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The nutrient availability and supplementation of dietary phosphorus (P) and

calcium (Ca) in avian feed, especially in laying hens, plays a vital role in phytase

degradation and mineral utilization during the laying phase. The required

concentration of P and Ca peaks during the laying phase, and the direct

interaction between Ca and P concentration shrinks the availability of both

supplements in the feed. Our goal was to characterize the active microbiota of

the entire gastrointestinal tract (GIT) (crop, gizzard, duodenum, ileum, caeca),

including digesta- and mucosa-associated communities of two contrasting

high-yielding breeds of laying hens (Lohmann BrownClassic, LB; Lohmann LSL-

Classic, LSL) under different P and Ca supplementation levels. Statistical

significances were observed for breed, GIT section, Ca, and the interaction

of GIT section x breed, P x Ca, Ca x breed and P x Ca x breed (p < 0.05). A core

microbiota of five species was detected in more than 97% of all samples. They

were represented by an uncl. Lactobacillus (average relative abundance (av.

abu.) 12.1%), Lactobacillus helveticus (av. abu. 10.8%), Megamonas funiformis

(av. abu. 6.8%), Ligilactobacillus salivarius (av. abu. 4.5%), and an uncl.

Fusicatenibacter (av. abu. 1.1%). Our findings indicated that Ca and P

supplementation levels 20% below the recommendation have a minor effect

on the microbiota compared to the strong impact of the bird’s genetic

background. Moreover, a core active microbiota across the GIT of two high-

yielding laying hen breeds was revealed for the first time.
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Introduction

The laying hen gastrointestinal tract (GIT) microbiota

consists of a complex community of diverse microorganisms.

The host influences the composition of the microbial

community, which may have effects on the immune system,

nutrient digestion, and regulation of intestinal physiology

(Stanley et al., 2014; Agus et al., 2018; Khan et al., 2020).

Depending on the diet and nutrient supplementation,

variations in microbial composition can be observed (Leeming

et al., 2021). Moreover, it is essential to understand the inter-

relation between diet, microbiota, and host when investigating

how they contribute to animal health.

Diets are formulated to fulfil the needs of the animals, and the

specifically required nutrient concentrations are dependent on

the host age, physiological status, and level of performance.

Among required minerals, phosphorus (P) and calcium (Ca)

are vital because of their function in avian biochemical pathways

and bone and eggshell development (Selle et al., 2009). However,

P supplements are costly and negatively impact the environment

when accumulated in the excreta of the animals. This has

stimulated research on hydrolysis of phytate, which is the

main binding form of P in plants, in poultry’s digestive tract

and variation in the level of P supplementation (Rodehutscord

et al., 2022). The influence of age, genotype and experimental

design variations affect the results’ comparability (Kebreab et al.,

2009; Ahmadi and Rodehutscord, 2012; Deusch et al., 2015;

Forgie et al., 2019). The Ca concentration of the feed is related to

P, and in laying hens, the highest Ca requirement is during the

laying period (Kebreab et al., 2009; Ahmadi and Rodehutscord,

2012). In this phase, the animal requirements must be fulfilled to

maintain animal health and performance. Digested and

undigested dietary compounds influence the microbial

population in the GIT, which modifies the host intestinal

integrity and improves pathogen resistance (Forgie et al.,

2019). Moreover, there is a microbial distinction between

mucosa and digesta samples (Deusch et al., 2015; Waite and

Taylor, 2015). Mucosa samples of the gastrointestinal tract have

shown higher microbial diversity than digesta samples (Borda-

Molina et al., 2016). The complex microbial diversity in both

sample types consists of hundreds of species across different

phyla, inhibiting a clear understanding of GIT variations (Borda-

Molina et al., 2016).

Little is known about the dynamics and influence of common

active bacteria on the GIT of laying hens. Therefore, the

microbiota’s response to a specific challenge and environment

by targeting the active community has to be reflected. Despite

showing similar diversity to total communities, the microbial

taxa composition is significantly different (Bastida et al., 2017).

