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Background: Neuromuscular Electrical Stimulation (NMES) is an emerging

assistive technology applied through surface or implanted electrodes to

augment skeletal muscle contraction. NMES has the potential to improve

function while reducing the neuromuscular impairments of spastic cerebral

palsy (CP). This scoping review examines the application of NMES to augment

lower extremity exercises for individuals with spastic CP and reports the effects

of NMES on neuromuscular impairments and function in spastic CP, to provide a

foundation of knowledge to guide research and development of more effective

treatment.

Methods: A literature review of Scopus, Medline, Embase, and CINAHL

databases were searched from 2001 to 2 November 2021 with identified

inclusion and exclusion criteria.

Results:Out of 168 publications identified, 33 articles were included. Articles on

three NMES applications were identified, including NMES-assisted

strengthening, NMES-assisted gait, and NMES for spasticity reduction.

NMES-assisted strengthening included the use of therapeutic exercises and

cycling. NMES-assisted gait included the use of NMES to improve gait patterns.

NMES-spasticity reduction included the use of transcutaneous electrical

stimulation or NMES to decrease tone. Thirteen studies investigated NMES-

assisted strengthening, eleven investigated therapeutic exercise and

demonstrated significant improvements in muscle structure, strength, gross

motor skills, walking speed, and functional mobility; three studies investigated

NMES-assisted cycling and demonstrated improved gross motor skills and

walking distance or speed. Eleven studies investigated NMES-assisted gait

and demonstrated improved muscle structure, strength, selective motor

control, gross motor skills, and gait mechanics. Seven studies investigated

NMES for spasticity reduction, and five of the seven studies demonstrated

reduced spasticity.
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Conclusion: A growing body of evidence supports the use of NMES-assisted

strengthening, NMES-assisted gait, and NMES for spasticity reduction to

improve functional mobility for individuals with spastic CP. Evidence for

NMES to augment exercise in individuals with spastic CP remains limited.

NMES protocols and parameters require further clarity to translate

knowledge to clinicians. Future research should be completed to provide

richer evidence to transition to more robust clinical practice.

KEYWORDS

cerebral palsy, exercise, transcutanenous electric nerve stimulation, gait,
neuromuscular electrical simulation

1 Introduction

Cerebral palsy (CP) is the most common motor disability in

childhood, affecting 1.5 to 4 per 1,000 live births and presenting

as spastic, dyskinetic, and ataxic types of CP, depending on the

location of early brain injury (Bax et al., 2005). Spastic CP is the

most common type of CP characterized by four interrelated

neuromuscular impairments associated with corticospinal tract

injury: muscle weakness, short muscle-tendon length relative to

bone, spasticity, and impaired selective motor control (SMC)

(Bax et al., 2005; Wright M. et al., 2012; Zhou et al., 2017).

Dyskinetic CP is characterized by involuntary muscle

contractions imposed on purposeful movement, limiting

functional mobility, and is thought to be associated with basal

ganglia injury (Sanger, 2015). Ataxic CP impairs balance and

coordination associated with an injury in the cerebellum of the

brain (Imamura et al., 1992; Rankin et al., 2010). Depending on

the location of brain injury, an individual may present with

symptoms of more than one type of CP (Schiariti et al., 2018).

This review focuses on neuromuscular electrical stimulation

(NMES) application to augment lower limb exercise for

individuals with spastic CP, affecting around 80% of children

with CP (Novak, 2014; CDC, 2020). Spastic CP can involve

unilateral or bilateral limbs. In milder cases of CP, the lower limb

is more affected distally, than proximally. Functional mobility in

spastic CP is described by the Gross Motor Function

Classification System (GMFCS). GMFCS levels range from I

to V, with GMFCS I being mild and GMFCS V being the

most severe (Palisano et al., 2007), and are reported in this

review.

NMES is an emerging assistive technology applied as surface

stimulation through electrodes placed over the skin or directly to

the muscle via implanted electrodes to initiate or augment

skeletal muscle contraction through intact peripheral nerves

(Mooney and Rose, 2019; Wright et al., 2012). NMES applied

through surface electrodes is the most common application as

it is a non-invasive technique and generally well tolerated

(Mooney and Rose, 2019). Electrodes are commonly placed

over the motor point where the motor nerve innervates

the muscle (Botter et al., 2011). The application of NMES

to achieve functional movements is often referred to as

Functional Electrical Stimulation (FES) (Masani and Popovic,

2011). The application of low-intensity electrical stimulation

primarily targeting nerves, referred to as Transcutaneous

Electrical Nerve Stimulation (TENS), is routinely used for

pain management and has the potential to improve motor

function in patients with neurodegenerative disorders (Levin

and Hui-Chan, 1992; Vance et al., 2012; Kroeling et al., 2013).

NMES applications include the use of NMES-assisted

strengthening, NMES-assisted gait, and NMES spasticity

reduction.

