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With the growing global demand for animal protein and rising temperatures

caused by climate change, heat stress (HS) is one of the main emerging

environmental challenges for the poultry industry. Commercially-reared

birds are particularly sensitive to hot temperatures, so adopting production

systems that mitigate the adverse effects of HS on bird performance is essential

and requires a holistic approach. Feeding and nutrition can play important roles

in limiting the heat load on birds; therefore, this review aims to describe the

effects of HS on feed intake (FI) and nutrient digestibility and to highlight feeding

strategies and nutritional solutions to potentially mitigate some of the

deleterious effects of HS on broiler chickens. The reduction of FI is one of

the main behavioral changes induced by hot temperatures as birds attempt to

limit heat production associatedwith the digestion, absorption, andmetabolism

of nutrients. Although the intensity and length of the heat period influences the

type andmagnitude of responses, reduced FI explains most of the performance

degradation observed in HS broilers, while reduced nutrient digestibility appears

to only explain a small proportion of impaired feed efficiency following HS.

Targeted feeding strategies, including feed restriction and withdrawal, dual

feeding, and wet feeding, have showed some promising results under hot

temperatures, but these can be difficult to implement in intensive rearing

systems. Concerning diet composition, feeding increased nutrient and

energy diets can potentially compensate for decreased FI during HS. Indeed,

high energy and high crude protein diets have both been shown to improve bird

performance under HS conditions. Specifically, positive results may be obtained

with increased added fat concentrations since lipids have a lower thermogenic

effect compared to proteins and carbohydrates. Moreover, increased

supplementation of some essential amino acids can help support increased

amino acid requirements for maintenance functions caused by HS. Further
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research to better characterize and advance these nutritional strategies will help

establish economically viable solutions to enhance productivity, health, welfare,

and meat quality of broilers facing HS.
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heat stress, chicken, feed intake, digestibility, feeding strategies, amino acids, energy,
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Introduction

The poultry industry continues to play a critical role in

meeting the growing demand for animal protein. The global

production of chicken and turkey meat has doubled over the last

20 years, reaching 125.5 million tons in 2020 (FAO, 2022). This

accounts for approximately 37% of global meat production, while

poultry meat only represented 29% in the early 2000s. With the

increasing global population projected to rise from 7.8 to

9.9 billion in 2050 (PRB, 2020) and better access to animal

products in developing areas, it is predicted that animal-based

food demand will grow by nearly 70% in the same timeline

(Searchinger et al., 2019). Meanwhile, climate change represents

one of the major concerns for livestock production in the coming

decades. Some reports indicate that industrialized farming

systems may lose 25% of their animal production, and this

scenario may be worse for some tropical regions where

extensive farming systems are more abundant (Nardone et al.,

2010). Emerging estimates by the Intergovernmental Panel on

Climate Change emphasized that global warming of more than

2°C will occur during the 21st century unless large reductions in

CO2 and other greenhouse gas emissions are acheived soon

(IPCC, 2021). Also, the authors indicated that climate change

is already and will continue increasing the frequency and

intensity of extreme weather events like hot temperature

waves. Therefore, the poultry industry needs to continue

adopting technologies and practices that reduce its impact on

the environment, but it should also adopt production systems

that are resilient in the face of rising global temperatures.

Modern broiler chickens are particularly sensitive to hot

temperatures due to their rapid growth rates resulting from

genetic selection to enhance production efficiency, as well as

from limitations in heat dissipation caused by feathering, an

absence of sweat glands, and relatively high stocking densities in

intensive commercial rearing facilities (Lara and Rostagno, 2013;

Emami et al., 2020). Heat stress (HS) occurs when the amount of

heat produced by an animal surpasses its capacity to dissipate the

heat to the surrounding environment. When the environmental

temperature rises above the thermoneutral zone, birds typically

reduce their physical activity and feed intake (FI) to limit heat

production (HP), as well as increase their panting and water

consumption to favor heat loss by evaporation (Renaudeau et al.,

2012). Indeed, elevated temperatues trigger important

physiologic and metabolic changes as described in Part I of

this review (Brugaletta et al., 2022), and chronic HS exposure

results in significant losses in bird performance, negatively affects

welfare, challenges food safety, and reduces the overall economic

efficiency of poultry production (Lara and Rostagno, 2013; Pawar

et al., 2016). Consequently, HS has been estimated to cause

annual economic losses of $128 to $165 million for the

United States poultry industry (St-Pierre et al., 2003), but

these figures probably underestimate current and future losses

due to the growth of the poultry industry over the last decade and

the worsening of climate change predictions.

Mitigating the adverse effects caused by hot temperatures in

poultry productions requires a holistic and multi-factorial

approach. Housing (Oloyo, 2018), management practices

(Saeed et al., 2019), genetic selection (Kumar et al., 2021), and

feeding and nutrition (Syafwan et al., 2011; Fouad et al., 2016;

Sugiharto et al., 2017; Wasti et al., 2020; Abdel-Moneim et al.,

2021; Chowdhury et al., 2021) can all provide some benefit to

birds under HS conditions and have been the topics of several

recent global reviews (Lin et al., 2006b; Nawab et al., 2018; Goel

et al., 2021; Vandana et al., 2021). This review aims to assess the

effects of HS on FI and nutrient digestibility, as well as to evaluate

different feeding strategies and nutritional solutions to mitigate

some of the adverse effects of HS on poultry. Effects on broiler

chickens will be emphasized, though research with other types of

poultry will be discussed where relevant. Further, this review will

focus on macro-nutritional solutions as carbohydrates, fat, and

proteins are the main source of energy, and their oxidation

results in HP (Costa-Pinto and Gantner, 2020), which needs

to be limited under HS.

