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Purpose: We aim to develop and validate PET/ CT image-based radiomics to

determine the Ki-67 status of high-grade serous ovarian cancer (HGSOC), in

whichwe use themetabolic subregion evolution to improve the prediction ability

of themodel. At the same time, the stratified effect of the radiomicsmodel on the

progression-free survival rate of ovarian cancer patients was illustrated.

Materials and methods: We retrospectively reviewed 161 patients with HGSOC

from April 2013 to January 2019. 18F-FDG PET/ CT images before treatment,

pathological reports, and follow-up data were analyzed. A randomized grouping

method was used to divide ovarian cancer patients into a training group and

validation group. PET/ CT images were fused to extract radiomics features of the

whole tumor region and radiomics features based on the Habitat method. The

feature is dimensionality reduced, andmeaningful features are screened to forma

signature for predicting the Ki-67 status of ovarian cancer. Meanwhile, survival

analysis was conducted to explore the hierarchical guidance significance of

radiomics in the prognosis of patients with ovarian cancer.

Results: Compared with texture features extracted from the whole tumor, the

texture features generated by the Habitat method can better predict the Ki-67

state (p < 0.001). Radiomics based on Habitat can predict the Ki-67 expression

accurately and has the potential to become a new marker instead of Ki-67. At

the same time, the Habitat model can better stratify the prognosis (p < 0.05).

Conclusion: We found a noninvasive imaging predictor that could guide the

stratification of prognosis in ovarian cancer patients, which is related to the

expression of Ki-67 in tumor tissues. This method is of great significance for the

diagnosis and treatment of ovarian cancer.
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Introduction

Ovarian cancer is one of the most common gynecological

cancers (Torre et al., 2018). In the past few decades, although the

survival rate ofmost tumors has improved, the 5-year survival rate of

ovarian cancer has not changed since 1980 (2). Most ovarian tumors

belong to high-grade serous ovarian cancer (HGSOC) (Kohn and

Ivy, 2017). They usually have extensive peritoneum (III stage) or

extraperitoneal (IV stage) spread in the late stage, and the risk of

recurrence and death is very high (Chen and Du, 2018). In the early

stages of treatment, most ovarian cancer patients respond to surgery

and platinum-based chemotherapy but patients often relapse and

develop resistance to chemotherapy (Jayson et al., 2014). Therefore,

the exploration of prognostic biomarkers for ovarian cancer patients

is constantly expanding.

Ki-67 is a kind of nuclear protein, which is expressed in the

whole cell cycle of proliferating cells except for G0 cells. It is closely

related to cell proliferation and invasion (Schlüter et al., 1993). In

ovarian cancer, there is a clear link between Ki-67 and recurrence

and prognosis of ovarian cancer (Deng et al., 2015a; Qiu et al., 2019).

Positron emission tomography (PET) is a kind of functional imaging

method, which can clarify the spatial distribution of the metabolic

activity through tracer uptake and accurately locate the malignant

lesion area combined with the anatomical information provided by

CT (9). Some studies have shown that ovarian cancer PET/CT has

higher preoperative staging accuracy than simple CT, and the

accuracy of CT and PET/CT staging is between 53%–55% and

55%–89% (Kemppainen et al., 2019; O’Connor et al., 2013;

Castellani et al., 2019). At the same time, PET/CT is more

accurate in detecting recurrence than other reference standards

(such as CA-125, CT, or MRI) (Limei et al., 2013). In other

cancers, the radiomics model composed of noninvasive PET/ CT

has had a good prediction effect, but it has not been reported in

ovarian cancer (Antunovic et al., 2017; Acar et al., 2019; Kong et al.,

2019). In this study, we used metabolic subregion evolution

(Habitat) to improve the prediction ability of the radiomics

model (Mu et al., 2020). In imaging medicine, the Habitat

method is often used to divide different tumor subregions

(reflecting different functional or material areas of the focus),

which is a method with strong application scenarios.