NMES parameters that control stimulation vary based on

clinical application, targeted muscles, and individual tolerance

(Maffiuletti, 2010). Parameters reported in this review include

stimulation frequency, intensity, pulse width, timing (on/off

ratio), and ramp. The frequency of electrical stimulation refers

to the number of times a pulse of current is applied within one

second, measured in Hertz (Hz). Higher frequencies generally

produce more muscle activation as long as the individual pulses

reach muscle fibers after their refractory period, do not result in

neurotransmitter depletion, or do not block nerves otherwise

(e.g., nerve blocking with monophasic high-frequency

stimulation or with charge-balanced kilohertz frequency

alternating current), therefore, it generates more force and can

lead to increased fatigue and lower tolerance (Chaudhuri and

Behan, 2004; Gorgey et al., 2009; Wegrzyk et al., 2015). Intensity

or pulse amplitude refers to the amount of current delivered, or

the voltage applied to the electrodes (respectively resulting in

change of the current delivered) during each pulse. It is measured

in milliamperes (mA) for current-controlled and Volts for

voltage-controlled stimulation, where the current is

proportional to the voltage. Pulse width refers to the

duration between the start and end of each electrical pulse

and is typically reported in microseconds (μs). Longer pulse

widths are associated with increased muscle force; however,

shorter pulse widths may provide patients with more comfort

and increased tolerance (Mogyoros et al., 1996; Knash et al.,

2003; Mang et al., 2011, 2011). Timing (on/off) refers to the

duration the stimulation with a given frequency is turned on

versus turned off, typically reported in seconds, whereas ramp

refers to the gradual increase followed by a gradual decrease in

stimulation intensity to facilitate adaptation, reduce the
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likelihood of discomfort, and promote smooth gradations of

tetany between different muscle groups (Baker et al., 2000; Bijak

et al., 2005).

A growing body of evidence supports the use of NMES in the

treatment and care of individuals with CP (Mooney and Rose,

2019; Novak et al., 2020). In this review, treatments were

categorized into NMES-assisted strengthening exercises

(therapeutic exercise and cycling), NMES-assisted gait

(overground and treadmill walking for neuroprosthetic and

neurotherapeutic effects), and NMES for spasticity reduction

(during strengthening exercise and gait which typically targets

spastic muscles with lower frequency stimulation using TENS

parameters). The ultimate goal of NMES for individuals with CP

is to improve functional mobility and quality of life.

Muscle weakness is a common impairment in individuals with

CP and significantly impacts their ability to function and

participate in activities. Weakness is primarily caused by

neurological impairment, including reduced motor-unit firing

and by muscle structural changes including in the muscle

fascicles such as fatty replacement, in sarcomeres, and in

muscle fiber size variability (Huijing, 1998; Elder et al., 2003;

Lieber et al., 2004; Foran et al., 2005; Rose and McGill, 2005;

Malaiya et al., 2007; Stackhouse et al., 2007; Barber et al., 2012;

Noble et al., 2014; Zhou et al., 2017). Evidence indicates that use of

NMES for augmenting exercise increases microvascular perfusion

in the stimulated skeletal muscle (Clemente et al., 1991; Moloney

et al., 2006; Bahadori et al., 2017). This decreases the diffusion

distance in the stimulated muscle tissue and enhances the

exchange of nutrients and metabolites between the blood and

tissue, improving physiological muscle function. Given the vital

role of muscle tissue (e.g., in maintaining stable glucose

metabolism), NMES might further benefit the overall quality of

life in individuals across all GMFCS levels.

Accurate interpretation of research requires relevant,

validated outcome measures. Therefore, this review includes

studies that report outcome measures recommended as

Common Data Elements (CDE) by The National Institute of

Neurological Disorders and Stroke (NINDS) (Grinnon et al.,

2012). The CDE database is structured by diagnosis and includes

CDEs recommended for CP.

Using the NINDS CDE database, there are several ways to

measure and assess changes in strength in individuals with CP

(Table 1). These include both direct strength measures, such

as Manual Muscle Testing and Maximum Voluntary Isometric

Contraction Testing, as well as measures of functional

mobility, such as temporal-spatial parameters of gait (Lee

et al., 2008), 3D gait analysis of kinematics and kinetics

including the Gait Deviation Index (GDI) (Schwartz and

Rozumalski, 2008), 6 Minute Walk Test (6MWT) (Maher

et al., 2008) which reflects gait distance, Timed Up and Go

(TUG) (Kaya Kara et al., 2019), and Gross Motor Function

Measure (GMFM) (Russell et al., 2000). Although not CDE

outcomes, dynamometry and timed sit to stand are often used

to reflect changes in muscle strength and function in

individuals with CP. Changes in muscle physiology can be

assessed indirectly through muscle structure using

musculoskeletal ultrasound (US) and Magnetic Resonance

Imaging (MRI). Our review also identified in certain

studies the CDE measures of Selective Control Assessment

of the Lower Extremity (SCALE) (Fowler et al., 2009) for

assessment of SMC.

This scoping review examines the application of NMES to

augment lower extremity exercises for individuals with spastic

CP, and reports the effects of NMES on neuromuscular

impairments and function in spastic CP, to provide a

foundation of knowledge that can guide research to advance

the field and provide more effective treatment.

2 Methods

Given the extent of the literature, we determined that the most

appropriate type of review for this field is a scoping review (Pollock

et al., 2022). The primary goal of our review was to give a

comprehensive assessment of the current use of NMES for

augmenting exercise for individuals with spastic CP. We also

sought to identify knowledge gaps to guide future research

directions. The Preferred Reporting Items for Systematic Reviews

and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR)

checklist was utilized to guide this review (Tricco et al., 2018).