Impact of heat stress on feed intake
regulation and nutrient digestibility

Nearly all studies that have investigated the effects of HS in

poultry have observed reductions in FI of heat-stressed birds

compared with those in thermoneutral conditions, including

meta-analyses conducted in broilers (Liu et al., 2020) and

laying hens (Mignon-Grasteau et al., 2015). This reduction of

FI observed under HS conditions reduces endogenous HP

associated with digestion, absorption, and metabolism of

nutrients (Lara and Rostagno, 2013). However, the magnitude

of the FI reduction depends on several parameters related to the

characteristics of the HS model imposed on the birds, and this

can complicate comparisons among studies. Temperature, length

and cyclicality of the heat period, and age of the birds at the
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beginning and the end of the HS period are all potential factors

that can influence the intensity of the FI reduction. Many studies

have used a constant HS model with high temperatures applied

over a long period of time (Baziz et al., 1996; Geraert et al., 1996;

Bonnet et al., 1997; Faria Filho et al., 2007). However, more

recent studies have employed cyclic HSmodels combining higher

temperatures during the day and lower temperatures during the

night which may better simulate field conditions in temperate

areas of the world (De Souza et al., 2016; Flees et al., 2017; Greene

et al., 2021). When compared within the same experiment, cyclic

HS decreased FI by 15% on average, while constant HS resulted

in higher reductions ranging from 25% to 45% (De Souza et al.,

2016; Awad et al., 2018; Teyssier et al., 2022). Therefore, cyclic

HS resulted in a 1.5% reduction in FI per degree Celsius, while the

values obtained under constant HS corroborate the expected

response proposed by Baziz et al. (1996) of about a 3.5%

reduction in FI per degree Celsius increase between 22°C

and 35°C.

Interestingly, the reduction of growth observed under HS is

greater than expected due to the reduced FI alone, leading to a

lower feed efficiency (Renaudeau et al., 2012). The use of pair-

feeding techniques, where birds under thermoneutral conditions

are fed the same amount of feed consumed by heat-stressed birds,

have shown that the reduction in growth due to decreased FI

ranges between 60% and 99% (Geraert et al., 1996; Bonnet et al.,

1997; Garriga et al., 2006; Lu et al., 2007; Zuo et al., 2015; De

Souza et al., 2016; Zeferino et al., 2016; De Antonio et al., 2017;

Emami et al., 2021; Ma et al., 2021; Teyssier et al., 2022).

Therefore, the lower FI is the main factor explaining impaired

performance of chickens observed under HS, with the remainder

of the growth reduction attributable to impaired digestibility or

physiological and metabolic changes that influence feed

efficiency (Dale and Fuller, 1980; Geraert et al., 1996;

Renaudeau et al., 2012).

Several studies have reported reduced dry matter (DM)

digestibility in quails (Orhan et al., 2020) and laying hens

(Kim et al., 2020) under HS conditions. In broilers, Bonnet

et al. (1997) and De Souza et al. (2016) observed decreases of

1.6% and 3.9% in DM digestibility under constant HS. However,

other studies have reported no DM digestibility losses due to HS

(Faria Filho et al., 2007; Attia et al., 2016, 2017). At the nutrient

level, even though no change in crude protein (CP) digestibility

were observed by several authors (Faria Filho et al., 2007;

Habashy et al., 2017b; Kim et al., 2020), numerous studies

have reported decreases in CP or nitrogen digestibility ranging

between 1.5% and 10% under hot temperatures (Zuprizal et al.,

1993; Bonnet et al., 1997; Soleimani et al., 2010; Attia et al., 2016,

2017; De Souza et al., 2016; Orhan et al., 2020). The detrimental

effect of HS has also been measured on amino acid (AA)

digestibility. Wallis and Balnave (1984) observed a slight

decrease in the digestibility for Thr, Ala, Met, Ile, and Leu,

with greater impacts in male than in female birds.

Standardized and apparent digestibility values of several AA

(i.e., Arg, His, Thr, Val, Lys, Ile, Leu, Phe, Cys, Gly, Ser, Ala,

Pro, and Tyr) were also reduced by approximately 5.5%, in the

study of Soleimani et al. (2010). Regarding other nutrients, none

of these studies observed an impact on crude fat digestibility, and

only Kim et al. (2020) measured a reduction in NDF digestibility

with laying hens.

Several mechanisms have been proposed to explain possible

negative effects of HS on nutrient digestibility. Lower expression

and activity of digestive enzymes, including trypsin,

chymotrypsin, lipase, amylase, and maltase, have been

observed in broilers reared under high temperatures (Hai

et al., 2000; Song et al., 2018; Al-Zghoul et al., 2019). As

described in Part I, oxidative stress induced by HS aggravates

intestinal barrier disorders (Brugaletta et al., 2022), and

hyperthermia has been associated with a reduction in upper

gastrointestinal tract blood flow that can induce degradation of

the intestinal mucosa (Song et al., 2014; Chegini et al., 2018).

Following hot temperature exposure, the absorptive surface area

of the small intestine is decreased due to a reduction in villi

height, crypt depth (Song et al., 2018; He et al., 2019), and relative

jejunal weight (Garriga et al., 2006). Heat stress also modulates

the gene expression of several macronutrient transporters.

Expression of glucose transporters SGLT1 and GLUT2 is

downregulated when HS persists for several days (Sun et al.,

2015; Habashy et al., 2017b; Al-Zghoul et al., 2019; Abdelli et al.,

2021; Goel et al., 2021), whereas the expression of GLUT5 for the

transport of fructose is increased (Habashy et al., 2017b). Despite the

relatively greater decrease in AA digestibility compared to other

macronutrients, several studies observed no influence of HS

exposure on expression of AA transporters, including CAT1,

y+LAT1, PePT1, and r-Bat (Sun et al., 2015; Habashy et al.,

2017b; Al-Zghoul et al., 2019). On the other hand, Habashy et al.

(2017a) measured a decrease in expression of several AA

transporters (i.e., CAT1, LAT1, SNAT1, SNAT 2, SNAT 7,

B0AT) after 12 days of HS. However, this reduction was not

consistent with the slight increase in AA digestibility ( + 3%)

observed in the same study.

Furthermore, even though HS does not seem to markedly

affect fat digestibility, several studies have reported decreased

intestinal expression of FABP and CD36 which are both involved

in the uptake of fatty acids (Sun et al., 2015; Habashy et al., 2017b;

Al-Zghoul et al., 2019), whereas the expression of FATP1 was

increased under chronic HS (Habashy et al., 2017b).