Shade and Handelsman (2012) defined that the core microbiome

consists of shared microbial members within similar habitats and

across complex microbial assemblages. Furthermore, a core

microbiome is present and interacts in the entire GIT. In

addition, transient or resident bacteria can be considered a

core microbiome. It is an approach to understanding,

adjusting, and optimizing microbial functions in individuals

or complete ecosystems (Heumann-Kiesler et al., 2021;

Hofmann et al., 2021). Knowledge about microbial changes

across different GIT sections can help understand specific

processes, e.g., food fermentation or predicting and

controlling the microbiome (Giraffa, 2004; Stegen et al., 2018;

Berg et al., 2020).

This study aimed to evaluate the impact of different

concentrations of P and Ca on the active microbiota of the

GIT (crop, gizzard, duodenum, ileum, caeca) of two high-

yielding laying hen breeds and determine how the host

genetic background and dietary changes influence the resident

core microbiota.

Materials and methods

Sample collection, DNA extraction, and
illumina library preparation

This research complements and extends recent publications

(Sommerfeld et al., 2020; Heumann-Kiesler et al., 2021;

Hofmann et al., 2021). Samples originated from an animal

trial fully described by Sommerfeld et al. (2020). The study

was approved by the Regierungspräsidium Tübingen (approval

number HOH50/17 TE) and conducted following animal welfare

regulations. Animals were housed at the University’s Agricultural

Experimental Station (Unterer Lindenhof, Eningen, Germany).

A total of 80 laying hens of the breeds Lohmann brown-

classic (LB) and Lohmann LSL-classic (LSL) were used in this

study. Upon the arrival of the hatchlings at the farm, birds were

raised together under the same conditions (floor pens, deep litter

bedding on wood shavings, and diets). At 27 weeks, ten hens per

breed were allocated to four dietary treatments in a randomized

design and kept individually in metabolism units. The

individuals received water and feed for ad libitum

consumption for 3 weeks. Soybean meal and corn-based diets

were supplemented to reach a standard (5.3 g/kg dry matter

(DM); P+) or reduced (4.7 g/kg DM; P-) P concentration and a

standard (39.6 g/kg DM; Ca+) or reduced (33.9 g/kg DM; Ca-) Ca

concentration. Diets ingredient compositions are fully described

in Sommerfeld et al. (2020).

At 31 weeks of life, birds were stunned with a gas mixture of

35% CO2, 35% N2, and 30% O2 and sacrificed by decapitation.

The crop (Cr), gizzard (G), duodenum (D), ileum (I) and caeca

(Cae) were longitudinally opened, digesta was obtained with a

sterile spoon, and after a cleaning step with sterile phosphate-

buffered saline solution, the mucosa was collected by scratching it

with a sterile glass slide. Collected samples were immediately

stored in RNA later at −80°C until further analysis. RNA of a total

of 800 samples were extracted using Trizol (Invitrogen Inc.,
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Waltham, United States) according to the manufacturer’s

instructions with a preliminary step of bead beating (30 s,

5.5 m/s) in a FastPrep instrument (MP Biomedicals,

Eschwege, Germany). RNA was quantified with Nanodrop

(ThermoFisher Scientific, Waltham, United States) and stored

at −80°C until further analysis. RNA samples were treated with

the DNase kit (Invitrogen), and cDNA synthesis was performed

using SuperScript III First-Strand Synthesis System for RT-PCR

(Invitrogen).

Sequencing libraries were made according to the protocol

described by Borda-Molina et al. (2020). All PCR reactions were

done with PrimeSTAR® HS DNA Polymerase kit (TaKaRa,

Beijing, China). The first two PCR were prepared in a total

volume of 25 µl using 1 µl of cDNA template, 0.2 µM of each

primer and 0.5 U Taq prime start HS DNA and the third PCR

was set up in a total volume of 50 µl. An initial denaturation at

95°C for 3 min was followed by ten cycles (first and second PCR)

or 20 cycles (third PCR) of denaturation at 98°C for 10 s,

annealing at 55°C for 10 s and an extension at 72°C for 45 s

and a final extension of 72°C for 2 min. PCR products were

purified and standardized using SequalPrep Normalization Kit

(Invitrogen Inc., Waltham, United States) and sequenced using

250 bp paired-end sequencing chemistry on Illumina

Novaseq 6000.