A literature search was completed using Scopus, Medline,

Embase, and CINAHL databases with additional publications

referenced through the primary search. The search was

completed on 2 November 2021, using the following

keywords and Boolean operators: “spastic cerebral palsy”

AND “neuromuscular electrical stimulation” OR

“functional electrical stimulation”. The inclusion criteria

for the articles were as follows: 1) the study involved

individuals with CP, 2) the study reported outcome

measures recommended by CDE for CP and were related

to muscle strength and function, gait temporal-spatial

parameters, and kinematics as identified in Table 1; 3) the

study incorporated a known NMES dosage (session, duration,

and frequency) with a known exercise component, such as

strengthening, cycling, gait training; 4) the study was

available in English; and 5) the study was published as a

full-text manuscript. The exclusion criteria for the articles

were as follows: 1) NMES was not a component of the study,

2) exercise was not a component of the study, 3) duration of

treatment period was less than 4 weeks or not reported; 4)

investigated muscles were not involving lower extremities; 5)

articles were from dissertations, conference posters, or

abstracts, 6) studies were published before 2001.

Using recommendations by the National Institute of

Neurological Disorders and Stroke (NINDS), the authors used

publications reporting at least one common data element (CDE)
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outcome measures specific to the diagnosis of CP. Each

publication was given a level of evidence based on the Oxford

Centre for Evidence-Based Medicine 2011 Level of Evidence

guidelines (Howick, 2011). Data were extracted by the authors

(KG, CJ, KS, BB) for each publication but unblinded to the results

of other authors.

3 Results

The initial 5-database search resulted in 168 publications,

and an additional 41 articles were identified from references.

Fifty-one articles were duplicates. The authors used titles and

abstracts to screen the publications for the relevance of exercise

programs involving the lower extremity. Fifty-seven articles were

discarded due to diagnoses other than spastic CP or study aims

outside the scope of exercise. One hundred and one articles,

including seven review articles, met criteria and were fully

reviewed by the authors; however, 68 were excluded upon

further review for different populations (n = 5), absence of

CDE for CP outcome measures (n = 6), lack of NMES

intervention (n = 10), inadequate or unreported treatment

duration (n = 10), lack of exercise component (n = 11),

language other than English (n = 2), muscle groups other

than lower extremities (n = 6), non-qualifying publication

type (n = 15), and published before 2001 (n = 3). Based on

these inclusion criteria, this scoping review includes a total of

33 articles, 26 intervention studies, and seven reviews. See

Figure 1 for the publication search flow chart.

The literature was categorized by the application of

NMES, including NMES-assisted strengthening, NMES-

assisted gait, and NMES for spasticity reduction. Extracted

variables included the study’s aim study design, age of

participants, sample size, limb involvement (bilateral and/

or unilateral), GMFCS level, device type, targeted muscle,

NMES dose (number of weeks, sessions per week, and time

per session), NMES parameters (frequency, intensity, pulse

width, timing, ramp, waveform, and mode), and CDE

outcomes recommended by NINDS, detailed in Tables 2–4.

3.1 Neuromuscular electrical stimulation-
assisted strengthening

A total of fourteen articles were included for NMES-assisted

strengthening, as shown in Table 2. NMES-assisted

strengthening interventions included NMES augmenting

therapeutic exercise, pre-operative surgical preparation, post-

operative recovery, and NMES-assisted cycling. Several articles

overlapped in the type of intervention, such as strengthening and

spasticity reduction.

3.1.1 Neuromuscular electrical stimulation-
assisted therapeutic exercise

Eleven studies reported NMES-assisted therapeutic exercise

intervention: one case report (Daichman et al., 2003), one case

series (Greve and Colvin, 2021), one pilot study (Stackhouse

et al., 2007), two prospective trials (Nunes et al., 2008; Rajalaxmi

TABLE 1 NINDS Common Data Elements (Grinnon et al., 2012) outcome measures identified in the articles reviewed, assessing motor function,
spasticity, movement, functional mobility, and Quality of Life.

US Ultrasound

MRI Magnetic Resonance Imaging

6MWT (Maher et al., 2008) 6 Minute Walk Test

TUG (Kaya Kara et al., 2019) Timed Up and Go

WS Walking Speed

IGA Instrumented Gait Analysis

GDI (Schwartz and Rozumalski, 2008) Gait Deviation Index

SAGV Stride Analysis and Gait Variability

OGS (Mackey et al., 2003) Observational Gait Scale

GMFM (Russell et al., 2000) Gross Motor Function Measure

PEDI (Haley, 1992) Pediatric Evaluation of Disability Inventory

LAQ (Mackie et al., 1998) Lifestyle Assessment Questionnaire

PEM-CY (Coster et al., 2010) Participation and Environment Measure for Children and Youth

WeeFIM (Ottenbacher et al., 2000) Functional Independent Measure for Children

COPM (Law et al., 1990) Canadian Occupational Performance Measure

SCALE (Fowler et al., 2009) Selective Control Assessment of the Lower Extremity

MAS (Mutlu et al., 2008) Modified Ashworth Scale

TS (Gracies et al., 2010) Tardieu Scale

Common data elements (CDE) by the national institute of neurological disorders and stroke (NINDS).
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et al., 2017), two prospective controlled studies (Karabay et al.,

2015; Mukhopadhyay et al., 2017), and four randomized

controlled trials (RCT) (Kerr et al., 2006; Khalili and

Hajihassanie, 2008; Arya et al., 2012; Qi et al., 2018).

Strengthening involved both home and clinic interventions

using portable NMES devices with surface or implanted

electrodes focused on the quadriceps, gastrocnemius, and

tibialis anterior muscles. NMES was applied during

positioning, stretching, facilitated exercises, strengthening,

activities of daily living, balance, posture, and gait exercises

(Daichman et al., 2003; Kerr et al., 2006; Stackhouse et al.,

2007; Khalili and Hajihassanie, 2008; Nunes et al., 2008; Arya

et al., 2012; Karabay et al., 2015; Mukhopadhyay et al., 2017;

Rajalaxmi et al., 2017; Qi et al., 2018; Greve and Colvin, 2021).

