

prediction by using various machine learning algorithms to

model the prediction of sports injury risk (Colby et al., 2017;

López-valenciano et al., 2017; Carey et al., 2018; Rossi et al.,

2018; Ruddy et al., 2018). However, we noted that most of the

existing research reports used data types that were too

homogeneous in terms of data dimensions or single time

points. For example, longitudinal observational study

designs were used to obtain long-term GPS data, sRPE and

other players’ data and model injury risk prediction (Carey

et al., 2018; Rossi et al., 2018; Bryan et al., 2020). Alternatively,

a cross-sectional study design was used to obtain pregame

athletic quality assessment data and model injury prediction

during the season (López-valenciano et al., 2017; Ayala et al.,

2019; Jauhiainen et al., 2020; Ruiz-Pérez et al., 2021). The

former captured changes in athletes’ indices prior to the onset

of injury and could effectively provide a real-time assessment

of injury risk daily or even per session. However, as sports

injuries result from multifactorial interactions, simply

focusing on changes in a single dimension does not capture

a complete pattern of injury risk. The latter allowed for

multidimensional data at a single point, but its drawbacks

were also evident. This means that injury risk prediction

models constructed from cross-sectional data only provided

a staged assessment of injury risk and could not assess

potential injury risk in real-time. In addition, the

associations obtained through predictive models

constructed using cross-sectional data could be logically

flawed, i.e., the associations in the population did not

reflect the associations in the individual. In view of these

findings, modelling strategies for multi-source data are

necessary, given that data in sports training practice are

multi-source.

We constructed a LENCI risk prediction model based on

previous studies using a decision-level fusion strategy and

machine learning algorithms. This model was able to predict

non-injured with an approximate 99.3% precision and 99.8%

recall, minimal LENCI risk with an approximate 93.2%

precision and 91.7% recall, and mild LENCI risk with an

approximate 90.0% precision and 90.0% recall. By performing

a decision curve analysis of the model, we observed that the

fusion model proposed in this study leads to a higher net

benefit rate for people with potential LENCI risk, which is a

good indication of the practical application of the model in

training practice. By comparing this modelling scheme with a

traditional data integration scheme, we found that the mean

values of Precision and Recall for the prediction models

constructed by this modelling scheme improved by 8.2 and

20.3%, respectively, with the standard deviation of precision

increasing by approximately 1.6% and the standard deviation

of recall decreasing by approximately 5.0%. This showed that

compared with the data integration scheme, the prediction

model constructed by the multimodal fusion modelling

strategy could effectively reduce the missed diagnosis rate

and the misdiagnosis rate. The effectiveness of the modelling

scheme in predicting the risk of LENCI at different injury

severity levels was confirmed.

It should be noted that other multimodal fusion strategies

still exist, such as data-level fusion and intermediate-level fusion

(Atrey et al., 2010). Since the decision-level fusion strategy used

in this study is to fuse the prediction results of different

submodels, it can make the errors of different submodels

often disconnected from and unaffected by each other without

causing further accumulation of errors (Ramachandram and

Taylor, 2017; Murphy, 2019). This is important for decision-

making in training practice.

Risk patterns of the lower extremity non-
contact injury

The ultimate goal of sports injury risk assessment studies is

not just to predict the occurrence of sports injuries but also to

reduce the risk of injury by identifying potential injury risks and

adjusting interventionmeasures promptly (Ruddy et al., 2019; De

Leeuw et al., 2021). However, what conditions are athletes prone

to injury? How can adjustment plans be created for specific

situations? These are the two major problems facing sports injury

prevention practice. This study identified differences in LENCI

risk patterns for different injury severities levels by performing a

feature attribution analysis and network visualisation of the

model. Specifically, the weights of SubModel (dPW) and

SubModel (wPP) in the dFusionModel increased significantly

when athletes were at risk of Minimal LENCI compared to non-

injured, while the weight of SubModel (dTL) in the FusionModel

decreased significantly. This result may indicate that perceived

wellness status and physical performance are potentially essential

contributors to the risk of Minimal LENCI.

In contrast, when athletes are at risk of Mild LENCI, the

weights of SubModel (dPW) and SubModel (wPP) in the

dFusionModel decrease significantly, while the weight of

SubModel (dTL) increases significantly, implying that training

load may be an essential cause of Mild LENCI risk. This

phenomenon is consistent with the view of (Bittencourt et al.,

2016), who stated that sports injuries are the result of a

combination of factors interacting in a linear or non-linear

manner, leading to the same kind of injury problem, which

may present different injury risk patterns depending on the

specific sport, injury types, and injury severity. The view is
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consistent with that of physics. According to physics, this is

probably since all organisms are open systems (as they exchange

matter and energy with their environment without losing their

identity). Open systems interact fully with their environment and

constantly evolve, producing similar injury outcomes from

different relationships between risk factors (Philippe and

Mansi, 1998; Rickles et al., 2007; Bittencourt et al., 2016).