Bioinformatics and statistical analysis

The bioinformatic analysis was performed with Mothur

v1.44.3 (Schloss et al., 2009). Raw reads (forward and reverse

fastq file) were assembled with make.contigs function. Reads

with ambiguous bases, with homopolymers (>8) and longer

than 354 bp were removed. A total of 678 samples passed this

filtering and were used for downstream-analysis. Sequences

were aligned to the silva.seed v1.38.1 (Quast et al., 2013).

Chimeras were identified using vsearch (Rognes et al., 2016)

and removed from the dataset. Sequences were classified using

the Bayesian classifier and the Silva reference and taxonomy

set silva.seed v1.38.1. The output was filtered to get the

amplicon sequencing variants (ASVs) with a minimum of

50 reads across all samples resulting in 6179 ASVs. An average

of 34.566 ± 17.567 reads were obtained per sample. The cut-off

for bacterial taxonomy classification followed the

recommendations of Yarza et al. (2014). Digesta and

mucosa samples have been merged for further analysis per

section and considered gastrointestinal tract sections. Sample

reads were standardized, and a sample-similarity matrix based

on the Bray-Curtis similarity coefficient (Bray and Curtis,

1957) was created using Primer6 (Clarke and Warwick, 2001).

PERMANOVA routine was used to study the significant

differences and interactions between groups and diets

(Clarke and Warwick, 2001). Steel-Dwass test was

performed to compare means of relative abundance data

between genera and breed (Br), gastrointestinal tract

section (GS), and Ca/P level combinations using JMP®Pro
(Version 16.1 SAS Institute Inc., Cary, NC, 1989–2021).

P-values based on ANOSIM results were adjusted using the

Benjamin-Hochberg correction (FDR). The core microbiota

across all samples was identified with the phyloseq and

microbiome library in R v4.1 (McMurdie and Holmes,

2013; Lahti et al., 2017). ASV table, taxonomy information,

and metadata were combined in a phyloseq file. Groups were

subset according to the metadata (diet, GS and Br) to create a

phyloseq file for each combination of the three factors. All

phyloseq files of all groups were standardized by ASVs. The

detection level of core members was set to 0.01% of abundance

and a prevalence of 97% across all samples. The output ASV

list was compared between all groups to determine the

common ASVs, and venn diagrams were drawn with the

InteractiVenn tool (Heberle et al., 2015).

The Shannon diversity index and richness were calculated

using the phyloseq library in R v4.1. LDA scores were analyzed

with microbiomeAnalyst (Chong et al., 2020). Data filter and

normalization were set to default. P-values threshold was set to

p = 0.05 and the FDR correction was applied. LEfSe-graphs were

built with the build-in graph builder (Segata et al., 2011).

Functional prediction was performed in R with the latest

version of Tax4Fun2 v1.1.5 (https://github.com/bwemheu/

Tax4Fun2). Bacterial genomes detected on the microbiota

dataset were downloaded from the NCBI database, and a

reference database was created to improve functional

accuracy. Functional predictions were then performed using

the reference file and the ASV table of all samples. The

threshold for clustering (uclast) was set to 100%, and the

number of 16S rRNA copies were normalized and calculated

for each ASV.

Results

Experiment evaluation

The overall microbiota consisted of 6179 ASVs, where

2272 ASVs were shared by all GIT sections, breeds, and

dietary treatments. LSL samples shared 2868 and the LB 2970

(Figure 1). The number of unique ASVs varied from 61 to 284,

depending on the breed and GIT section. Moreover, the breed

comparison of each GIT section revealed that many ASVs were

unique for each breed (Supplementary Figure S1).

According to the sequencing data, the microbiota of all samples

consisted of Firmicutes (average relative abundance [av. abu]) of

84.5% in LSL and 76.7% in LB (p < 0.05), followed by Bacteriodetes,

which was more abundant in LB (18.2%) in comparison to LSL

(10.7%) (p < 0.05) (Supplementary Figure S2A). Themost abundant

genera were Lactobacillus (25.1% LSL; 17.4% LB), followed by uncl.