Dosage consisted of 15–60 min, one to seven times per week for

4–16 weeks. See Table 3 for specific NMES parameters and

dosage for each study.

Ten studies using NMES-assisted therapeutic exercise

reported improvements in muscle structure, strength, gross

motor skills, WS, and functional mobility (Daichman et al.,

2003; Stackhouse et al., 2007; Khalili and Hajihassanie, 2008;

Nunes et al., 2008; Arya et al., 2012; Karabay et al., 2015;

Mukhopadhyay et al., 2017; Rajalaxmi et al., 2017; Qi et al.,

2018; Greve and Colvin, 2021). Two studies examined muscle

cross-sectional area (CSA) using ultrasound or MRI and

found an increase in CSA values of the quadriceps

(Stackhouse et al., 2007), tibialis anterior (Karabay et al.,

2015), and gastrocnemius (Karabay et al., 2015). Two

studies reported an increase in quadriceps strength assessed

with dynamometry (Daichman et al., 2003; Stackhouse et al.,

2007). Six studies conducted the GMFM (Kerr et al., 2006;

Nunes et al., 2008; Arya et al., 2012; Mukhopadhyay et al.,

2017; Qi et al., 2018; Greve and Colvin, 2021), and four of the

six studies reported positive changes in gross motor skills

(Nunes et al., 2008; Mukhopadhyay et al., 2017; Qi et al., 2018;

Greve and Colvin, 2021). Two studies reported improvement

in functional mobility using the PEDI (Daichman et al., 2003)

and FMS (Greve and Colvin, 2021). Studies also reported

improvement in gait (Daichman et al., 2003; Arya et al., 2012;

Mukhopadhyay et al., 2017; Rajalaxmi et al., 2017), WS

(Stackhouse et al., 2007; Arya et al., 2012; Mukhopadhyay

et al., 2017; Qi et al., 2018), and endurance (Greve and Colvin,

2021) following NMES. Five studies (Daichman et al., 2003;

Kerr et al., 2006; Stackhouse et al., 2007; Khalili and

Hajihassanie, 2008; Greve and Colvin, 2021) commented on

adherence with 90–100% tolerance for using NMES by

individuals participating in these studies. See Table 4 for

CDE outcomes and results of each study.

FIGURE 1
PRISMA flowchart of the study selection process.
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TABLE 2 Articles reviewed reporting level of evidence, participant characteristics, NMES intervention, and outcomes measures.

Intervention/
Authors
(year)

NMES
Intervention

Evidence
Level

Study
Design

Age
(years)

Sample
Size

GMFCS
Level

Limbs Muscle NMES
Duration
(weeks)

Frequency
of use
(days/
week)

Session
duration
(min)

Strengthening

Arya et al. (2012) Strengthening 2 RCT 7–14 10 - Bilateral,
Unilateral

Quads, TA 4 4–5 20–30

Daichman et al. (2003) Strengthening,
Spasticity Reduction

4 CR 13 1 - Bilateral Quads 6 3–4 5–15

Greve and Colvin, 2021) Strengthening 4 CS 9–15 3 II Bilateral Quads 6 7 15–30

Karabay et al. (2015) Strengthening,
Spasticity Reduction

3 PCS 3–14 28 I-V Bilateral GS, TA 4 5 30

Kerr et al. (2006) Strengthening 2 RCT 5–16 60 - Bilateral Quads 16 5 60

Khalili and Hajihassanie,
2008

Strengthening,
Spasticity Reduction

2 RCT 11–14 11 - Bilateral Quads 4 3 30

Mukhopadhyay et al.
(2017)

Strengthening 3 PCS 7–14 26 I-III Bilateral,
Unilateral

TA 12 5 30

Nunes et al. (2008)
(Nunes et al., 2008)

Strengthening 3 PT 7–15 10 - Unilateral TA 7 1–2 30

Qi et al. (2018) Strengthening 2 RCT 4–9 100 - - TA 6 5 20

Rajalaxmi et al. (2017) Strengthening,
Spasticity Reduction

3 PT 5–10 30 - Bilateral TA 8 5 15–20

Stackhouse et al. (2007) Strengthening 3 PS 8–12 11 II-III Bilateral Quads, GS 12 3 15/muscle

Armstrong et al. (2020) Cycling 2 RCT 6–18 21 II-IV Bilateral,
Unilateral

Gluteals, Quads,
HS, GS, TA

8 3 30

Johnston and
Wainwright, 2011

Cycling 4 CR 49 1 II Bilateral Gluteals, Quads,
HS, GS

12 3 30

Özen et al. (2021) Cycling, Spasticity
Reduction

2 RCT 4–12 25 I-III Bilateral Quads, HS, GS, TA 4 5 30

Gait

Chan et al. (2004) Gait 4 SSRD 4–11 12 - Bilateral,
Unilateral

GS 4 3 15

Damiano et al. (2013) Gait 3 PT 8–19 14 I-II Bilateral,
Unilateral

TA 40 7 360

Gonçalves et al. (2019) Gait 4 SSRD 4–7 4 I-II Unilateral GS 8 3 50

Johnston et al. (2004) Gait 3 PT 6–12 17 II-IV Bilateral Hip Add., Gluteals,
Quads, HS, GS, TA

4 5 ≤60
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TABLE 2 (Continued) Articles reviewed reporting level of evidence, participant characteristics, NMES intervention, and outcomes measures.