While the regulation of nutrient transporter gene expression

might be directly related to physiological adaptations to HS, it is

important to consider that structural damages and the

degradation of the epithelium induced by HS might be a

potential factor indirectly causing the reduction of intestinal

transporters (Habashy et al., 2017b). Overall, the slight

decrease and inconsistent results regarding nutrient

digestibility seem to indicate that reduced digestibility likely

explains only a small proportion of reduced feed efficiency

under HS conditions.

Frontiers in Physiology frontiersin.org03

Teyssier et al. 10.3389/fphys.2022.943612

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.943612


Feeding strategies

Lowering HP and improving heat dissipation are two ways to

reduce the adverse effects of HS in poultry. While the reduction of

HP is achievable by improving digestibility and by feeding the birds

closer to their nutrient and energy requirements, an increased heat

dissipation is possible by increasing the amount of water loss by

evaporation (Syafwan et al., 2011). Several feeding strategies have

been tested to attempt to mitigate the negative impact of hot

temperatures through these means.

Feed restriction and withdrawal

Early studies focused on feed restriction before HS exposure, and

its effects onHP and performance. In broiler breeders, feed restriction

from 44 to 48 weeks before exposure to 4 days of elevated

temperatures resulted in 23% decrease in HP compared with ad

libitum fed birds. However, fed-restricted birds had a higher HP

when adjusted for body weight (BW) differences and expressed per

unit of metabolic body size (BW0.75). The lower BW of fed-restricted

birds was therefore responsible for the reduction in HP and not the

feed restriction per se (MacLeod and Hocking, 1993). In broilers, no

beneficial effect of a preventative feed restriction was measured on

performance and carcass quality (Plavnik and Yahav, 1998), but

more promising results were obtained when feed restriction was

applied during the HS period. Abu-Dieyeh (2006) observed that feed

restriction to 75% and 50% of the feed consumption of ad-libitum fed

broilers reduced rectal temperature, mortality, and feed conversion

ratio (FCR). However, feed restriction diminished the rate of BW

gain (BWG) and delayed marketing age of the birds.

Similarly, feed withdrawal for at least 6 h during HS decreased

the corporal temperature (Yalçin et al., 2001; Özkan et al., 2003;

Lozano et al., 2006), mortality (Yalçin et al., 2001) and heterophil-to-

lymphocyte ratio (Yalçin et al., 2003) of broilers, indicating a

reduction of the adverse effects of HS. Nevertheless, effects on

performance were not consistent throughout the studies, with

some observing a growth improvement (Yalçin et al., 2001;

Mohamed et al., 2019) and others reporting a growth

degradation (Lozano et al., 2006) likely due to the timing and

magnitude of feed restriction (Özkan et al., 2003). Therefore, a

short feed withdrawal during the hottest period of the day appears to

be the best strategy tominimize the negative effects of HS on growth

and delayed market ages. Removing the feed a few hours before the

HS period could also be beneficial to avoid the potential increased in

HP induced by anticipatory feeding behavior observed in birds

exposed to repeated intermittent fasting (Fondevila et al., 2020).

Dual feeding

Dual feeding is characterized by the distribution of two

different diets, one more concentrated in protein and the

other more concentrated in energy, that are provided either

simultaneously for self-selection or in sequential order.

Dietary proteins are known to have a higher thermogenic

effect compared with carbohydrates (Geraert, 1991), and

feeding high protein diets during the coolest period of the day

has been hypothesized to improve the thermotolerance of birds.

Sequential feeding of high energy and high protein diets

decreased body temperature (De Basilio et al., 2001; Lozano

et al., 2006) and mortality (De Basilio et al., 2001), but reduced or

did not improve the growth of broilers. Syafwan et al. (2012)

tested self-selection under hot temperatures by providing a high-

protein diet (CP: 299 g/kg; ME: 2,780 kcal/kg) and a high-energy

diet (CP: 150.7 g/kg; ME: 3,241 kcal/kg) and showed that choice-

fed and control-fed birds with a standard diet (CP: 215 g/kg; ME:

2,895 kcal/kg) performed similarly, although the former had 14%

lower protein intake and 6.4% higher energy intake. However, no

data on carcass composition were reported, and a lower protein

intake could reduce muscle deposition. While a dual-feeding

approach might be feasible in tropical areas and less-intensive

production systems, Iyasere et al. (2021) estimated that it is not

suitable for most commercial production operations due to cost

and logistical constraints.

Wet feeding

Water is themost important nutrient in broiler nutrition, and

it plays an essential role for thermoregulation under hot

temperatures. Heat stress increases water loss through the

respiratory tract as birds pant to increase heat loss by

evaporative cooling (Richards, 1970; Bruno et al., 2011). In

the light of the importance of water for the nutrition and

physiology of broilers, wet feeding attempts to maximize

water intake and utilization. Several studies have investigated

the effect of wet feeding, i.e., the use of high moisture diets, on

poultry performance under thermoneutral conditions (Moritz

et al., 2001; Shariatmadari and Forbes, 2005; Khoa, 2007) and

during HS. In heat-stressed broilers, Kutlu (2001) measured

increased BWG, DM intake, carcass weight, protein content,

but also increased abdominal fat and lipid content per unit of

carcass weight, and reduced DM conversion efficiency (DM

intake/BWG), when feed was mixed with the same amount of

water. Similarly, Awojobi et al. (2009) and Dei and Bumbie

(2011) observed increased BWG with wet-fed birds (addition

from 1 to 2 parts of water to 1 part of dry feed) reared in tropical

conditions. In laying hens, Tadtiyanant et al. (1991) reported that

wet feeding increased DM intake, but no beneficial effects were

found on performance. In contrast to these results, egg

production and egg weight were increased by wet feeding in

Japanese quails (Okan et al., 1996a; 1996b). Despite somewhat

positive impacts of wet feeding in poultry, its application in the

field remains limited due to an increased risk of fungal growth

and resulting mycotoxicosis in birds (Wasti et al., 2020).
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Feed form (mash vs. crumble vs. pellets)
and feed structure (particle size)