Lactobacillaceae (21.2% LSL, 8.2% LB), uncl. Lachnospiraceae
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(10.8% LSL, 13.5% LB), and Ligilactobacillus (7.9% LSL, 12.5% LB).

These genera reached an average relative abundance of more than

50% across all samples (Supplementary Figure S2B). Additionally,

significant differences were found between breeds and GIT sections

within the breeds (Supplementary Table S1).

PERMANOVA routine was used to study the overall

significant differences and interactions between GIT sections,

laying hen breeds, P and Ca supplementation. A statistical

significance on ASV level was reached for each factor alone

(p < 0.03) and the interactions between Br x GS, Br x Ca, P x Ca, P

x Ca x Br (p < 0.03). A trend was observed for Br x P (p = 0.09)

(Supplementary Table S2). The principal coordinates analysis

plot revealed three clusters (Figure 2), one comprising the LSL

samples of crop, gizzard, duodenum and ileum, another with

those same samples but for the LB breed and a third one with the

caeca samples of both breeds.

In crop samples, significant effects of the breed and Ca and a

trend for the interactions of Br x Ca (p < 0.08) were observed. The

gizzard, duodenum and ileum microbiota were significantly

affected by the breed (p < 0.05). In the caeca, significant

effects of the breed, P/Ca supplementation, the interactions of

Br x Ca, Ca x Br, P x Ca x Br (p < 0.03) and a trend for P x Br were

detected (p < 0.08). All significant interactions are provided in

Supplementary Table S2.

Pairwise comparisons evaluating the Ca and P

supplementation effects on the breed and GIT section,

exhibited significant effects, depending on the GIT section.

For an overview, see Supplementary Table S3. A significant

difference was detected regarding P supplementation for LB

caeca P+ vs. P- (p < 0.01). An effect of the Ca supplementation

was observed in both breeds. In LB, a significant difference

was identified in crop Ca+ vs Ca- (p = 0.02) and caeca Ca + vs

Ca- (p < 0.01) was revealed. For LSL, significant differences

were observed in caeca Ca+ vs Ca- (p < 0.01). However, the

strongest effect was driven by the breed rather than GIT

section, Ca or P supplementation levels. The breed effect is

clearly shown in caeca samples (Supplementary Figure S3),

FIGURE 1
Distribution of the total number of ASVs among GIT sections across all samples in both breeds. The number in parenthesis is the observed
number of ASVs in each group.

FIGURE 2
Multidimensional scaling of centroids showing the similarities
among the sample types derived from sample combinations of GIT
section x breed.
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and all significant p-values are shown in Supplementary

Table S3.

The LB showed significantly higher overall Shannon diversity

(3.09) than LSL (2.93). A statistical significance between caeca

and all GIT sections was observed for both breeds (p < 0.05). For

the LB additional significances were observed between ileum and

crop and ileum and duodenum. (p < 0.03) (Figure 3). Regarding

the diet, the Shannon index differed depending on the GIT

section and breed combination. Still, no statistical significance

was observed between diets, with the highest index observed in

caeca (Supplementary Figure S4).

Functional prediction

A total of 322 pathways and 7516 functions were assigned to

the samples. Thirty KEGG pathways contributed to more than

50% of the total pathways across all samples and revealed

significant differences between breeds and/or GIT sections of

the same breed. These thirty KEGG pathways belonged to twelve

second-level KEGG functional categories. The global/overview

metabolism map was the most enriched function, followed by

membrane transport metabolism and signal transduction.

Significant effects in the caeca were observed for the breed

and the interaction of Br x P (p < 0.05) (Supplementary Table

S4). Two of the top 30 pathways [ko02010 (ABC transporters)

and ko00190 (oxidative phosphorylation)] showed significant

breed effects (p < 0.05). Despite the significance of breed × P

interaction, only one inositol related individual function [K06607

(myo-inositol catabolism protein IolS)] showed differences in

LSL (Supplementary Table S4). Regarding Ca supplementation

and its effect on the caeca, a significant difference was detected

for the myo-inositol catabolism protein IolS (K06607, p = 0.01) in

LSL, and scyllo-inositol 2-dehydrogenase (NADP+) (K22230, p <
0.05) in LSL and LB. In addition five other inositol related

functions show breed effects (Supplementary Table S4).