Materials and methods

Patients

This retrospective study was approved by the review committee

of our institution and was adherent to the principles and

requirements of the Declaration of Helsinki. This retrospective

study collected 197 patients with HGSOC in our hospital from

April 2013 to January 2019. The exclusion criteria are as follows: 1)

have suffered from other tumors, 2) no PET/CT scan performed, 3)

any targeted treatment before scanning, and 4) performed within

3 weeks before surgery with negative 18F-FDG uptake. At the same

time, the patients were operated on and treated according to NCCN

guidelines. After a regular and complete follow-up (imaging data),

the patients achieved progression-free survival. Progression-free

survival (PFS) refers to the time from randomization to the first

occurrence of disease progression or death from any cause. Finally,

161 patients were included in the study. The patients were randomly

divided into a training group (n = 112) and test group (n = 49).

18F-FDG PET/CT acquisition

Patients were fasting from food and water for more than 6 h, and

their blood sugar level was controlled below 7mmol/L. One hour after

intravenous injection of 18F-FDG (GE MINItrace II; GE Healthcare,

Milwaukee, WI) at 0.08–0.16 mci/kg, PET/CT was performed from

the head to the middle of the femur (GE Discovery PET/CT Elite; GE

Healthcare, Milwaukee, WI). A 3dimensional PET model was used,

with a matrix of 192 × 192 and an exposure time of 2 min/bed

position. Low-dose spiral CT was performed at 120–140 kV and

80 ma. After CT attenuation correction, PET images were

reconstructed using the algorithm of time-of-flight and point-

spread-function, including 2 iterations and 24 subsets.

Habitat generation and feature extraction

The workflow of radiomics is shown in Figure 1. For processing

images, we have standardized processing, and then in the process of

delineation and ROI processing we used LIFEx software (https://

www.lifexsoft.org/) and ITK-SNAP (http://www.itksnap.org/pmwiki/

pmwiki.php). Based on the metabolic threshold of PET images, we

quickly identified the tumor contour. On the python (version 3.8.5)

platform, we implemented the Otsu threshold way by self-built code,

and we obtained two metabolic subgroups that maximized the

variance between groups. Based on the threshold, the

corresponding tumors in PET images were divided into the high

metabolism region (the red region in Figure 2) and the low

metabolism region (the green region in Figure 2), representing

different Habitat subgroups. We define the difference in SUV

metabolism between these two subregions, and we define them as

PEThight and PETlow. So far, we have obtained three kinds of ROIs

based on PET images, including the whole tumor. Based on each ROI

and its effect on the image, we extract 1316 texture features, replace

the abnormal value of omics features with the average value, and then

separate the feature data according to the average value μ = 0 δ 2 = 1.

Feature selection and model
establishment

For the selection of models, we adopt a variety of methods,

such as PCC, PCA, and Lasso, to operate separately or in parallel
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many times, in order to remove redundant and strongly collinear

or correlated variables, reduce model parameters, make them

match the sample size of this study, and avoid overfitting or

underfitting phenomenon in the final prediction model.

For modeling, we use common classifiers (SVM, LAD, logistic

regression, decision tree, random forest, and the naive Bayesian

algorithm). In different models, the model with high AUC and

strong generalization ability is selected to be included in the final

model selection. According to the different ROI extracted, the feature

extracted from thewhole tumor region is calledR, and themodel based

on the Habitat region (PEThight and PETlow) extraction is Rhabitat.

Statistical analysis

SPSS statistical software (version 24.0; IBM), R (version 3.63),

and MedCalc Statistical Software version 15.2.2 (MedCalc

Software bvba, Ostend, Belgium; http://www.medcalc.org; 2015)

were used for all analyses. The clinical characteristics of the

training group and the validation group were statistically tested

to test their data distribution. The t test was used for data with

normal distribution and homogeneity of variance, and the U test

was used for data without normal distribution. The Delong test

was performed on different models in the training group and the

test group. Clinical decision curves and survival curves of different

group models were compared to explore the significance of PFS.

Results

Clinical features

The clinical characteristics of patients in the training group and

the validation group are shown in Table 1. There was no significant

difference in clinical characteristics between the two groups.

