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This paper deals with a wavelet-based algorithm for automatic detection of

isoelectric coordinates of individual QRS loops of VCG record. Fiducial time

instants of QRS peak, QRS onset, QRS end, and isoelectric PQ interval are

evaluated on three VCG leads (X, Y , Z) together with global QRS boundaries of

a record to spatiotemporal QRS loops alignment. The algorithm was developed

and optimized on 161 VCG records of PTB diagnostic database of healthy

control subjects (HC), patients with myocardial infarction (MI) and patients with

bundle branch block (BBB) and validated on CSE multilead measurement

database of 124 records of the same diagnostic groups. The QRS peak was

evaluated correctly for all of 1,467 beats. QRS onset, QRS end were detected

with standard deviation of 5,5 ms and 7,8 ms respectively from the referee

annotation. The isoelectric 20ms length PQ interval window was detected

correctly between the P end and QRS onset for all the cases. The proposed

algorithm complies the (2σCSE) limits for the QRS onset and QRS end detection

and provides comparable or better results to other well-known algorithms. The

algorithm evaluates well a wide QRS based on automated wavelet scale

switching. The designed multi-lead approach QRS loop detector

accomplishes diagnostic VCG processing, aligned QRS loops imaging and it

is suitable for beat-to-beat variability assessment and further automatic VCG

classification.
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Introduction

Analysis of the electrocardiogram (ECG) which is an image of the electrical cardiac

activity is widely usedmethod for diagnostics of many heart diseases. Automatic detection

of fiducial points of cardiac cycle: QRS peak, P, QRS, T waves onsets and ends is essential

for ECG diagnostics, signal processing and further automatic heart diseases classification.

Isoelectric line detection allows ECG beats alignment in order to averaging and ectopic

OPEN ACCESS

EDITED BY

Rajesh Kumar Tripathy,
Birla Institute of Technology and
Science, India

REVIEWED BY

Sibghatullah Khan,
Sreenidhi Institute of Science and
Technology, India
Rishi Raj Sharma,
Defence Institute of Advanced
Technology (DIAT), India

*CORRESPONDENCE

Jan Kijonka,
jan.kijonka@vsb.cz

SPECIALTY SECTION

This article was submitted to
Computational Physiology and
Medicine,
a section of the journal
Frontiers in Physiology

RECEIVED 12 May 2022
ACCEPTED 04 October 2022
PUBLISHED 21 October 2022

CITATION

Kijonka J, Vavra P, Zonca P and
Penhaker M (2022), A wavelet-based
VCG QRS loop boundaries and
isoelectric coordinates detector.
Front. Physiol. 13:941827.
doi: 10.3389/fphys.2022.941827

COPYRIGHT

© 2022 Kijonka, Vavra, Zonca and
Penhaker. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 21 October 2022
DOI 10.3389/fphys.2022.941827

https://www.frontiersin.org/articles/10.3389/fphys.2022.941827/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.941827/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.941827/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.941827&domain=pdf&date_stamp=2022-10-21
mailto:jan.kijonka@vsb.cz
https://doi.org/10.3389/fphys.2022.941827
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.941827


ECG beats evaluation (Gatzoulis et al., 2018) and ECG record

intra-individual variability assessment (Matveev et al., 2007;

Penhaker et al., 2014).

Besides the common 12-leads ECG imaging, the

vectorcardiography (VCG) with its three (X, Y, Z) leads

provides us three-dimensional imaging fully sufficient for

description of cardioelectric space (Pavlov and Abel, 1975;

Burch, 1985). Compared to common 12-leads ECG, the VCG

is more advantageous method for computer processing due to

fewer signals containing no redundant information and more

accurate with corrected orthogonal leads, although clinical use is

not common yet (Malmivuo and Plonsey, 1995). In both cases,

the diagnostic information is evaluated from the characteristic P,

QRS, T waves of common 12 ECG or 3 VCG leads.

We canfinddifferent approaches for automaticQRSdetection and

P, QRS, T waves segmentation based on the first and second derivative

(e.g., Pan-Tompkins algorithm (Pan and Tompkins, 1985; Arzeno

et al., 2006)), low-pass differentiation (LPD) (Chazal and Celler, 1996;

Laguna et al., 1994), adaptivefiltering (Soria-Olivas et al., 1998), wavelet

transform (WT) (Martínez et al., 2004; Mahmoodabadi et al., 2005;

Sahambi et al., 1997), morphology and gradient (TDMG)

(Mazomenos, 2012), dynamic time warping (DTW) (Vullings et al.,

1998a) or artificial neural networks (Dokur et al., 1997). An

appropriate algorithm selection depends on a few factors like real-

time (Pan and Tompkins, 1985;Mazomenos, 2012; Guven et al., 2014)

or offline data processing (Martínez et al., 2004; Mahmoodabadi et al.,

2005; Vullings et al., 1998a; Dokur et al., 1997), requirements for

robustness of the detector in evaluation of records of purely healthy or

also pathological cases, ability to recognize noisy signals with motion

and other artifacts, processing of a standard quality or a diagnostic high

resolution and high sampling rates ECG records, including single or

multi-leads approaches.