Core Microbiota

A total of five ASVs were present in 97% of all samples

(Figure 4). The core microbiota was represented by an uncl.

Lactobacillus (ASV62, av. abu. 12.1%), Megamonas funiformis

(ASV63, av. abu. 6.8%), Ligilactobacillus salivarius (ASV 137, av.

abu. 4.5%), Lactobacillus helveticus (ASV197, av. abu. 10.8%) and

uncl. Fusicatenibacter (ASV 561, av. abu. 1.1%). Except for the

gizzard of LB and caeca of both breeds, the five bacteria

accounted for 25%–71% of the total community

(Supplementary Table S5). Uncl. Lactobacillus was more

abundant in LSL compared to LB in all GIT sections

(Supplementary Table S5). The highest abundance of

Megamonas funiformis (ASV63) was observed in the crop of

both breeds (Supplementary Table S5). Ligilactobacillus

salivarius (ASV137) had the highest abundance in the crop

and the lowest in the caeca. Furthermore, it was present in

higher abundance in LB than LSL (Supplementary Table S5).

Also, significant differences were shown between breeds in crop

and between GIT sections within the breeds (p < 0.05,

Supplementary Table S5). Lactobacillus helveticus (ASV197)

was more abundant in all GIT sections of LSL, with the

highest average relative abundance in the ileum, followed by

duodenum and crop (Supplementary Table S5). Additionally,

significant differences between breeds in all GIT sections (p <
0.05, Supplementary Table S5). Uncl. Fusicatenibacter (ASV561)

FIGURE 3
Boxplot of Shannon diversity index separated by the breed, section (color) and Ca/P combination of the diet (*p < 0.02; ****p < 0.001).
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was detected in very low abundances across the gastrointestinal

tract (Supplementary Table S5). Moreover, significant differences

existed between breeds and GIT sections within the breeds (p <
0.05, Supplementary Table S5).

The effect of P andCa supplementation on
the genera distribution and the core
microbiome across the gastrointestinal
tract

The Ca supplementation affected the microbial composition

in LB crop (p < 0.05), and significant effects were found for the

genus uncl. Lactobacillaceae and Streptococcus (p < 0.01)

(Supplementary Figure S5). Further, the average relative

abundance of uncl. Lactobacillaceae increased while

Streptococcus decreased with Ca supplementation in the diet.

Despite the higher diversity of the caeca, fewer differences at

genus level were observed for Ca supplementation. Significant

changes in LSL were observed for uncl. Bacteroides, uncl.

Lachnospiraceae, Ligilactobacillus and Megasphaera in LB (p <
0.10) (Supplementary Figure S5). The average abundance of all

genera increased by supplementing Ca except for uncl.

Lachnospiraceae.

Significant shifts in the genera Helicobacter, uncl.

Gammaproteobacteria, and uncl. Prevotellaceae and the trends

for Lachnoclostridium and Megasphaera supported the

significant P effect in LB caeca (Supplementary Figure S5). In

addition, P supplementation increased the average abundance of

uncl. Prevotellaceae, Helicobacter, and Lachnoclostridium while

decreasing Megasphaera and uncl. Gammaproteobacteria.

LEfSe-analysis revealed the 25 most significant discriminant

ASVs for breed and diet based on the average abundance across

the factors combination (breed x diet). Even if no significance for

those ASVs was revealed by comparing the dietary groups within

the breeds, the average relative abundance changes across the

breed x diet combinations. Eleven ASVs were assigned to a

species (Lactobacillus kitasatonis, Ligilactobacillus aviarius,

Lactobacillus helveticus, Ligilactobacillus agilis, Megamonas

funiformis, Bifidobacterium longum, Sutterella timonensis and

Negativibacillus massiliensis) and additional eight were assigned

to a genus, the rest remained unclassified at lower taxonomic

levels (Figure 5). Additionally, two ASVs belong to the core

microbiota (ASV62, ASV197) and were more abundant in LSL

FIGURE 4
Scaled circulized heatmap of the five core microbiota separated by the GIT sections (crop, gizzard, duodenum, ileum, and caeca) and breed
(LSL, LB).
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compared to LB. Bacterial shifts were revealed across diets for

each breed, either increasing or decreasing abundance and

between the breeds, where some ASVs show higher relative

abundance in one breed compared to the other. These results

showed that the breed is the primary driver of microbial

composition, followed by the GIT section and Ca/P

supplementation.