Three different forms of feed are generally used in the poultry

industry: mash, crumble, and pellets. Under thermoneutral

conditions, pelleted feed is known to increase FI and BWG

and improve digestibility (Massuquetto et al., 2018;

Massuquetto et al., 2019). During summer, increased feed

efficiency and egg production of laying hens have been

observed for pelleted diets compared with mash diets

(Almirall et al., 1997). In broilers exposed to cyclic HS,

Cardoso et al. (2022) measured increased FI ( + 10%), BWG (

+ 8.3%), CP digestibility ( + 2.3%), and energy utilization

(apparent metabolizable energy, AME and nitrogen-corrected

apparent metabolizable energy, AMEn) when feeding a pelleted

diet compared with a mash diet. However, pelleting did not

improve FCR, livability, or the feed production cost to kg of bird

produced ratio. Likewise, Hosseini and Afshar (2017a) observed

beneficial effects of pelleting on performance and digestibility

when comparing mash, crumbled and pelleted diets under

similar cyclic HS conditions. These authors also reported

improved carcass weight and yield in heat-stressed broilers fed

pelleted diets. Comparable performance improvements were

obtained by feeding pelleted diets under thermoneutral and

HS conditions (Serrano et al., 2013), so it is likely that

mechanisms responsible for the positive effects of pelleting

under thermoneutrality can be applied to HS conditions.

Pelleting feed has been shown to lower feed wastage

(Gadzirayi et al., 2006) and increase feed consumption, while

concomitantly reducing physical activity and HP (Skinner-Noble

et al., 2005; Latshaw andMoritz, 2009). Furthermore, as observed

under thermoneutral (Abdollahi et al., 2011; Serrano et al., 2013)

and HS conditions (Hosseini and Afshar, 2017b), pelleted diets

reduce the relative weight of the digestive tract compared with

birds fed mash diets. The pelleting process can further reduce

ingredient particle size, reducing the mechanical stimulation of

the gizzard and could therefore lower the energy requirements

for maintenance. It also could release some inaccessible nutrients

and enhance energy utilization, which could explain the increase

in abdominal fat observed by Hosseini and Afshar (2017a) with

pelleted diets fed under cyclic HS. Other potential benefits of

feeding pelleted feeds during HS shown by these authors include

increased villus length and villus to crypt depth ratio in the

jejunum (Hosseini and Afshar, 2017b) as well as decreased breast

HSP70 mRNA expression, breast creatine kinase protein level,

and heterophil-to-lymphocyte ratio (Hosseini and Afshar,

2017a). Collectively, these reports indicate that pelleting

attenuates the harmful effects of high ambient temperature in

broiler chickens.

Concerning particle size, the use of coarse particles

(2,280 µm) of corn increased panting compared to finer

particles (605 µm) in broilers fed a mash diet under natural

HS conditions (Santos et al., 2019). Similar results were found in

laying hens under a semiarid environment, where coarser corn

particles increased rectal temperature, respiratory rate, and

decreased eggshell quality (De Souza et al., 2015). However,

while coarse particles may increase the thermal challenge, they

are also known to increase FI and improve performance in

broilers under thermoneutral conditions (Amerah et al., 2008;

Naderinejad et al., 2016). Thus, more research on broiler

performance would be required to fully understand the role of

ingredient particle size during HS.

Dietary energy density and lipid
supplementation

The marked decrease in FI and in turn, energy intake, caused

by elevated temperatures negatively affects bird performance.

The effect of HS on energy utilization of feedstuffs, which is

usually represented as AME, is still not well defined. Indeed,

responses probably depend on the parameters of the HS imposed

and characteristics of the diet, as some studies observed an

increase in AME due to hot temperatures (Keshavarz and

Fuller, 1980; Geraert et al., 1992), some observed no

difference between thermoneutral and HS conditions

(Yamazaki and Zi-Yi, 1982; Faria Filho et al., 2007; De Souza

et al., 2016), and some have reported a decrease in AME with HS

birds (Bonnet et al., 1997). However, three studies using the

comparative slaughter technique with broilers placed under

thermoneutral and HS conditions from d 28 to 42 (Geraert

et al., 1996), or d 21 to 42 (Faria Filho et al., 2007; De Souza

et al., 2016), indicate a decrease in retained energy and increase in

HP per unit of feed when birds are placed under hot

temperatures. Similarly, a quadratic effect of the temperature

on the energy requirement for maintenance functions was

measured by Sakomura et al. (2005), with the lowest

requirements estimated at 25.2°C: MEm = BW0.75 x (307.87 +

15.63 T + 0.31 T2), with T being the temperature (°C) and BW0.75

the metabolic body size. Therefore, the relative contribution of

maintenance energy requirements to total energy requirements is

partly increased by the lower growth of HS birds, but also directly

impacted by the increased temperature, which results in a

diminishing effect on feed efficiency.

To compensate for lower energy intake of birds during HS, it

has become common for producers in hot climate areas to feed

higher energy diets (Wasti et al., 2020). Early studies suggested

that high dietary energy concentrations could improve bird

performance under constant (Dale and Fuller, 1979) and

cyclic HS (Dale and Fuller, 1980), but it should be noted that

the CP content of the diets were adjusted to energy levels and

thus higher in high energy diets. Nonetheless, more recent

studies using isonitrogenous diets have confirmed previous

observations and showed that an increase in dietary

metabolizable energy (ME) between 100 and 200 kcal/kg for

broilers improved BWG up to 17% and FCR up to 10% (Raju
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et al., 2004; Ghazalah et al., 2008; Attia et al., 2011, 2018; Attia

and Hassan, 2017) when reared under hot conditions. In

addition, decreased skin and rectal temperatures have been

observed in HS poultry fed diets with increased ME content

(Al-Harthi et al., 2002; Attia et al., 2011). Increasing dietary ME

content also improved ready-to-cook yield (Raju et al., 2004),

although no improvement in carcass yield was observed by

Ghazalah et al. (2008). However, both research groups

reported an increased abdominal fat yield, thus the risk of

increasing carcass yield from lipid and not protein deposition

is a potential disadvantage of increasing dietary ME in HS

broilers.