Intervention/
Authors
(year)

NMES
Intervention

Evidence
Level

Study
Design

Age
(years)

Sample
Size

GMFCS
Level

Limbs Muscle NMES
Duration
(weeks)

Frequency
of use
(days/
week)

Session
duration
(min)

Pool et al. (2014) (Pool
et al., 2014)

Gait 4 SSRD 5–18 12 I-II Unilateral TA 8 6 ≥60

Pool et al. (2015) Gait, Spasticity
Reduction

2 RCT 5–18 32 I-II Unilateral TA 8 6 ≥240

Pool et al. (2016) Gait 2 RCT 5–18 32 I-II Unilateral TA 8 6 ≥240

Prosser et al. (2012) Gait 3 PT 7–19 19 I-II Unilateral TA 12 6 30–360

Robinson et al. (2015) Gait 4 CR 57 1 - Bilateral HS, TA 6 5 480

van der Linden et al.
(2003)

Gait 2 RCT 5–14 22 - Bilateral,
Unilateral

Gluteals 8 6 30–60

van der Linden et al.
(2008)

Gait 2 RCT 4–15 14 - Bilateral,
Unilateral

Quads, TA 10 6 60

Spasticity Reduction

AlAbdulwahab and
Al-Gabbani, 2010

Spasticity Reduction 3 RCT 7–12 42 - Bilateral Hip Add 1 7 3 × 15

Daichman et al. (2003) Strengthening,
Spasticity Reduction

4 CR 13 1 - Bilateral Quads 6 3–4 5–15

Karabay et al. (2015) Strengthening,
Spasticity Reduction

3 PCS 3–14 28 I-V Bilateral GS, TA 4 5 30

Khalili and Hajihassanie,
(2008)

Strengthening,
Spasticity Reduction

2 RCT 11–14 11 - Bilateral Quads 4 3 30

Özen et al. (2021) (Özen
et al., 2021)

Cycling, Spasticity
Reduction

2 RCT 4–12 25 I-III Bilateral Quads, HS, GS, TA 4 5 30

Pool et al. (2015) Gait, Spasticity
Reduction

2 RCT 5–18 32 I-II Unilateral TA 8 6 ≥240

Rajalaxmi et al. (2017) Strengthening,
Spasticity Reduction

3 PT 5–10 30 - Bilateral TA 8 5 15–20

Level of Evidence (Howick, 2011).

Study design abbreviations: Case Report (CR) Case Series (CS), Pilot Study (PS), Prospective Trial (PT), Prospective Controlled Study (PCS), Randomized Controlled Trial (RCT), Single Subject Research Design (SSRD).

Muscle abbreviations: Gluteus Maximus and/or Medius (Gluteals), Quadriceps (Quads), Tibialis Anterior (TA), Gastrocnemius & Soleus (GS), Hamstrings (HS).

CDE, outcome measures abbreviations: Refer to Table 1.

Other outcomemeasure abbreviations: Physiological Cost Index (PCI), Selective Motor Control (SMC), Australian Spasticity Assessment Scale (ASAS), Activities-specific Balance Confidence scale (ABC), Tinetti Performance OrientedMobility Assessment

(POMA).
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3.1.2 Neuromuscular electrical stimulation-
assisted cycling

Three studies reported NMES-assisted cycling for exercise,

where multichannel NMES was applied using surface electrodes

while the participant rode an indoor tricycle or stationary

bicycle. One case report (Johnston and Wainwright, 2011)

and two RCTs (Armstrong et al., 2020; Özen et al., 2021)

reported on multichannel NMES used to target multiple

muscles during cycling, including the gluteals, quadriceps,

hamstrings, gastrocnemius, and/or anterior tibialis. NMES

was applied during cycling alone or in addition to

interventions, such as ROM, strengthening, and balance.

TABLE 3 Articles reviewed reporting NMES parameters.

Authors (year) NMES
frequency
(Hz)

NMES
intensity
(mA)

NMES
pulse
width (μs)

NMES Timing
[on/off] (sec)

NMES
ramp [up/
Down] (sec)

NMES
Waveform

NMES mode

AlAbdulwahab and
Al-Gabbani, (2010)

100 Until tingling
sensation

250 - - Constant

Armstrong et al. (2020) 40–50 Tolerance 200–250 - - - -

Arya et al. (2012) 20–40 Tolerance 200 14/5 3 Biphasic Alternate

Chan et al. (2004) 30–35 Visible muscle
contraction

- - - - Manually triggered
during stance

Daichman et al. (2003) 35 Tetanic
contraction

300 10/50 2 - -

Damiano et al. (2013) 25 - 25–50 - - Asymmetric,
Biphasic

Timed with gait

Gonçalves et al. (2019) 26–30 17–33 300 - - Symmetric Manually triggered
during activities

Greve and Colvin,
(2021)

35 9.75–32.5 200–350 5–10/10–30 1–2 Symmetric,
Biphasic

Synchronous

Johnston et al. (2004) 20 20 200 2–4/0 1–3 Asymmetric,
Biphasic

-

Johnston and
Wainwright, (2011)

33 40–80 250 - - - -

Karabay et al. (2015) 25 20–30 250 10/12 - - -

Kerr et al. (2006) (Kerr
et al., 2006)