Discussion

GIT microbiota in poultry is influenced by many exo- and

endogenous factors such as animal age, stress, genotype, or diet

(Wickramasuriya et al., 2022). Whereas the microbiome in

broilers is extensively researched, knowledge about laying hens

is scarce, especially the microbiota description along the whole

GIT. Microbiota stimulates the immune system, contributes to

host nutrition and pathogen inhibition, synthesizes amino acids

and vitamins, and has a role in breaking down complex

molecules and potential toxic feed components (Borda-Molina

et al., 2016). Changes in microbiota composition, either by feed,

disease or other external factors, can affect these functions; thus,

its understanding and characterization are of primary

importance. Therefore, this study aimed to identify differences

in the active microbiota composition along the GIT including

digesta and mucosa in two commercial breeds of laying hens fed

diets with dietary Ca and P concentrations 20% below the

recommended levels.

Among the factors studied in the present work, the breed had

the most significant effect on the microbial community, leading

to fluctuations in relative abundance on every taxonomic level

across the complete GIT. Consistently, breed disparities have

been reported in caecal samples of a recent study comparing Hy-

LineW36 and Hy-Line Brown (Adhikari et al., 2020). Depending

on the diet, such breed-related changes might be due to

differences in body weight and average daily feed intake

between breeds. Moreover, both breeds have different

mechanisms regarding P absorption (Abudabos, 2012) and the

significantly higher concentrations of inositol-6 phosphate and

inositol-5 phosphate in LB gizzard and caeca (Sommerfeld et al.,

2020) might be due to breed-dependent impacts of P, which

results in changes in the GIT microbial community.

FIGURE 5
Discriminant analyses of the 25most significant ASVs in caecal samples based on a LEfSe analysis showing the impact per diet (1: P+Ca+, 2: P-Ca-,
3: P+Ca-, 4: P-Ca+) and breed. The scale indicates the relative abundance in comparison to the average across the eight groups consisting of both
breeds and the four diets.
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Previous studies have only characterized themicrobiota of single

sections of the GIT or feces and showed similar results at phylum

and genus levels, as reported here (Stanley et al., 2012; Simon et al.,

2016; Ding et al., 2017; Adhikari et al., 2020; Schreuder et al., 2020;

Khan and Chousalkar, 2021; Su et al., 2021; Xiao et al., 2021). The

use of different breeds also didn’t affect the overall picture of the

microbiota, being the main bacterial groups detected across all

studied breeds (Ding et al., 2017; Huang et al., 2019; van der Eijk

et al., 2019). There is still a discussion on whether richness in

microbiome composition is positively (Stanley et al., 2012; Stanley

et al., 2014; Yan et al., 2017) or negatively (Siegerstetter et al., 2017)

correlated to animal health. The present study found the highest

diversity in the caeca, followed by the duodenum and ileum, with

statistical differences between breeds. The highest diversity in caeca

is consistent with previous studies (Borda-Molina et al., 2016; Fu

et al., 2018).

Besides the differences in diversity index, the animal breed

affected phyla abundance and species distribution, which was

previously reported in broilers (Paul et al., 2021). We detected

fewer Firmicutes and higher levels of Bacteroidetes in LB than in

LSL. Khan et al. (2021) reported that a lower abundance of

Firmicutes in laying hens is associated with a decrease in certain

bacteria, including Peptostreptococcus (Khan and Chousalkar, 2021)

which is contrary to the recent study, where LB with lower

abundances of Firmicutes compared to LSL showed no decrease

in Peptostreptococcus. On the other hand, Bacteroidetes was

significantly higher in LB and an increased abundance of

Bacteroidetes has been associated with later stages of the laying

phase, where the abundance of Firmicutes decreases and

Bacteroidetes overtakes (Joat et al., 2021).