Featured work follows on from the previous study of intra-individual

variability of VCG record evaluation (Penhaker et al., 2014), where VCG

loops were spatially aligned based on manually annotated isoelectric

coordinates by cardiologist, time synchronized by QRS peaks and

compared on specified QRS length (global QRS boundaries) for the

intra-individual variability assessment. The proposed algorithm

automates the process of the isoelectric coordinates and global QRS

boundaries detection and follows the QRS peak detector based on

wavelet transform and biorthogonal wavelet presented in previous work

(Penhaker et al., 2014), as an alternative to Daubechies wavelet used in

studies (Martínez et al., 2004; Mahmoodabadi et al., 2005; Sahambi et al.,

1997). The properties of the biorthogonalwaveletswere found ideally suited

for ECG parameters estimation in (Sivannarayana and Reddy, 1999) since

they excite various morphologies of ECG’s better at different scales. The

wavelet scales for the proposed algorithm were experimentally established

forQRScomplexdetection (QRSonset andQRS end) includingwide-QRS

conditions assessment detected on a different scale unlike previous studies

(Martínez et al., 2004; Mahmoodabadi et al., 2005; Sahambi et al., 1997)

using the same scales for various QRSmorphologies. The QRS peak, QRS

onset and QRS end detection is performed based on standardly used

techniques of searching for maxima, minima, zero crossings and energy of

wavelet coefficients in combination of time-domain signal analysis forQRS

onset and QRS end adjusting by slope performed on a temporal search

window. A time-domain signal analysis technique was already used in

TDGMalgorithm(Mazomenos, 2012) including signal preprocessing,QRS

complex feature extraction employing Pan-Tompkins detection method

(Pan and Tompkins, 1985) and temporal search windows followed by

P-wave and T-wave feature extraction. While WT is quite robust in the

presence of noise and baseline wander situations (Sivannarayana and

Reddy, 1999; Dinh et al., 2001), the TDGM performed better in

intricate ECG morphologies (Mazomenos, 2012). To benefit from both

techniques, the proposed algorithm uses signal preprocessing before

applying WT followed by time-domain-analysis. The signal

preprocessing is performed by digital finite impulse response (FIR) high

passfilterwith 1Hz cuttoff frequency in passband (0 dB signal attenuation)

and infinite impulse response (IIR) 50Hz or 60Hz notch filter used for

powerline distorted signals, meeting requirements for diagnostic ECG

frequency bands (Klingfield et al., 2007; Medteq, 2022). The isoelectric

line is searched on a temporal window localized before QRS onset as a

flattest interval of a PQ segment, where the PQ segment appears to be the

most acceptable location of zero cardiac activity, which is suitable for most

pathological cases (Guven et al., 2014). In case of VCG leads, the isoelectric

lines of the (X, Y, Z) leads defines coordinates with zero electrical activity

situated in origin of theCartesian coordinate system.With this assumption,

the spatiotemporal VCGQRS loops alignment is performed by QRS loop

isoelectric coordinates offsets removal and ECG beats synchronized with

QRSpeaksdetected inoneof theX,Y, orZ leads (Matveevet al., 2007).To

compare individual QRS loops of a record, time-intervals to the left and to

the right of the synchronization QRS peak are evaluated. In proposed

algorithm, QRS global boundaries common for all QRS loops of a record

are computedbasedonQRSonsets andQRSendsasnumberof samples to

the left of the QRS peak (Lbound) and to the right of the QRS

peak (Rbound).

The algorithm was developed and optimized on 161 records

of 58 healthy control subjects (HC), 69 patients with myocardial

infarction (MI), and 34 patients with bundle branch block (BBB)

of the PTB (Physikalisch-Technische Bundesanstalt) diagnostic

database of 12 standard ECG leads and 3 Frank VCG leads. All

recordings are 2 min long, sampled at 1,000 Hz (Matveev et al.,

2007; Bousseljot et al., 1995). The diagnostic ECG data are

processed offline based on 3 VCG leads increasing robustness

of the detector. Validation of the QRS detector and QRS onset

and QRS end time instants detection was performed on CSE

(Common Standards for Quantitative Electrocardiography)

multilead database dataset 3 with 12 standard leads and

3 Frank leads of 125 biological ECGs. All recordings are 10 s

long sampled at 500 Hz (Goldberger et al., 2000).