Increasing ME density in the diet is usually achieved by

increasing the concentration of added lipid, and this strategy

presents several potential advantages for HS birds. Feeding

isocaloric diets with either higher proportions of

carbohydrates or fat under HS conditions revealed that

broilers had better performance when diets were

supplemented with poultry fat, palm oil, or soybean oil

compared to no fat supplementation (Zulkifli et al., 2006;

Ghazalah et al., 2008). These observations are likely explained

by the lower heat increment of fat oxidation compared with

carbohydrates and proteins. Indeed, as measured by Fuller and

Rendon (1977), high fat diets lead to lower heat increment than

low-fat diets. Moreover, lipid inclusion improves nutrient

digestion by slowing rate of passage (Mateos et al., 1982) and

increasing the energy value of other nutrients (Aardsma et al.,

2017). Lipid metabolism also generates more metabolic water

than carbohydrate and protein catabolism, which can in turn be

used for heat dissipation by evaporation (Barboza et al., 2009).

Thus, as suggested by Ghazalah et al. (2008), a potential dietary

recommendation for broilers exposed to hot temperatures could

be to increase the ME level up to 3,300 kcal/kg, with lipid

inclusion up to 5%, especially during the finishing period

when birds are the most sensitive to high temperatures.

Although increasing dietary lipid additions has been shown

to be a promising way to increase bird performance under HS

conditions, less research has been conducted to compare the

efficacy of different lipid sources. Zulkifli et al. (2006) did not

observe a difference in BWG and FCR among broilers exposed to

34°C and supplemented either with 8% of palm oil or 8% of

soybean oil. Abdominal fat and breast intramuscular fat

deposition were also unaffected by the fat source. However, in

broilers exposed to HS from 32 to 42 days post-hatch and fed

isocaloric diets, improved FCR and BWG were observed when

feeding diets with coconut oil or beef tallow than with diets

containing olive or soybean oil (Seifi et al., 2020). The fatty acids

within coconut oil and tallow are rich in saturated fatty acids and

have chain lengths of mainly 12 and 16 carbons, respectively,

while olive oil and soybean oil are rich in unsaturated fatty acids

and have predominantly 18 carbon fatty acids. Short and

medium chain fatty acids (SCFAs/MCFAs), containing up to

12 carbon atoms, are absorbed and metabolized more rapidly

than longer chains, as they are transported to the portal vein as

free fatty acid and do not require any transporter to get absorbed

(Guillot et al., 1993), which could reduce the HP induced by

digestion. Recent research also suggests saturated fatty acids,

SCFAs, and MCFAs could have a beneficial impact on the

mitochondrial metabolism and electron transport chain

(Schönfeld and Wojtczak, 2016; Seifi et al., 2018, 2020; Hecker

et al., 2021), which are known to be disrupted under HS

condition (Akbarian et al., 2016).

Influence of dietary crude protein
content

Proteins have a higher caloric increment than carbohydrates

and fat (Musharaf and Latshaw, 1999) and therefore increase the

diet-induced HP. When AA are metabolized for energy by birds,

much of the HP is caused by deamination reactions and

incorporation of N into uric acid (Smith et al., 1978; Swick et al.,

2013). Therefore, optimizing dietary CP composition to better fit

bird requirements decreases the heat produced during AA

oxidation. So, in an effort to reduce the energy released during

digestion, absorption, and metabolism of nutrients, dietary CP

reductions have been proposed as a strategy to mitigate the

harmful effects of HS in poultry (Furlan et al., 2004). Numerous

studies in broilers have tested the effects of feeding a reduced CP diet

versus a standard CP diet under constant HS (Alleman and Leclercq,

1997; Cheng et al., 1999; Faria Filho et al., 2005; Gonzalez-Esquerra

and Leeson, 2005; Awad et al., 2018), cyclic HS (Cheng et al., 1999;

Liu et al., 2016; Awad et al., 2018; Zulkifli et al., 2018; Amiri et al.,

2019; Lin Law et al., 2019; Soares et al., 2020) and hot climates

(Zaman et al., 2008; Laudadio et al., 2012; Awad et al., 2014, 2015,

2017; Lin Law et al., 2019; Attia et al., 2020). Table 1 summarizes

21 HS broiler trials comparing reduced CP diets (ranging from

143 to 190 g/kg CP) and standard CP diets (ranging from 183 to

223 g/kg CP), with both diets in each study formulated to meet or

exceed a specific nutritional requirement, such as the Nutrient

Requirements of Poultry (NRC, 1994) or breeder

recommendations, or to contain similar AA profiles.

Approximately half of these studies observed a significant

reduction in performance when feeding broilers the reduced CP

diet compared to the standard CP diet, while the other half did not

observe dietary effects. The response variability can be partly

explained by the range of low and standard CP levels, as well as

the intensity and duration of the HS period, but it is important to

note that feeding a low CP diet without degrading performance is

still beneficial for reducing nitrogen excretion. Results for BWG,

presented in Figure 1, indicate that regardless of the HS challenge

type, reduced CP diets decreased BWG by 10.8% on average

(ranging from a reduction of 40.1% to an improvement of 2.5%).

Similar results were obtained with FCR, with an average increase of

6.9% (ranging from a decrease of 0.9% to an increase of 19.7%)when

dietary CP was reduced (Figure 2). Some studies also reported a

Frontiers in Physiology frontiersin.org06

Teyssier et al. 10.3389/fphys.2022.943612

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.943612


decreased FI with reduced CP diets (Cheng et al., 1999; Awad et al.,

2014, 2015, 2017, 2018). In addition to a reduced CP diet, some

researchers tested the effects of a higher CP diet, withCP levels above

the standard recommendations. During HS, high CP diets resulted

in a decrease (Cheng et al., 1999) or an increase in BWG (Faria Filho

et al., 2005) and a decrease in FCR (Cheng et al., 1999; Faria Filho

et al., 2005; Gonzalez-Esquerra and Leeson, 2005). However, other

studies reported no effect of high versus standard CP diets (Zaman

et al., 2008; Laudadio et al., 2012; Soares et al., 2020) and the

increased diet cost associated with high CP diets could result in

detrimental economical scenarios (Cardoso et al., 2022).