One of our aims was to identify the effect of lower

supplementation of Ca and P in the GIT, because an insufficient

supply of one or both minerals might reduce animal growth and

bone mineralization due to interference with homeostasis (Shafey

et al., 1990) and change themicrobial community of the laying hens.

Members of Ligilactobacillus, Megasphaera, Lachnospiraceae,

Bacteroides, Helicobacter, Prevotellaceae, Lachnoclostridium,

Streptococcus and Lactobacillaceae were affected by the diets. The

relative abundance of Lachnospiraceae decreased with Ca

supplementation, which might have a negative impact to gut

health as members of Lachnospiraceae are related to the

production of butyrate, crucial for the metabolism of the

epithelial tissue (Biddle et al., 2013). The genus Megasphaera is

known to be part of the SCFA production in the caeca of laying hens

(Gan et al., 2020). In our study, the higher Ca supplementation was

causing a decrease in this genus’s abundance and might have

reduced the SCFA production in LSL. Ligilactobacillus and other

members of the family Lactobacillaceae are known colonizers of the

GIT of laying hens (Forte et al., 2018). In this study, their prevalence

changed depending on Ca and P supplementation, breed and GIT

section. Members of these genera are usually associated with

improved GIT health, productive performance and regulators of

the immune system (de Cesare et al., 2017; Forte et al., 2018). In

addition, Streptococcus is closely related to productive performance

with negative correlations to feed conversion ratio (Gan et al., 2020).

Higher levels of ASVs belonging to this genus were observed in LB

hens supplemented with higher Ca levels and that had probably led

to the reduced average daily feed intake under the same conditions

in this breed (Sommerfeld et al., 2020). Moreover, in a companion

study that used the same hens, P- affected the immune system by

increasing immune cell numbers and mitogen-induced response of

innate and adaptive immune cells (Hofmann et al., 2021). In

contrast, the relative abundance of potential pathogen

Helicobacter increased with higher levels of P in the diet, which

could have indicated some effect on the immune system (Fox, 1997;

Miao et al., 2020); however, the numbers of T cells and CD4+

increased in the same hens (Hofmann et al., 2021).

Most of the top 25 discriminant ASVs had higher relative

abundances in LB compared to LSL, depending on the feature

and the fed diet. Finally, the impact of the diet on the

microbial composition showed that the offered diets were

not challenging the laying hens GIT microbiota. Jing et al.

(2018) reported that a reduction to 0.15% available P in the

feed was not affecting growth, productive performance, and

mRNA expression of P transporters in hens. It was assumed

that a lower P and Ca supplementation might lead to

functional shifts, as this was observed in a study with

probiotic supplementation compared to a standard diet

(Iqbal et al., 2021). But, the predicted functional pathways

revealed no overall direct influence of P and Ca in the present

study.

Previous studies in layers revealed that members of

Lactobacillaceae, Bacteroidaceae, Lachnospiraceae,

Ruminococcaceae, Veilonellaceae, Prevotellaceae,

Clostridiaceae, Rickenellaceae, or Enterobacteriaceae account

for the core microbiota (Videnska et al., 2014; Ngunjiri et al.,

2019). However, none of the studies combined the information

across the complete GIT or targeted the active microbiota. In the

present study, five core bacteria were detected across 97% of the

samples; uncl. Lactobacillus, Megamonas funiformis,

Ligilactobacillus salivarius, Lactobacillus helveticus and uncl.

Fusicatenibacter. Considering the high number of samples

(n = 678) and the microbiota variation across the GIT, with

common colonizers appearing or not in each GIT section digesta

and mucosa, the likelihood of finding a core microbiota across all

samples decreases (Johnson et al., 2018; Lee et al., 2019; Clavijo

et al., 2022). In addition, the detection limit to classify a bacteria

as a core member was set to its presence in more than 97% of the

total sample number. This percentage is higher than the 50%

coverage in Clavijo et al. (2022) and the 75% in Ngunjiri et al.