Used methods

One of possible signal analysis is its comparison with a set

of the test functions, where Q � {φq � eiωt,ω ∈ R} is set of test
functions for well-known Fourier transform (FT), that contain
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all the dilatations and reductions of the periodic function eit by

the factor ω (Willems et al., 1985). Another option for the

time-frequency analysis is application of the WT similar to the

FT. While the FT decomposes signal into a series of sine waves

of different frequencies, WT decomposes signal into the

“wavelets”, dilated and translated versions of the so-called

Mother wavelet ψ(t). Wavelet is nonzero only at the finite time

interval, or the values outside the interval are negligibly small.

Consequently, whatever value of the spectrum is used, based

on the wavelet, it is influenced only by the corresponding time

interval of the analysed signal. Wavelet basis functions cover

the entire time span of the analysed signal in parts. Therefore,

the full information is preserved. Compared to the smooth

sinusoidal curve of an infinite length, wavelet is compact and

irregular shaped. With these features, wavelet is an ideal tool

for unsteady signals with discontinuities and sharp changes

analyses and possibilities of localization in time (Aldroubi and

Unser, 1996).

Continuous wavelet transform

If the base fiction Q � {ψ((t − b)/a), (a, b) ∈ (0,∞) × R} is
used, we obtain the continuous wavelet transform (Wψf)(a, b)
of the signal f(t) ∈ L2(R) (Aldroubi and Unser, 1996):

(Wψf)(a, b) � ∫∞

−∞
|a|−1/2f(t)ψ(t − b

a
)dt (1)

where a is so-called dilatation scaling parameter, b is translation

parameter, �ψ is complex conjugate of ψ and where ψ ∈ L2(R) is
mother wavelet—oscillation function.

Continuous wavelet transform (CWT) uses a sampled

data, but the process of translation is a smooth operation

across the length of the sampled data. The scaling can be

defined from a minimum (original signal scale) to a maximum

selected by the user, making a finer resolution possible. The

disadvantage compared to discrete wavelet transform (DWT)

is increasing of the computational time and higher memory

requirement for wavelet coefficients calculation (Aldroubi and

Unser, 1996).

Wavelet type used

Wavelets can be classified as orthogonal, non-orthogonal

and biorthogonal. Only biorthogonal wavelets provide the

time symmetry and prevent phase shifts of the transformed

signal (Altmann, 1996). For the ECG signal analysis, the

shape of the signal in the time-domain is important, while

a signal reconstruction (inverse-transform) is not required.

From this standpoint, the biorthogonal wavelets are

advantageous for the ECG signal analysis. The shape of the

biorthogonal wavelet 2.2 used in this work resembles the

shape of the ECG waveform (see Figure 1) which excite

various morphologies of ECG waveforms better at different

scales (Sivannarayana and Reddy, 1999). Application of

biorthogonal wavelets for the ECG parameters (P, QRS,

and T) estimation is known from the literature

(Sivannarayana and Reddy, 1999; Louis et al., 1997) and it

was already used for QRS peak detection in the previous work

(Penhaker et al., 2014). The central frequency of the

biorthogonal wavelet 2.2: fcentral � 1, 0008 Hz has a relation

to scale a from the Eq. 1 and pseudofrequency at the scale a

according to the relation (3) and Table 1, further explained in

the next chapter 2.3.

Scalogram and coefficients of the
continuous wavelet transform

In Figure 2 there is the scalogram of continuous wavelet

transform for biorthogonal wavelet 2.2 which is used in this

work. The input signal is one VCG lead of healthy control patient

(HC), a patient with inferior myocardial infarction (MI) and a

patient with the left bundle branch block (LBBB).

The scalogram represents the percentage of energy of wavelet

coefficients at the given scale a and location b of the wave ψa,b by

the relation:

Ep(a, b) �
∣∣∣∣∣(Wψf)(a, b)∣∣∣∣∣2

∑M
i�1∑N

j�1
∣∣∣∣∣(Wψf)(ai, bj)∣∣∣∣∣2 · 100 (2)

whereM is number of the scales,N is number of the translations

corresponding to the number of samples of the input signal.

The scaling parameter is selected in the range of

a � {10, . . . , 120}. For the related scales the corresponding

pseudofrequencies are calculated (Kumar et al., 2018):

fa � fcentral

a · Δ (3)

where fa (Hz) is pseudofrequency at the scale a, fcentral (Hz) is
the central frequency of the wavelet, a is scale and Δ(s) is

sampling period.

TABLE 1 Pseudofrequencies for the scales a � {10, 30, 50, 70, 120},
central frequency fcentral � 1,0008Hz and sampling period Δ �
0,001 s.

a(–) fa(Hz)

10 100

30 33.4

50 20

70 14.3

120 8.3
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FIGURE 2
Scalogram of the continuous wavelet transform for biorthogonal wavelet 2.2, scale parameter a � {10, . . . , 120} and corresponding
pseudofrequencies fa � {100, . . . ,8}Hz. The input signal is one lead VCG of one cardiac cycle of the named records of the diagnostic PTB database:
from the left the “s0130lre” of a HC patient, the “s0235lre” of a MI patient, “the s0448_re” of a LBBB patient. The single Q, R, S waves are marked by
dashed lines in the input signal.