Feed-grade AA, which are included at higher levels in

reduced CP diets to meet digestible AA requirements, allow

to provide a balanced AA diet, and minimize the HP caused by

AA oxidation, which is not possible to reach when relying on

feed sources only. They also do not need enzymes for digestion

and, as such, do not contribute to the digestion-related

production of body heat (Morales et al., 2020). However, the

performance degradations reported with reduced CP diets

aligns with the lower HP observed in birds fed a high CP

diet (220 g/kg) versus a low CP diet (160 g/kg) under cyclic HS

conditions (Soares et al., 2020). Similar results have also been

obtained under constant HS when comparing a high (230 g/kg),

standard (200 g/kg), and low (170 g/kg) CP diets (Faria Filho

et al., 2007). The lack of interaction between the CP level and

environmental temperature reported by these authors is

supported by studies conducted under thermoneutral

conditions, where no difference (Noblet et al., 2003, 2007) or

an increase (Swennen et al., 2004) in HP was measured with low

CP diets, indicating that HS is not the cause per se of the higher

HP with reduced CP diets. These results are surprising due to

the higher caloric increment of proteins, but a possible

explanation is that standard CP diets are usually formulated

with a higher oil inclusion rate to reach the same amount of

energy than reduced CP diets which generally have higher

inclusion of corn (Soares et al., 2020). The extra-metabolic

effect of dietary lipids, where the metabolizable energy value of

the lipid exceeds its gross energy value (Aardsma et al., 2017),

could compensate for the possible increase in heat increment

derived from protein (Soares et al., 2020). Interestingly, reduced

CP diets with AA deficiencies have also been associated with a

greater plasma level of triiodothyronine (Carew et al., 1983,

1997; Buyse et al., 1992), which is known for its thermogenic

effect (Collin et al., 2003).

TABLE 1 Summary of experimental conditions of broiler studies comparing reduced and standard CP diets under HS conditions.

Heat
stress
condition

Heat stress
length

Average
temperature
(°C)

Standard
CP (g/kg)

Reduced
CP (g/kg)

Age
start
(d)

Age
end
(d)

Duration
(d)

References

Constant HS — 34 194 143 22 42 20 Awad et al. (2018)

— 32 199 160 23 44 21 Alleman and Leclercq (1997)

— 32.2 198 161 21 49 28 Cheng et al. (1999)

— 31.4 200 180 21 42 21 Gonzalez-Esquerra and Leeson (2005)

— 33 200 185 7 21 14 Faria Filho et al. (2005)

Cyclic HS 35°C for 8 h 29.4 198 161 21 49 28 Cheng et al. (1999)

33°C for 6 h 25.5 190 162 22 35 13 Zulkifli et al. (2018)

32°C for 8 h 26 200 160 22 42 20 Soares et al. (2020)

34°C for 7 h 26.2 183 167 22 42 20 Lin Law et al. (2019)

— 27.8 213 153 28 42 14 Liu et al. (2016)

34°C for 8 h NA 195 175 0 42 42 Amiri et al. (2019)

34°C for 7 h 26.2 194 143 22 42 20 Awad et al. (2018)

Hot climate — At least 28.1 223 161 0 21 21 Awad et al. (2015)

— At least 28.1 223 162 0 21 21 Awad et al. (2017)

— At least 28.3 223 and 194 162 and 135 0 42 42 Awad et al. (2017)

— At least 28.5 216 and 187 176 and 156 0 35 35 Lin Law et al. (2019)

— At least 28.3 207 177 0 21 21 Awad et al. (2014)

— NA 205 185 14 42 28 Laudadio et al. (2012)

— NA 210 190 0 28 28 Zaman et al. (2008)

— 34 190 155 28 49 21 Attia et al. (2020)

— 35 186 152 30 45 15 Attia et al. (2020)
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Overall, simultaneously increasing dietary energy and CP

could be a potentially beneficial strategy to limit the adverse

effects of HS on broiler growth and feed efficiency. Indeed,

improved performance has been demonstrated under HS

conditions when broilers were fed both a high dietary ME and

CP contents (Attia et al., 2006; Attia and Hassan, 2017).

However, in a similar study in which broilers were exposed to

thermoneutral temperatures or cyclic HS from day 19–42 and

were fed with a dietary ME and CP content of 3,152 kcal/kg and

194.8 g/kg or 3,253 kcal/kg and 210.3 g/kg, respectively, no

improvement in performance was observed with the higher

nutrient and energy density diet in either environment.

Consequently, an economic evaluation actually showed a

decrease in overall profitability with the higher density diets

(Cardoso et al., 2022).

The conflicting evidence of higher caloric increment of

dietary protein and impaired performance of broilers fed

reduced CP diets led Gonzalez-Esquerra and Leeson (2006) to

conclude that no consensus has been reached on protein

requirements of heat-stressed birds. More recent trials on

reduced CP diets have shown no performance improvements

or amelioration of HP reduction and do not support this dietary

strategy under HS conditions. Nonetheless, when following the

“ideal protein” concept, where all essential digestible AA are

provided in balance (Baker and Chung, 1992), the

supplementation of unbound feed-grade AA in reduced CP

diets to satisfy the bird’s requirements should result in similar

performance as when feeding standard CP diets. Furthermore,

most of the studies presented above based their requirements

on NRC or breeder recommendations, albeit broiler’s AA

requirements under HS conditions still remain undefined.

More importantly, although those studies met specific

nutritional requirements for essential AA, some potentially

limiting AA such as Arg, Thr, Ile, Leu, His, and Phe were

not equally balanced between diets. Diets with AA imbalance

can lead to adverse effects especially under HS condition as they

normally increase HP (Sekiz et al., 1975). Also, the FI reduction

triggered by HS reduces the amount of CP and AA ingested by

the birds, potentially resulting in deficiency when compared with

reduced dietary concentrations. Therefore, even if the inclusion

level for all AA was formulated to meet or exceed a target

nutritional requirement under thermoneutral conditions, the

effective AA consumption may not have reached the bird’s

requirements for some AA under HS conditions.