Description and comparison of prediction
models

The model takes the patient’s Ki-67 status (>50%) (Qiu et al.,

2019) as the label for modeling and analysis. The details of R and

Rhabitat models generated are shown in Table 2. According to the

diagnostic efficiency, we found that the Rhabitat model (the training

FIGURE 1
Schematic diagram of study design.
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group: the AUC value is 0.835, 95% CIs: [0.7240-0.9460], accuracy:

0.7919, sensitivity: 0.8377; the training group: the AUC value is 0.835,

95% CIs: [0.7240-0.9460], accuracy: 0.7919, sensitivity: 0.8377; the

training group: theAUCvalue is 0; the test group: AUC=0.8076, 95%

CIs: [0.7225-0.9611], accuracy: 0.7557, sensitivity: 0.8192) had the

highest diagnostic efficiency (Figure 3), higher than R (the training

group: AUC = 0.7670, 95% CIs: [0.6842-0.8498], accuracy: 0.7519,

sensitivity: 0.8077); the test group: the AUC value was 0.7488, 95%

CIs: [0.6583-0.8393], accuracy: 0.7223, sensitivity: 0.7892). In the

Delong test, we found that the efficiency of the Rhabitat model was

higher than that of the R model (p < 0.05).

Decision curve analysis and survival
analysis

The decision curve analysis (DCA) displays estimates of a series of

probability threshold (normalized) net benefits used to classify

observations as “high risk.” These curves help to assess a treatment

policy that recommends that the impact of a risk-based policy on the

population be comparedwith the “treat all” and “no treat” intervention

policies, thereby recommending treatment for patients estimated to be

“at high risk.” DCA of the two models is shown in Figure 4.

Through the aforementioned screening, we obtained the

combination model Rhabitat with strong classification and

prediction ability. In order to further explore its prediction

ability for the prognosis of patients with HGSOC, we drew

the survival curve and found that the model has a strong

prediction stratification ability, and the K-M test (Figure 5)

has a significant difference (p < 0.001).

Discussion

In this study, we developed and validated radiomics from

positron emission tomography (PET), computed tomography

FIGURE 2
Schematic diagram of Habitat method. (a) The blue area represents the whole tumor area; (b) Based on the whole tumor area, we have
implemented the subarea partition by habitat algorithm.

TABLE 1 Clinical characteristics of HGSOC patients in training and test groups.

Characteristic Training
group (n = 112)

Test group (n = 49) p value

Age, mean ± SD, year 53.22±9.31 53.43±10.52 p > 0.1

NACT p > 0.1

Yes 43 13

No 69 36

LNM

Yes 59 29 p > 0.1

No 53 20

FIGO stage p > 0.1

Stage III 72 33

Stage IV 40 16

Ascites p > 0.1

<200 ml 61 24

200ml–1000 ml 37 19

>1000 ml 14 6
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(CT), and the Habitat subregion to predict the Ki-67 status in

patients with ovarian cancer and to explore its role in prognostic

stratification. Patients can be divided into low-risk and high-risk

groups through the establishment of an imaging omics model.

There is a significant difference between the model using the

Habitat subregion and the traditional model.

In recent years, some scholars have proposed the molecular

classification of ovarian cancer related to prognosis, which is

marked as differentiation, immunoreactivity, mesenchymal, and

proliferative (Tothill et al., 2008; Verhaak et al., 2013). At the

same time, studies have shown that the molecular classification

based on CT imaging features can effectively distinguish ovarian

cancer and can be used as a predictor of prognosis (Vargas et al.,

2015). A multicenter study used computed tomography imaging

features to assess its association with disease progression time

and ovarian cancer transcriptomic characteristics and to develop

an image-based risk scoring system (Vargas et al., 2017). Studies

have also been conducted to explore the association between

proteomics and imaging omics. It is found that four proteins in

ovarian cancer patients are related to CT-based imaging. Among

them, the correlation between the CRIP2 protein and mesenteric

diseases is strongest, and the abundance of other three proteins

(STXVP2, ASS1, and CBD) is related to the heterogeneity of

tumor location (Beer et al., 2020). There are a lot of research on

prognosis but there are some problems of insufficient

explanation, such as trying to find the interpretable aspect of

gene transcription (Lu et al., 2019). Some studies suggest that

SUVmax and SUVmean are moderately correlated with the Ki-67

TABLE 2 Description of two models.