FIGURE 1
Biorthogonal wavelet 2.2 with the central frequency fcentral � 1,0008Hz used in the presented QRS detector algorithm.
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Among the scale and frequency there is only an

approximate relationship since the wavelet contains other

frequency components in addition to the calculated central

frequency fcentral. The selected range of the scales was specified

on the basis of the power spectrum of the QRS. To a frequency

about 10 Hz the P and T waves spectra and the motion

artefacts can be shown. The representation of the

frequencies above 40 Hz is relatively low and the high-

frequency interference is shown in this band. For the

central frequency fcentral � 1, 0008 Hz of the biorthogonal

wavelet used (Figure 1) and the sampling period Δ �
0, 001 s there are computed the pseudofrequencies at the

desired scales a � {10, 30, 50, 70, 120} shown in the Table 1.

The scalogram (see Figure 2) shows the highest percentage

of energy of coefficients concentrated at the R wave and Q, S

wave times for the record of healthy patient in the entire range

of scales a � {10, . . . , 120}. The record of patient with inferior

MI has a small R wave amplitude considering the P, T waves

and has a high-frequency noise. For this record, there appear

brighter areas in time intervals of the T and P waves for the

scale a> 60 in the scalogram. The last record of patient with

LBBB with a wide QRS complex and therefore with the higher

proportion of lower frequencies has a relatively small

percentage of energy for the scale < 40 .

The coefficients of wavelet transform for discrete scale

values a � {10, 30, 50, 70, 120} are plotted in Figure 3. At the

scale a � 10, there are relatively large frequency noise and low

values of coefficients. At the scale a � 30 and a � 50 there are

good localisations of Q, R, S waves with a small

amplitude for the P and T waves. The higher scales are

suitable for Q, R, S localisation for the records with a

wide QRS.

FIGURE 3
Coefficients of the wavelet transform for the scale parameter a � {10, 30, 50, 70, 120} and the mother biorthogonal 2.2 wavelet. The input
signal is one VCG lead of one cardiac cycle of the named records of the diagnostic PTB database: from the left the “s0130lre” of a HC patient, the
“s0235lre” of a MI patient, “the s0448_re” of a LBBB patient. The single Q, R, S waves are marked by dashed lines in the input and transformed signals.
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Algorithm description

A flowchart of the algorithm is shown in Figure 4. Individual

parts of the algorithm are described in figures from Figures 5–10.

The input signals of the algorithm are VCG leads (X, Y, Z) with

indexes i ∈ I � {1, 2, 3}, samples of the signal record are marked

as b ∈ B � {1, . . . , N}, where N is the total number of samples.

Functional values of the input signals are marked as fi(b) in
units GAIN ·mV, where GAIN � 2000 is gain of the signal. The

signals are sampled with the sampling frequency fs � 1000Hz.

The outputs of algorithm are the time instants of the QRS peak,

QRS onset and QRS end, and PQ interval onset and offset for

each QRS complex and each signal of the VCG record. These

time instants are stored in the matrixes R, Q, S, PQ, where the

indexes i, k of each matrix element corresponds to the signal

index and the sequential number of the heartbeat detected.

Another output is the QRS loop global boundaries marked as

Lbound and Rbound. The boundaries indicate the number of

samples on left and right to the synchronizing QRS peaks

detected, evaluated globally for a record. As the synchronizing

wave the QRS peak time instant in the lead X is selected. An

example of QRS boundaries and isoelectric lines detection is in

Figure 11.

Signal preprocessing

The VCG leads (X, Y, Z) signal preprocessing is

performed to remove noise added from powerline

interference and baseline wander caused by respiratory

and motion artefacts. The baseline wander removal is

accomplished by digital FIR high pass filter with 1 Hz

cuttoff frequency in passband (−0 dB) and 0,5 Hz cutoff

frequency in stopband (−61 dB). The properties of the FIR

filter type used allows to preserve useful ECG frequency

bands with no additional signal distortion, meeting

requirements of American Heart Association (AHA)

(Klingfield et al., 2007) for diagnostic ECG. The powerline

interference is filtered by notch 50 Hz or 60 Hz filter

depending on the presence of the interfering signals. Used

0.17 Hz narrowband notch with an attenuation greater than

60 dB affects the original signal only in the narrow frequency

band around the 50 Hz or 60 Hz interference with a

negligible effect on the useful ECG frequency band

(Klingfield et al., 2007), (Medteq, 2022).