Further research on dietary CP and its interaction with

energy and AA content would be required to better

characterize the biological response induced by those diet

changes under HS conditions. This would allow for a better

understanding on the utilization of those nutrients in poultry

reared under hot temperature to ultimately facilitate better

FIGURE 1
Effect of reduced and standard CP diets on BWG of broilers exposed to different HS conditions.
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prediction of economic outcomes associated with nutritional

dietary variation.

Supplementation of amino acids

Amino acid density

Altering dietary density of essential AA has been shown to have

promising results in heat-stressed broilers. In broilers under hot

temperatures, Maharjan et al. (2020) fed five levels of digestible Lys

(dLys) from 80% to 120% of the recommended level with all other

AA:dLys ratios held constant and observed quadratic responses in

average daily gain and FCR up to the 120% dLys level, and no

influence on FI. In contrast, the optimal average daily gain and FCR

were closer to the 100% recommendation of dLys under

thermoneutral conditions. This indicates a potential increase in

overall AA requirements under HS, although the authors

concluded that the requirement of AA/Mcal was not different in

hot or thermoneutral environments, which was also observed by

Hruby et al. (1995). Moreover, Alhotan et al. (2021) fed an AA

density ranging from 80% to 110% of breeder recommendations to

broilers exposed to cyclic HS. In contrast with the results reported by

Maharjan et al. (2020), no interactions between environmental

temperature and dietary AA density were observed on

performance and processing data. However, linear effects of AA

density indicated that BWG, feed efficiency, and breast muscle yield

responded to increased AA density in both environments. Even

though FCR was numerically improved by 10 points with the 110%

AA diet relative to the 100% AA diet, this difference was not

statistically significant and may indicate that higher AA levels

were above the bird’s requirements. In another trial, increasing

the density of Met, Lys, and Thr in a reduced CP diet increased

production performance of cyclically heat-stressed broilers over the

ones obtained with standard CP diet and, in addition, improved

intestinal health as indicated by changes in small intestinal

morphology and increased mRNA expression of some tight

junction proteins (Wang et al., 2022). Therefore, increasing AA

density could be beneficial for broilers experiencing HS, especially

when achieved with free AA to minimize diet-induced

thermogenesis. However, further research is required to better

characterize the true AA requirements of birds underHS conditions.

FIGURE 2
Effect of reduced and standard CP diets on FCR of broilers exposed to different HS conditions.
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Individual amino acid supplementation

Methionine (Met) is the first limiting AA in avian species and

is considered, along with cysteine (Cys), to meet total sulfur AA

(TSAA) needs for the bird. Because of its importance in

maintenance functions and muscle deposition that are greatly

impacted during exposure to HS, definingMet requirements is an

important step in optimizing poultry nutrition under HS

conditions. Indeed, higher requirements of Met have been

found in broilers under high temperatures compared to

thermoneutral conditions (Silva Junior et al., 2006; Sahebi-Ala

et al., 2021), but this does not appear to be the case in laying hens

or pullets (Bunchasak and Silapasorn, 2005; Castro et al., 2019).

Several physiological mechanisms have been proposed regarding

the importance of Met under HS. First, Met supplementation has

been shown to increase the antioxidant capacity of broilers (Del

Vesco et al., 2015b; Gasparino et al., 2018; Liu et al., 2019;

Santana et al., 2021). Under thermoneutral conditions, the

production of reactive oxygen species and the antioxidant

systems in chickens are balanced and can adapt to overcome

normal challenge. Acute and chronic HS disturb this equilibrium

due to an overproduction of reactive oxygen species, which

ultimately surpasses the antioxidant capacity and leads to

oxidative stress (Lin et al., 2000, 2006a; Azad et al., 2010;

Akbarian et al., 2016). Furthermore, Met supplementation

affected the inflammation-related gene expression in the liver

of broilers placed under high temperature (Liu et al., 2019).

Another potential benefit of Met supplementation under HS is its

stimulatory effect on protein deposition and inhibition of protein

breakdown as indicated by the increased expression of protein

synthesis-related genes IGF1, GHR and PI3KR1 in the liver, and

decreased expression of protein degradation-related genes

atrogin1 and CTSL2 in the breast (Del Vesco et al., 2013; 2015a).

Beneficial effects of increasing the dietary amount of essential

AA other than Met are not as well defined. Dietary levels of Lys,

the second limiting AA in broiler chicken diets based on corn and

soybean meal (Ishii et al., 2019), are closely associated with

muscle protein deposition. However, the growth depression

under HS does not seem to be ameliorated by supplementing

broiler diets with Lys above the thermoneutral requirements

(Mendes et al., 1997; Corzo et al., 2003; Attia et al., 2011).

Interestingly, when Lys was supplemented in combination

with Met in a reduced CP diet, broilers had similar

performance and carcass characteristics to those fed a higher

CP diet under hot climate conditions (Attia et al., 2020). In this

study, additional treatments with supplementation of other

essential AA besides Met and Lys did not ameliorate

performance reductions caused by HS, emphasizing the

potential importance of those two AA under HS conditions.

Threonine is almost invariably the third limiting AA in

poultry diets (Kidd, 2000). In broilers, the earliest studies on

Thr supplementation above the estimated requirements for birds

under hot temperatures showed no or minimal benefits on

performance (Dozier et al., 2000; Kidd et al., 2000; Ojano-

Dirain and Waldroup, 2002; Shan et al., 2003), whereas more

recent studies have shown some performance improvements

(Debnath et al., 2019; Miah et al., 2022). In laying hens,

increasing the supplementation of dietary Thr to 0.66%

instead of 0.43% did not improve performance outcomes, but

it decreased HSP70 in the ileum (Azzam et al., 2019) and

increased SOD concentration in both serum and liver (Azzam

et al., 2012), indicating potential antioxidant effects of Thr under

HS condition.