35 Tolerance 300 7/12 2/1 - -

Khalili and
Hajihassanie, (2008)

30 Visible muscle
contraction

400 4/4 0.5 - -

Mukhopadhyay et al.
(2017)

40 0–30 200 - - Biphasic -

Nunes et al. (2008) 50 28–44 250 5/10 - - -

Özen et al. (2021) 30–45 100 250–300 - 7/2 Biphasic -

Pool et al. (2014) 33 Tolerance 300 - - Asymmetric,
Biphasic

-

Pool et al. (2015) 33 - 25–100 - - Asymmetric,
Biphasic

-

Pool et al. (2016) 33 - 25–100 - - Asymmetric,
Biphasic

-

Prosser et al. (2012) 16.7–33 - 25–300 - - Asymmetric,
Biphasic

Timed with gait

Qi et al. (2018) - Visible muscle
contraction

- - - - Constant

Rajalaxmi et al. (2017) - - - - - -

Robinson et al. (2015) 30–40 Tolerance 200–300 - - Symmetric,
Biphasic

Timed with gait

Stackhouse et al. (2007) 50 20 5–200 15/45 3 Alternate

van der Linden et al.
(2003)

10–30 - 75–100 5/10–15 0.8 Asymmetric,
Biphasic

-

van der Linden et al.
(2008)

10–40 20–70 3–350 6/10–14 0.8 Asymmetric,
Biphasic

Triggered during
gait
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TABLE 4 Articles reviewed reporting NINDS common data elements (CDE) and other outcome measures.

Authors (year) CDE
Outcome
measures

Change in CDE
outcome measures relative
to control

Other Outcome
measures

Change in other
outcome measures relative
to control

AlAbdulwahab and
Al-Gabbani, (2010)

WS WS ↑ (p < 0.021), Step length ↑ (p < 0.008) Visual observations of knee
positions

Visual observations of knee positions
(improved) ↑SAGV SAGV ↑ (improved)

MAS MAS ↓ (hip adduction spasticity decreased
p < 0.001)

Armstrong et al. (2020) GMFM GMFM ↑ (p < 0.001) Sit to Stand

PEDI-CAT PEDI-CAT (no change)

PEM-CY PEM-CY (no change)

COPM COPM ↑ (p < 0.001)

Arya et al. (2012) WS WS: 7.83 m/min (p < 0.01) ↑ Physiological Cost
Index (PCI)

PCI: 1.83 (p < 0.001) ↓
SAGV Cadence: 23.33 steps/m (p < 0.01) ↑ EMG (no change)

GMFM GMFM (no significant difference)

Chan et al. (2004) IGA GMFM ↑ (p < 0.003) - -

GMFM IGA ↑ (Improved ankle power p = 0.015)

Daichman et al. (2003) SAGV SAGV (walking velocity, step length, and
cadence) ↑

Range of motion (ROM) ROM ↑ (popliteal angle decreased from
40 to 35°)

PEDI PEDI ↑ Dynamometry Dynamometry (quads strength ↑ from
16.3 N to 33.7 N)

MAS MAS (no significant difference)

Damiano et al. (2013) US TA (US) CSA ↑ - -

IGA IGA (no change)

Gonçalves et al. (2019)
(Gonçalves et al., 2019)

WS WS ↑, GMFM ↑ - -

GMFM

Greve and Colvin, (2021) 6MWT 6MWT ↑ (above MCID) - -

GMFM GMFM ↑ (above MCID)

FMS FMS ↑
Johnston et al. (2004) SAGV SAGV (Walking velocity, step length, and

cadence ↑ [p < 0.05])
ROM ROM ↑ (p < 0.05)

GMFM GMFM ↑ (p < 0.05) VO2/kg/m VO2/kg/m (no change)

Johnston and
Wainwright, (2011)

6MWT 6MWT (didn’t meet MDC) ROM Dynamometry (22% quads and 18.5% HS
strength ↑)TUG TUG ↓ (from 11.9 to 9.0 s) Dynamometry

SAGV SAGV Bioimpedance monitor

COPM COPM ↑ - barefoot gait speed of 0.09 m/s
and in step length of 0.03–0.05 m (likely not
clinically meaningful)

McGill-Melzack Pain
Questionnaire

Karabay et al. (2015) ( US US (CSA) ↑ (TA from 238.7 to 282.0 mm2,
p < 0.001; GS from 207.9 to 229.5 mm2, p <
0.008)

ROM ROM (no change)

MAS MAS (no change)

Kerr et al. (2006) GMFM GMFM (no change) Dynamometer Dynamometer (no change)

LAQ LAS (from LAQ-CP) ↓ (placebo: 39.98, TES:
33.98, p < 0.05)

Khalili and Hajihassanie,
(2008)

MAS MAS ↓ (2.0 compared to 1.2 in the control
group, p = 0.046)

ROM ROM ↑ (from 9 to 13°, p = 0.04)

Mukhopadhyay et al.
(2017)

WS WS ↑ (17.67%) PCI PCI ↓ (19.7%)

SAGV SAGV ↑ step length ↑ (4.08%)

GMFM cadence ↑ (16.17%)

GMFM ↑ (2.1%)

Nunes et al. (2008) GMFM GMFM ↑ (group 1: from 94.28% to 97.14%
p < 0.05, group 2: from 95.23% to 98.09%
p < 0.05)

ROM ROM ↑ (group 1: active and passive ankle
dorsiflexion p = 0.05, group 2: passive ankle
dorsiflexion p < 0.05)

TA muscle strength of ↑ (manual)

(Continued on following page)
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TABLE 4 (Continued) Articles reviewed reporting NINDS common data elements (CDE) and other outcome measures.