QRS peak detection

QRS detection is based on waletet transform of input signals

on scale a � 30 (see Figure 3). At first, the threshold THi
O of

wavelet transform function Wi
30(b) for each signal i ∈ I is

defined, where parameter RATIOO � 0, 7 is the oscillation

ratio of the absolute maximum value of κW
i
30(b) function.

Then, the sets Pi,k are formed, where each set represents the

estimated time instants of the heartbeat. The criterion for the Pi,k

sets definition is the parameter TTG � 200 samples, which

indicates the maximum number of samples between the two

subsequent heartbeats. From each set of the maxb i,k ∈ Pi,k points

with the function values lower then RATIOA � 0, 7 are excluded.

Then the comparison of the QRS detected (represented by Pi,k

sets) between signals is done. If the QRS is detected in a single

lead then the QRS (corresponding Pi,k � ∅) is excluded. If the

QRS is detected in two of three leads, the new point of QRS

detection is added to the corresponding Pi,k set. All the QRS

detected at the edge of the record within the limits TTE �

FIGURE 4
Algorithm flowchart.

Frontiers in Physiology frontiersin.org06

Kijonka et al. 10.3389/fphys.2022.941827

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.941827


200 samples of the record are excluded. Then the matrix P with

the elements peakbi,k is created, where peakbi,k is one element from

each Pi,k set defined as the maximum function value of the

|Wi
30(maxb i,k)|. In the neighbourhood of the point peakbi,k, where

the neighbourhood of the point is defined as ε � 10 samples, the

maximum amplitude of the function |fi(b)| is found. This point
indicates the time instant of the QRS occurrence and it is added

to the Rmatrix. Simplified flowchart of the QRS peak detection is

in Figure 5.

QRS onset and QRS end detection

Detection of the QRS onset and QRS end is based on the zero

crossing of the function Wi
30(b). ∀(i, k) zero points in the

neighbourhood of peakbi,k are searched for, where peakbi,k are

elements of the P matrix. The peakbi,k neighbourhood is defined

by the parameter TTLS � 150 samples. In the left neighbourhood

of the peakbi,k the zero points Lz
i,k
s are searched for, where

s ∈ {1, . . . , α}, α is the number of zero points in the left

neighbourhood of the peakbi,k. In the right neighbourhood of

the peakbi,k zero points Rz
i,k
t are searched for, where t ∈ {1, . . . , β},

β is the number of zero points in the right neighbourhood of the

peakbi,k. ∀(i, k), there is defined the oscillation threshold THi,k
LS of

the function Wi
30(b) by the parameter RATIOLS � 0, 3.

For the QRS onset detection, there is the partial function

logici,ks defined, where for each zero point Lz
i,k
s , where

s ∈ {1, . . . , α − 1} is the function value 1 assigned if the

condition Wi
30(Lzi,ks ≤ b≤ Lz

i,k
s+1)>THi,k

LS is met or the function

value 0 is assigned if the condition is not met.

An example of zero points in the peakbi,k neighbourhood

finding and the logici,ks definition is shown in the Figure 6. The

elements of {logici,ks }α−11 is the sequence of values 1 and 0, where 1

corresponds to the suitable interval of the signal Wi
30(b) and 0

correspond to the non suitable interval, where Lz
i,k
s ≤ b≤ Lz

i,k
s+1,

s ∈ {1, . . . , α − 1}. There are the rules for the QRS onset Lz
i,k
on

detection established:

• If the length of one last non suitable interval is lower then

TTSN � 10 samples, the interval is assigned as the suitable one.

• As the zero point Lz
i,k
on of the QRS onset, the zero-point

located after couple of the unsuitable intervals is

assigned or the zero-point located after an unsuitable

interval with the length higher then TT LN � 25 samples

is assigned.

The QRS onset is than accurately traced in the interval

between the zero points Lz
i,k
on and Lz

i,k
on+1. The criterion for the

QRS onset assignment is the signal shape of the functionWi
30(b)

in the right neighbourhood of the Lz
i,k
on. The founded QRS onset is

put into thematrixQ. The flowchart of the QRS onset detection is

in Figure 7.

The QRS end is detected by analogy in the right neighbourhood

of the peakbi,k. The founded QRS end is put in the matrix S.

Wide QRS onset and QRS end detection

Adjusting the QRS onset or QRS end is performed in the

case of meet the condition of exceeding the percentage of energy

FIGURE 5
QRS detection flowchart.
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of the wavelet coefficients 2) in the QRS onset or QRS end

neighbourhood. It is compared the energy percentage at scales

a � 70 and a � 120 in the time window width, given by the

parameter 1TTLS � 200 samples and the percentage of energy at

these scales in the 1ε � 16 samples neighbourhood for the QRS

onset, and 2TTLS � 200 samples and 2ε � 24 samples

FIGURE 6
Founded zero points Lz

i,k
s to the left of the peakbi,k

and Rz
i,k
t to the right of the peakbi,k

in the TTLS bounds. The zero points met the condition
corresponding to the green denoted intervals and the elements {Llogici,ks }α−11 � {1,0,0,0,0, 1} and {Rlogici,kt }β−11 � {1,0,0,0,0,0,0}.