Unlike mammals, poultry are highly dependent on dietary

Arg supply because of less active de novoArg synthesis pathways

in birds (Klose et al., 1938; Tamir and Ratner, 1963; Castro

and Kim, 2020). In broilers, the determination of Arg

requirements under HS conditions have led to inconsistent

results among different age periods. Over-supplementation

was detrimental from 1 to 3 weeks of age (Chamruspollert

et al., 2004), neutral from 3 to 6 weeks of age (Mendes et al.,

1997), and beneficial from 6 to 8 weeks of age (Brake, 1998).

Arg supplementation also improved FCR of Pekin ducks

exposed to cyclic HS (Zhu et al., 2014) and enhanced

several welfare indicators and decreased corticosterone

plasma concentration in laying hens during the hot

summer period (Bozakova et al., 2015). Furthermore,

increasing dietary Arg improved performance,

reproduction, antioxidant status, immunity, and maternal

antibody transmission in quails (Kalvandi et al., 2022). The

ability of Arg to reduce physiological stress is likely to be

attributed to its antioxidative effects (Gupta et al., 2005). Arg

is also the only nitrogen donor in the production of nitric

oxide, which is involved in vasodilatation to potentially aid

thermoregulation of heat-stressed birds (Uyanga et al., 2021).

Interestingly, more focus is being placed on the potential

beneficial effects of citrulline (Cit), a compound synthetized

during Arg catabolism and the formation of nitric oxide.

Recent studies have shown that Cit supplementation can

effectively increase systemic Arg levels, even more than

direct L-Arg supplementation (Morita et al., 2014; Agarwal

et al., 2017). Cit concentration in blood has also been shown to

be modulated by hot temperatures (Chowdhury et al., 2014;

Chowdhury, 2019) and its supplementation may increase

nitric oxide synthesis, provide an anti-inflammatory

response, and enhance the central regulation of body

temperature (Chowdhury et al., 2017; Uyanga et al., 2021,

2022).

Leu, Ile, and Val are three essential AA collectively known as

branched-chain AA (BCAA). Their roles are diverse and include

effects on performance, immunity, and intestinal health. They

also serve as signaling molecules in the regulation of glucose,

lipid, and protein synthesis (Kim et al., 2022). Kop-Bozbay et al.

(2021) investigated the effect of increased BCAA density under

HS conditions and did not observe any improvement in growth

performance. These authors also tested various dietary Val
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concentrations and did not observe effects on performance.

However, high incorporation of Leu in those diets might have

triggered the antagonist effect among BCAA (Ospina-Rojas et al.,

2020). Interestingly, in ovo Leu injection improved BWG and

thermotolerance of birds during subsequent exposure to HS

(Han et al., 2017, 2019, 2020; Chowdhury et al., 2021). With

the current increasing availability of feed-grade Val and Ile,

further work is needed to define the potential for BCAA to

combat HS in poultry.

Trp is an essential AA in poultry diets due to its need for

protein synthesis, as well as serotonin and niacin production

(Le Floc’h et al., 2011). Few studies have been published on the

requirements of Trp under HS conditions, although high

dietary concentrations did not improve performance in

broilers (Tabiri et al., 2002; Shan et al., 2003; Badakhshan

et al., 2021) or layers (Dong et al., 2012). However, Trp

supplementation did decrease rectal temperature and abated

corticosterone responses caused by HS in broilers (Badakhshan

et al., 2021). Trp supplementation also increased eggshell quality

and decreased SOD serum concentration in laying hens during HS

(Dong et al., 2012). To our knowledge, no studies on the effect of

dietary supplementation of less-limiting essential AA beyond Trp,

such asHis and Phe, have been conducted in poultry subjected toHS.

The remaining AA are non-essential AA and can be

synthesized from other precursors. Besides altering

essential AA needs, the reduced FI caused by HS limits the

amount of nitrogen consumed by birds, which could

potentially lead to a lack of sufficient nitrogen quantity for

non-essential AA synthesis (Awad et al., 2014). Feeding low

CP diets during hot temperatures could also worsen this

nitrogen deficiency. Birds fed a diet with increased

essential and non-essential AA concentrations under HS

had a better performance than when a diet with only

increased essential AA concentrations was fed (Awad

et al., 2014, 2015). However, when comparing individual

supplementation of several non-essential AA in low CP

diets, only Gly improved broiler FCR under both normal

and acute HS conditions (Awad et al., 2015, 2018). Recent

research also suggests that Gly and Ser, which are normally

evaluated together as Gly equivalents, are co-limiting or

limiting before some BCAA in low CP diets under

thermoneutral conditions (Chrystal et al., 2020; Maynard

et al., 2022), which could make Gly equivalents important

AA to consider during reduced FI caused by HS.

Therefore, for the essential AA, it seems possible that

supplementation of Met and potentially Arg above current

requirements could be beneficial under HS condition. However,

further research is required to elucidate the effects of other essential

AA, as well as Gly, non-essential AA, and overall nitrogen supply.

Conclusion

Adaptating to rising global temperatures while maintaining

production efficiency is an important emerging challenge for the

poultry industry. Under hot temperatures, birds reduce their FI

to lower HP, and this is the main factor explaining the

degradation of bird performance (Figure 3). Mitigation of

those negative effects requires a holistic approach, and

adjusting feeding practices and nutritional programs have a

FIGURE 3
Conclusive scheme of the beneficial nutritional interventions on broilers exposed to heat stress conditions.
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critical role to play. Even though some feeding strategies are

difficult to implement in the field, especially with intensive

rearing systems, several practices discussed in this review have

shown beneficial effects to reduce the heat load on poultry.

Increasing dietary lipid concentration and maintaining a

standard CP level are also recommended to compensate for

the FI reduction and better fit the birds’ requirements under

elevated temperatures. Considering an increase in the density of

some AA, like methionine and arginine, to meet the increased

AA requirements for maintenance functions could also be

advantageous. Therefore, further research is required to

characterize nutrient partitioning and requirements of birds

under HS conditions to ensure efficient and cost-effective

solutions for the poultry industry.
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