(2019).

All core members are associated with animal health

improvement and gut homeostasis. The genus Lactobacillus

involves host-adapted lactic acid bacteria that colonize the

digestive tract of humans and animals (Zheng et al., 2020) and

is part of the core microbiome in the ileum and caeca of laying
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hens (Videnska et al., 2014; Ngunjiri et al., 2019). A beneficial

effect on egg size and weight induced by Lactobacillus cultures

as probiotics was reported (Volf et al., 2021); however, in this

study, LSL layers colonized with higher abundances of

Lactobacillus had lighter egg weights (Sommerfeld et al.,

2020). Previous studies have reported M. funiformis as a

hydrogen consumer in laying hen’s caecal microbiome

(Zheng et al., 2020; Volf et al., 2021). It is a characteristic

bacterium in adult hens (Volf et al., 2021) and accounted for

the core microbiota in a recent broiler study (Clavijo et al.,

2022). In our study, M. funiformis was found in higher

abundance in crop, ileum, duodenum and gizzard samples

and almost disappeared in the caeca, which is partially in

contrast to the findings of Gan et al. (2020) as they observed

the genus Megamonas in higher abundances in caeca. The

genusMegamonas has been previously described in ducks and

humans as an important fermenter of glucose into acetate and

propionate, which provide health benefits to the host (Chevrot

et al., 2008; Sakon et al., 2008). It can be postulated that M.

funiformis fermented glucose mainly in the upper digestive

sections and was displaced in the caeca by other SCFA-

producing bacteria. Further, L. salivarius is commonly

isolated from the intestine or faeces of birds and was part

of the core microbiome in a recent laying hen study (Ngunjiri

et al., 2019). Their response to food-borne pathogens by an

antibacterial activity influences the host immune system and

the microbial composition (Messaoudi et al., 2013). The LSL

hens had a higher abundance of L. salivarius, and higher

amounts of leukocytes, thrombocytes, monocytes, T cells, T

helper cells, and cytotoxic T than LB (Hofmann et al., 2021),

which might be a response of the host system to potential

pathogens or a breed-dependent reaction to the housing

conditions (Moe et al., 2010). L. helveticus is an early

colonizer of the broiler GIT (de Cesare et al., 2017).

Besides the function in pathogen reduction, this bacteria

correlated positively with Ca absorption and bone

metabolism in vitro (Narva et al., 2004). Overall, L.

helveticus was less abundant in the crop than duodenum

and ileum, with main differences between the GIT section

of each breed, specifically in LSL. Moreover LSL might be

more sensitive to stress, resulting in a more intense immune

response and increased blood components (Hofmann et al.,

2021) and the potential pathogen reduction and a decrease in

stress-induced symptoms can be a breed-related effect. Uncl.

Fusicatenibacter belongs to the family Lachnospiraceae and

was previously associated with host GIT health (Biddle et al.,

2013), and detected in the ileum and caeca of laying hens (van

der Eijk et al., 2019) with a constant presence from day 1 to

week 40 (Asakura et al., 2021). A recent study, using

metagenomic analysis, showed several protologues for new

candidatus Fusicatenibacter (Gilroy et al., 2021), this bacterial

group was more abundant in crop and might be involved in

the first steps of feed digestion together with M. funiformis.

The taxonomic core microbiota are microorganisms of a

dataset that are postulated to indicate inherent functional

relationships with the host. They have the potential to be

targeted for culturing and other omics analyses and can be

used towards understanding the functional meaning of the

core to the laying hen (Neu et al., 2021). The knowledge of the

active core microbiota further develops hypotheses about their

role within the microbiome.

For the first time, the current study presents data on the

active microbiota associated with the whole GIT of two high-

yielding laying hen breeds and the core active

microorganisms detected in more than 97% of the

samples. Significant differences in the microbiota

composition were observed between the breeds which was

unexpected to such an extent as hens were housed in the

same stable, under the same conditions at the same time.

Furthermore, we showed that a reduction of circa 20% of Ca

and P concentration in the feed compared to the current

standard had no effect on microbiota distribution and

predicted functions.
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