FIGURE 7
QRS onset detection flowchart.
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neighbourhood for the QRS end. The adjusting of the QRS onset

and QRS end is based on the zero crossing of the function

Wi
70(b), when the similar process as for the QRS onset and QRS

end detection is kept. ∀(i, k) there are the zero points 70
L zi,ks and

70
R zi,kt found in the neighbourhood 70

peakbi,k, given by the

parameter 3TTLS � 200 samples. The 70
peakbi,k are the points

with the local maximum of the function |Wi
70(b)| where

b ∈ {min(Pi,k) − TTAR ≤ b≤max(Pi,k) + TTAR}. Parameter

TTAR � 50 samples. An example for the QRS onset

adjustment for the wide QRS is shown in Figure 8.

QRS onset and QRS end adjustment by
slope

QRS onset and QRS end adjustment by slope is based on the

linear regression method and line slope calculation on the time

window of the input signal in the section before the QRS onset

(qi,k point), and after the QRS end (si,k point).

For the QRS onset adjusting there are some parameters set:

the window width TW � 10 samples, the initial point of the

investigation—number of samples before the qi,k,

FIGURE 8
Adjusting the QRS onset for a wide QRS. In the first graph from the top: the original signal f i(b) (wide QRS). In the second graph from the top:
Wi

30(b)with the set of Pi,k points found and delimited by the TTAR. In the third graph from the top:Wi
70(b) and zero points from 70

L zi,k1 to 70
L zi,k4 detected

in the range of 3TTLS, the time interval of the zero point 70
L zi,k4 is coloured by red, where 70logic

i,k
4 � 1, the new zero point 70

L zi,kon � 70
L zi,k3 found and the

QRS onset 70qi,k . In the fourth graph from the top:Wi
120(b) for comparison to scalogram. In the fifth graph from the top: Ei

P(70,b) and Ei
P(120,b)

and maximum energy MAXE
i,k � 0,81 in the range of 1TTLS, the qi,k neighbourhood coloured by red is the zone for the high energy detection by the

defined condition. In the 1ε neighbourhood there were not any thresholds for Ei,k(a,b) exceeded, however, at the scale 120 there was the double
energy related to the scale 70 in the range defined by 1TTLS. On condition for the wide QRS was met and the QRS was qualified as wide.
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START � 30 samples, the end point of the investigation—number

of samples after the qi,k, STOP � 0 samples, the movement step of

the window, DELTA � 2 samples. The line slope SLOPEi,k
s is

evaluated based on the linear regression of the initial and end

points of the time window. The threshold for the slope exceeding is

set to THSLOPE � 10. If the slope SLOPEi,k
s is exceeded for s> 3,

where s is the accumulate shift of the window

s ∈ {0,DELTA, 2 · DELTA, . . . , START + STOP − TW}, then

the first window in the sequence with the slope

SLOPEi,k
s <THSLOPE is found and the new QRS onset is

defined. If there is not any time window that met the

condition, the new QRS onset is defined in the point
SLqi,k � qi,k − START. The QRS onset adjustment by slope is

shown in Figure 9.

Finding the slope in the right neighbourhood of the si,k and

finding the new QRS end SLsi,k is carried out analogously.

QRS onset and QRS end alignment
between signals

Aligning of the QRS onsets or QRS ends between the three

VCG leads is performed in case of exceeding the distances

between the qi,k, or si,k points for the given k and triple of

signals i ∈ I by the defined threshold TTBS � 80 samples. If the

condition is met, the farthest point is shifted on the mean value of

the remaining two points and the new QRS onset ALqi,k or QRS

end ALsi,k is found.

PQ detection

PQ isoelectric interval detection is based on linear regression and

line slope evaluation on the temporal searchwindowof the input signal

in the neighbourhood of the QRS onset point qi,k. By the experimental

work of the PQdetector, there were any other parameters evaluated on

the time window (line slope difference, the mean value of the

signal, standard deviation difference). However, only one

parameter—the line slope was chosen for the algorithm. The

time window is given by parameters: the window width
1TW � 20 samples, the initial point of the investigation—the

number of samples before the qi,k, 1START � 50 samples, the

end point of the investigation—number of samples after the qi,k,
1STOP � 10 samples, the movement step of the window,
1DELTA � 2 samples. The line slope SLOPEi,k

s is evaluated based

on the linear regression of the functionfi(b) on the timewindow. The

time window with the minimum line slope is selected and defined as

looked-for part of thePQsegment.Although the PQsegment is usually

longer than 1TW, its entire interval is known as isoelectric. For this

reason, it is sufficient to choose only the suitable part of thePQsegment

for isoelectric line evaluation. The beginning and end of the time

window founded are put into the PQi,k set and into the PQ matrix.