Authors (year) CDE
Outcome
measures

Change in CDE
outcome measures relative
to control

Other Outcome
measures

Change in other
outcome measures relative
to control

Özen et al. (2021) 6MWT 6MWT ↑ Visual Gait Analysis Visual Gait Analysis ↑ (improvement in
ankle dorsiflexion and foot contact)GMFM GMFM ↑

WeeFIM WeeFIM ↑
MAS MAS ↓
Tardieu Scale Tardieu Scale ↓

Pool et al. (2014) OGS OGS (no change) ROM ROM ↑ (p < 0.01)

Dynamometry Dynamometry ↑ (p < 0.01)

Australian Spasticity
Assessment Scale (ASAS)

ASAS ↓ (p < 0.01)

SMC dorsiflexion grade
(Boyd and Graham, 1999)

SMC dorsiflexion grade ↑

Self-reported Toe Drag ↓ (p = 0.02) and Falls
↓ (p < 0.01)

Pool et al. (2015) IGA IGA ↑: ASAS ASAS ↓ (p = 0.038)

Tardieu Scale - ankle angle ↑ (mean difference 11.9°, 95%
CI 6.8°–17.1°, p < 0.001)

Community Balance and
Mobility Scale

Community Balance and Mobility Scale ↑
(mean difference 8.3,

- stance ↑ (mean difference 0.27, 95% CI
0.05–0.49, p = 0.011)

4-Square Step Test 95% CI 3.2–13.4; p < 0.001),

- step length ↑ (mean difference 0.06, 95%
CI 0.003–0.126, p = 0.035)

4-Square Step Test (no significant change,
p = 0.182),

Tardieu Scale ↑ (dynamic ankle dorsiflexion
range mean difference 6.9°, 95% CI
0.4°–13.6°, p = 0.035)

Self-report Toe Drag (p = 0.002) and Falls ↓
(toe dragging: p = 0.002, falling: p = 0.022)

Pool et al. (2016) MRI MRI ↑ (TA muscle volume, p = 0.039) Dynamometry Dynamometry:

SCALE SCALE ↑ (mean difference 0.81, 95% CI
0.3–1.32, p < 0.001)

- TA strength ↑ (p = 0.002)

- Ankle SMC ↑ (median difference 0.5, IQR
0–1, p = 0.048)

Prosser et al. (2012) IGA IGA ↑ (mean and peak dorsiflexion during
swing and at foot-floor contact)

- -

WS (no change)

Qi et al. (2018) WS WS ↑ (0.72 m/s vs. 0.57 m/s, p < 0.05) Comprehensive Spasticity
Scale score

Comprehensive Spasticity Scale score ↓
(7.4 vs. 9.4, p < 0.05)GMFM GMFM ↑ (71 vs. 58, p < 0.05)

Rajalaxmi et al. (2017) MAS MAS ↓ (p < 0.001) ROM ROM ↑ (AROM of dorsiflexors, p < 0.001;
PROM, p < 0.001)

Cadence Cadence ↑
Robinson et al. (2015) OGS OGS ↑ (from 12/22 to 19/22 [right], 14/22 to

21/22 [left])
Activity-specific Balance
Confidence (ABC) Scale

ABC ↑ (from 32.8% to 48.1%),

Performance Oriented
Mobility Assessment
(POMA)

POMA ↑ (from 12/28 to 15/28),

Dynamic Gait Index Dynamic Gait Index ↑ (from 6/24 to 14/24)

Stackhouse et al. (2007) MRI MRI ↑ (CSA of Quads +4.42 cm2, p = 0.023) Dynamometry Dynamometry ↑ (MVIC ↑ from 81.8% to
118.9%, voluntary muscle activation of
Quads ↑, +0.057, p = 0.084)

WS WS ↑ (p = 0.028)

IGA IGA

van der Linden et al.
(2003)

IGA IGA (no change) Myometer Myometer ↑ (strength, not significant)

GMFM GMFM ↑ (not significant) ROM ROM (no change)

Parent Questionnaire Parent Questionnaire (64% of the parents
thought that the treatment made a difference
to their child)

van der Linden et al.
(2008)

IGA IGA ↑ (p < 0.01) Functional Assessment
Questionnaire

Functional Assessment Questionnaire

WS ↓ (0.03 m/s, p < 0.05)

Common data elements (CDE) by the national institute of neurological disorders and stroke (NINDS).
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NMES intervention dosage ranged from 30 min, 3–5 times per

week for 4–12 weeks.

Three studies using NMES-assisted cycling reported boosting

gross motor skills, walking distance, and speed (Johnston and

Wainwright, 2011; Armstrong et al., 2020; Özen et al., 2021). Two

studies (Armstrong et al., 2020; Özen et al., 2021) reported

improvement in gross motor skills assessed with the GMFM.

Studies also reported an increase in walking distance assessed

with 6MWT (Johnston and Wainwright, 2011; Özen et al., 2021)

and speed assessed using the TUG (Johnston and Wainwright,

2011). NMES was well-tolerated in one study (Özen et al., 2021)

and variable in two studies (Johnston and Wainwright, 2011;

Armstrong et al., 2020). See Tables 2, 3, 4 for details of each

study’s NMES application and CDE outcomes.