Model Standardization method Feature selection method Characteristic quantity Model classifier

R Z-score Recursive feature elimination 20 Auto-encoder

Rhabitat Z-score Kruskal–Wallis 8 Logistic regression

FIGURE 3
The ROC and calibration curve of R and Rhabitat. (a) The performance of training set and validation set on model R (based on whole tumor); (b)
The performance of training set and validation set onmodel Rhabitat (based on differentmetabolic sub-regions). (c)Demonstrate the calibration effect
of the R model; (d) Demonstrate the calibration effect of the Rhabitat model.
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index, which confirms the value of the PET image for Ki-67 but it

is difficult to accurately predict the expression of Ki-67 (Deng

et al., 2015b; Mayoral et al., 2018. We use the Habitat method to

generate two metabolic subregions with different metabolic

characteristics (Mu et al., 2020). In this experiment, the Otsu

scheme is used. The principle is to generate two parts so that the

overall similarity of each part is the highest and the difference

between different parts is the largest. Automatic segmentation is

realized by a variance correlation algorithm. At present, the

Habitat method has been applied in many medical images.

Some studies have shown that it can significantly improve the

performance of PFS and OS models in predicting locally

advanced cervical cancer patients in PET/ CT (16) and has a

significant predictive value for glioma prognosis (Verma et al.,

2020; Park et al., 2021), nasopharyngeal carcinoma (Xu et al.,

2020), lung cancer (Cherezov et al., 2019), and prostate cancer

(Parra et al., 2019). For this research model, the overall

characteristics of the tumor were eventually incorporated into

the PETmode high metabolic area and lowmetabolic area, where

the high metabolic area represented the strongest part of the

tumor activity, which had a significance for the prognosis of

patients (Pinho et al., 2020), while the PET low metabolism area

was often the edge of the tumor and correlated with immune

infiltration (Grove et al., 2021). At the same time, we should note

that Habitat subregions generated by PET modality are more

heterogeneous and eccentric, and are often associated with poor

prognosis (Mu et al., 2020). We used the random grouping

method to ensure the independence of data between the

training group and test group, and verified by the test group,

which showed that the PET/MR mode radiology model based on

the Habitat method has some generalization ability. We have also

noted that some scholars used enhanced CT scanning images to

process images with the Gaussian mixture model (another

common analysis method in the field of habitat analysis) to

identify cystic and solid tumor subregions and help ovarian

cancer patients with accurate puncture (Beer et al., 2021). The

Gaussian mixture model could aim to distinguish the

heterogeneity of mixture since its birth, which was

undoubtedly in line with the application background of the

aforementioned research. Just as the Gaussian mixture model

could better distinguish the cystic and solid parts of ovarian

cancer, our research used the Otsu model with maximized

variance between groups to identify areas with more active

metabolism to represent the tumor proliferation activity (Ki-

67) and prognosis. Our outlook for this technology provides a

noninvasive method to evaluate the activity of local lesions in

chemotherapy for patients with high-grade serous ovarian

cancer, which is also related to the overall survival time of

patients.

At the same time, this study has the following shortcomings

(Torre et al., 2018): a single center, that is, the lack of effective

external verification, will undoubtedly greatly affect the

generalization and application ability of the model (Lisio

et al., 2019); the PET modal images processed by Habitat have

been verified by the literature, but CT images were not included

in this study due to cautious attitude and early development

(Kohn and Ivy, 2017). For the study of PFS, there is a lack of

further involvement of clinical factors, which needs further

multicenter and large-scale data research.

Conclusion

Noninvasive imaging prediction indicators based on PET

images can guide the prognosis stratification of ovarian cancer,

which is related to the expression of Ki-67 in tumor tissues, and

the accuracy of Habitat is improved. In the diagnosis and

treatment of ovarian cancer, it is important to use a variety of

technical means to guide the prognosis and molecular typing,

especially for noninvasive means.

FIGURE 4
Decision curve analysis for R and Rhabitat.

FIGURE 5
The survival curves of Rhabitat.
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