QRS loop boundaries detection

The QRS loop boundaries detection is performed based on the

QRS peak detected (R matrix), the PQ segment detected (PQ

FIGURE 9
Marking of the shifting window with the width of TW, initial point in the qi,k − START point, end point in the qi,k � qi,k + STOP point and shift step
DELTA. In each window, there is the line slope SLOPE evaluated. In the case of the QRS onset and offset adjustment, the line slope is evaluated only
from the initial and end points of the window. The new point SLqi,k marked in the graph is defined based on the THSLOPE parameter.
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matrix) and the QRS end detected (S matrix). ∀(k) the maximum

distance of the PQi,k and r1,k is computed, where r1,k is the time

instant of the QRS detected in the lead X, specified as a

synchronising wave for all the three leads X, Y, Z and given k.

Median of these distances is assigned as Lbound—the left boundary

of the QRS, its value is the number of samples to the left of the

synchronising wave. ∀(k) there is computed the maximum distance

of si,k and r1,k. Median of these distances is assigned as Rbound—the

right boundary of theQRS loop, its value is the number of samples to

the right of the synchronising wave, where Lbound and Rbound are

identical for all k (all the QRS loops of the record). The flowchart of

the QRS loop boundaries detection is in Figure 10.

QRS loop isoelectric coordinates
detection

Isoelectric coordinates are evaluated for each of the QRS loop

k ∈ {1, . . . , p} of the record based on the mean voltage levels in

the PQ intervals detected for the signals i ∈ I from the

relation (4):

ISOi,k � mean
min(PQi,k)< b< max(PQi,k)

(fi(b)) (4)

where k is the sequence number of QRS loop detected, i is index

of the signal, fi(b) is the input signal, b is sample of the signal,

PQi,k is set of beginning and end point of the PQ interval, mean()
is a mean value.

Results

Validation of the QRS detector and QRS onset and QRS end

time instants was performed on CSE multilead database dataset

3 with 12 standard leads and 3 Frank leads of 125 biological ECGs.

All recordings are 10 s long sampled at 500 Hz with 1 µV

resolution. Patients with various diagnoses including bundle

branch blocks and aspecific conduction defects with significant

changes in ECG image causing a wide QRS (>120 ms) was

observed in 21 of total of 125 cases. Number of cases for four

main groups of diagnoses can be seen in Table 2 (Goldberger et al.,

2000), (Zhao et al., 2004), (Willems et al., 1990).

To use the records sampled a at 500 Hz, the records were firstly

resampled to 1,000 Hz in the context of preserving original filters

and frequency scales of wavelet transform. Form the total of

125 records, one record with an artificial pacemaker was excluded.

Median referee annotation based on five referee cardiologists

and median program annotation based on nine different ECG

analysis programs are provided in CSE database together with

ECG waveforms in digital data file format. The cardiologists only

analysed every fifth record and additionally some waves, for

which a set of analysis programs differed significantly. For this

study, the records were divided into two groups, where in the

first group the results were compared with median referee

annotation, while for the second group only the median

program annotation was available. However, the median

wave recognition results of the nine ECG analysis programs

are almost identical to the final visual estimates obtained by

the referees and thus can be used as a substitute of the

reference annotation (Zhao et al., 2004).

In the CSE database we obtained 3 different sets of

annotations, one for each channel (X,Y, Z). For selecting a

single location for each characteristic point, we used a rule

consisting of ordering the 3 single-lead annotations and

selecting as the onset (end) of QRS the first (last) annotation

whose k � 1 nearest neighbor lay within smallest δ ms interval.

This rule had been already used in (Chazal and Celler, 1996),

(Laguna et al., 1994), (Martínez et al., 2004), where values k � 2

FIGURE 10
QRS loop boundaries detection flow chart.

TABLE 2 Preview of CSE validation database diagnoses.

Diagnose Number of cases

Healthy control 33

Bundle branch blocks and fascicular blocks 33

Myocardial infarction 33

Other 26

Total 125
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to k � 3 and δ � 6 ms to δ � 10 ms were used for 12 or 15 single

leads annotations.

To evaluate the QRS peak detector, we use the sensitivity (Se)

and positive predictivity (P+) formulas:

Se � TP
TP + FN

; P+ � TP
TP + FP

(5)

where TP is number of true postive detections, FN is number of false

negative detections and FP is number of false positive misdetections

For total of 1,467 beats, we obtained a sensitivity of Se �
100% and a positive predictivity of P+ � 100%.