However, previous studies have reported more focus on a

specific injury factor’s relationship or direct effect on injury

outcomes without focusing on specific injury risk patterns

changes. Further research on injury risk patterns is still needed.

After analysing the differences in the values of each index

in the risk of LENCI with different injury severities, we found

that there was a tendency for the athletes’ perceived well-being

indices and physical performance tests to become worse when

there was a risk of minimal LENCI compared to when there

was no risk of LENCI. We speculate that this might be due to a

negative impact on the athletes’ sports performance and

physiological status as a result of their prolonged

overtraining (Hooper et al., 1995; Halson et al., 2002;

Nederhof et al., 2008; Slivka et al., 2010; Laux et al., 2015;

Lathlean et al., 2020). When there was a risk of mild LENCI,

the athletes’ perceived well-being indices showed a trend of

deterioration, consistent with previous findings. The Squat

1RM and 5.8 m × 6 Shuttle Run scores in the physical

performance test remained relatively unchanged, the 15 m ×

17 Shuttle Run scores deteriorated, and the MVJ scores

improved. This phenomenon is inconsistent with the

changes that occurred when there was a risk of minimal

LENCI. The reason for this may be the mismatch between

fatigue accumulation due to training load and recovery

capacity, resulting in a decrease in the athlete’s resistance to

fatigue, which causes an increase in short-term neuromuscular

recruitment capacity with an increase in the local mechanical

load on the joint (Rozzi et al., 1999; Gandevia, 2001; Meeusen

et al., 2013; Azzam et al., 2015; McGuigan, 2016). Nevertheless,

this study did not collect kinematic and kinetic parameters, so

further research is needed.

In addition, we also analysed the changes in the weights of

each index in each submodel. We found that urine protein and

squat 1RM in the submodel increased, and the relative weights of

the variables urine ketones and MVJ decreased when either

minimal or mild LENCI risk occurred. The relative weight

changes of the variables sRPE (EWMA), sleep (EWMA), and

urine protein differed in the risk of LENCI for the two different

injury severity levels. These results suggest that sRPE (EWMA),

sleep (EWMA), and urine protein may be important indices to

differentiate the risk of minimal LENCI from mild LENCI.

However, due to the limited number of physiological indices

involved and the current lack of reported studies on injury risk

patterns for LENCI at different injury severity levels, this study is

limited to describing the analysis results, and the information

behind these results needs to be further research.

Perspectives and practical applications

The multimodal LENCI risk prediction model proposed in

this study can determine each athlete’s LENCI risk with a high

precision and recall. This will help coaches periodic training

programs and injury risk management for athletes. In addition,

the model proposed in this study has good interpretability. We

can observe differences in injury risk patterns between different

injury severity levels through the model’s feature attribution

analysis and network visualisation. This is essential for

analysing the causal mechanisms of sports injuries, developing

good training programs, and adopting targeted interventions to

reduce the rate of sports injuries.

Limitations

It is worth noting that there are still several limitations to this

study. First, the amount of data used in the study was small. This

is due to the limited number of high-level competitive athletes

and the complicated obtaining of data. Second, the number of

physiological response indices involved in this study was small

due to the limitations of various factors, such as time, conditions,

funding, and coach cooperation. Future work should expand on

this by incorporating high-throughput testing techniques such as

metabolomics. Third, the model was not validated for external

validity. In this study, we conducted model construction by

reviewing historical data and a stratified cross-validation

approach. While this approach is effective in assessing the

repeatability of the model development process and

preventing overfitting of the model, validation of the model

using external data is still lacking. Further research will be

conducted in the future using the realistic scenario validation

method suggested by (Rossi et al., 2022a). Lastly, this study did

not focus on specific injury types, such as patellar tendinopathy.

As the occurrence of sports injuries is unpredictable and injury

data are complicated to obtain, we selected only the severity of

LENCI as a predictor variable. Further research will be attempted

in the future to incorporate specific disease types.

Conclusion

This study proposes a risk prediction model for lower extremity

non-contact injury based onmultimodal fusion andmachine learning

algorithms. The model can effectively predicted the non-contact

injury risk to lower extremities with different injury severities

among adolescent female basketball players in Fujian Province.

The method’s validity was confirmed through comparative

analysis with the submodel and the traditional data integration

scheme. However, the dataset used in this study involved a small

sample size and few evaluation indices for each modality. We will

expand the data dimensions in future research and conduct further
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research on specific injury problems. Although we believe that the

model’s applicability still needs to be tested in training practice, this

model offers valuable insights into future work on injury prevention

due to its predictive performance and interpretability.
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