To assess QRS onset and QRS end time delineation

performance, mean value μ and standard deviation σ of time

differences between presented algorithm and reference

annotation were calculated. The algorithm accomplishes the two

standard deviations (2σCSE) tolerances (“loose criteria”) for both

QRS onset and QRS end time evaluation (see Table 3), where the

(2σCSE) criteria is a robust estimation of the “median reader” of

TABLE 3 ORS onset and QRS end delineation performance.

References QRS onset (#) μ ± σ (ms) QRS end (#) μ ± σ (ms)

Median referee annotation (32) 3.0 ± 5.6 (27) -0.1 ± 7.9

Median program annotations (92) 0.9 ± 5.4 (97) 1.7 ± 7.7

Combined (124) 1.4 ± 5.5 (124) 1.3 ± 7.8

Tolerances (2σCSE) (Willems et al., 1990) 6.5 11.6

FIGURE 11
Illustration of the QRS loop boundaries detection and the individual time instants qi,k , ri,k, si,k , PQi,k . The function value in the synchronising point
r1,k is marked by the red triangle, next there are marked the function values in the points r2,k , r3,k (empty triangle), function values in the points qi,k of
the QRS onsets (blue circle), function values in the points si,k of the QRS ends (green circle), function values in the points of the PQi,k sets of the PQ
segments (black circle). The boundaries of the QRS loop Lbound, Rbound marked with violet colour. Isoelectric coordinates ISOi,k marked with
blue isolelectric lines.
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what can be expected from an expert cardiologist (Willems et al.,

1990). This criterion was also used in (Laguna et al., 1994;Martínez

et al., 2004; CSEWORKINGPARTY, 1985; Vila et al., 2000), while

for others (Chazal and Celler, 1996), the one standard deviation

criteria (“strict criteria”) should be attained. The delineation results

comparison between LPD methods presented in (Chazal and

Celler, 1996; Laguna et al., 1994) and WT methods presented

in (Martínez et al., 2004; Sahambi et al., 1997) in the CSE database

are already available in (Martínez et al., 2004), where the proposed

algorithm achieves comparable or better results for the QRS onset

and QRS end detection than others except for (Sahambi et al.,

1997), where lower error standard deviation is reported. However,

we have no information about what dataset and what one-lead to

multilead rule were used.

To evaluate the isoelectric PQ segments detection accuracy, a

condition was established: The PQ interval of the temporal 20 ms

window must be located between the end of the P wave and the

beginning of the QRS onset annotated by a referee. The condition

was met for all the 124 records.

Requirements for the global Lbound and Rbound QRS

boundaries detection, calculated by relations (see Figure 11) were

to include all QRS loops of the record between these two bounds

with respect to intra-individual variability of the record (Penhaker

et al., 2014). The Lbound detected in isoelectric PQ segment and

Rbound detected in the most probably QRS end was ideal for QRS

loops comparing and visualisation.

Conclusion

Designed QRS loop detector evaluates zero crosses of the

wavelet transform, linear regression and percentage of energy of

the wavelet coefficients on specified scales and uses the

experimentally set logical terms to select an appropriate interval

between zero crossings to QRS onset and QRS end evaluation. To

provide a finer resolution an accurate localisation in time, a

continuous WT and biorthogonal wavelet versus quadratic spline

in other studies is used. To adjust fiducial points, the problem is

transferred to time-domain on pre-defined temporal windows. The

PQ isoelectric interval is found on temporal search window as the

flattest part of the PQ segment.

Detected isoelectric coordinates of the individual QRS loops of a

VCG record allows the spatiotemporal QRS loops alignment

synchronized by QRS peaks with the length of QRS determined by

automatically detected QRS bounds of the record. The spatiotemporal

QRS loops alignment allows the QRS loops comparison, averaging,

ectopic QRS loops evaluation and intra-individual variability

assessment which was addressed in the previous study.

Compared to other algorithms, the proposed solution

combines both WT as a robust method in the presence of

noise as well as in baseline wander situations, and time-

domain techniques for better performance in intricate ECG

morphologies to adjust QRS onset, QRS end, and isoelectric

PQ interval detected on temporal search window. Special care is

given to wide pathological QRS, where fiducial points are

evaluated on different scale for experimentally set conditions.

The algorithm uses multilead approach, where three VCG leads

are used simultaneously for detection of QRS onset and QRS end.

The results of QRS peak, QRS onset and QRS end detection was

compared with other published approaches and have shown that the

developed algorithm provides a reliable and accurate delineation of

the ECG signal better or comparable with other algorithms with

standard deviation complying (2σCSE) limits for the CSE database,

promising extension of P and T waves detection for further VCG

processing and automatic VCG classification.
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