3.2 Neuromuscular electrical stimulation-
assisted gait

Table 2 reports the results of NMES-assisted gait, which

includes interventions using NMES during gait for treadmill or

overground walking with a known therapeutic dosage.

Eleven studies reported NMES-assisted gait for strengthening

and improving gait pattern, including one case report (Robinson

et al., 2015), three single-subject research design studies (SSRD)

(Chan et al., 2004; Pool et al., 2014; Gonçalves et al., 2019), three

prospective trials (Johnston et al., 2004; Prosser et al., 2012;

Damiano et al., 2013), and four RCTs (Pool et al., 2016; 2015, van

der Linden et al., 2003, 2008). Various NMES devices were used,

including surface electrodes for non-wearable units targeting the

gluteals, quadriceps, gastrocnemius, and tibialis anterior.

Wearable units targeted hip adductors, gluteus maximus and

medius, quadriceps, tibialis anterior, and gastrocnemius. NMES

was applied during walking overground or performing functional

task training. Only one study applied NMES while on a treadmill

(Chan et al., 2004). NMES dosage ranged from 15 min to 8 h per

day, 3–7 days per week for 4–40 weeks. See Table 3 for details of

each study’s NMES application and parameters.

The eleven studies that investigated NMES-assisted gait

found improved muscle structure, strength, SMC, gross motor

skills, and gait (van der Linden et al., 2003, 2008; Chan et al.,

2004; Johnston et al., 2004; Prosser et al., 2012; Damiano et al.,

2013; Pool et al., 2016, 2015, 2014; Robinson et al., 2015;

Gonçalves et al., 2019). NMES-assisted gait resulted in

increased muscle volume of tibialis anterior as assessed on

MRIs (Pool et al., 2016), increased tibialis anterior CSA as

assessed on ultrasound (Damiano et al., 2013), increased

strength as assessed by dynamometers (Pool et al., 2016,

2014), improved SMC as assessed by SCALE (Pool et al.,

2016), improved gross motor skills as assessed by GMFM

(van der Linden et al., 2003; Chan et al., 2004; Johnston et al.,

2004; Gonçalves et al., 2019), and improved gait as assessed by

kinematics, kinetics, and temporal-spatial parameters (Chan

et al., 2004; Johnston et al., 2004; van der Linden et al., 2008;

Prosser et al., 2012; Pool et al., 2015; Robinson et al., 2015).

Compliance was reported to be high for NMES intervention

(Chan et al., 2004; Prosser et al., 2012; Pool et al., 2016, 2015).

Tolerance was reported as ranging from good (Damiano et al.,

2013; Pool et al., 2014) to variable (van der Linden et al., 2003,

2008). See Table 4 for CDE outcome measures and results for

each NMES-assisted gait study.

3.3 Neuromuscular electrical stimulation
for spasticity reduction

Seven studies reported on the effects of NMES on spasticity.

One case report (Daichman et al., 2003), one prospective

controlled study (Karabay et al., 2015), one prospective trial

(Rajalaxmi et al., 2017), and four RCTs (Khalili and Hajihassanie,

2008; AlAbdulwahab and Al-Gabbani, 2010; Pool et al., 2015;

Özen et al., 2021). The targeted muscles for NMES included hip

adductors, quadriceps, hamstrings, gastrocnemius, and tibialis

anterior. NMES was applied to the antagonist muscle during

exercises, including ROM, balance, strengthening, and gait

training (Daichman et al., 2003; Khalili and Hajihassanie,

2008; Pool et al., 2015; Rajalaxmi et al., 2017; Özen et al.,

2021). TENS was applied to the antagonist muscle during

ROM and gait training exercises (AlAbdulwahab and Al-

Gabbani, 2010). In addition, NMES-assisted strengthening and

NMES-assisted gait were investigated (Pool et al., 2015; Özen

et al., 2021). The dosage varied between 5 and 240 min per

session, 3–7 days per week for 1–8 weeks.

Among the seven studies of NMES for spasticity reduction, five

studies reported reduced spasticity in the antagonistic muscle

when using electrical stimulation (Khalili and Hajihassanie,

2008; AlAbdulwahab and Al-Gabbani, 2010; Pool et al., 2015;

Rajalaxmi et al., 2017; Özen et al., 2021). Study results included

decreased resistance of the hip adductors (AlAbdulwahab and Al-

Gabbani, 2010), hamstrings (Khalili and Hajihassanie, 2008; Özen

et al., 2021), and gastrocnemius muscles (Pool et al., 2015;

Rajalaxmi et al., 2017; Özen et al., 2021) assessed by the

Modified Ashworth Scale (MAS) or Tardieu Scale; while two

studies found no change in spasticity (Daichman et al., 2003;

Karabay et al., 2015). Application and results of NMES-assisted

spasticity reduction can be found in Tables 2, 3, 4.

3.4 Additional literature

Our search identified seven studies reviewing NMES as an

intervention for individuals with CP, including reviews (Khamis

et al., 2018; Wright M. et al., 2012), scoping reviews (Mooney and

Rose, 2019; Walhain et al., 2021), and systematic reviews with

meta-analysis (Salazar et al., 2019) and without meta-analysis

(Chiu and Ada, 2014; Moll et al., 2017). These reviews explicitly
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focused on the effects of NMES on muscle morphology (Walhain

et al., 2021), gait (Mooney and Rose, 2019, p. 2;Wright P. A. et al.,

2012), gross motor function (Salazar et al., 2019), ankle

dorsiflexion (Moll et al., 2017), activities (Chiu and Ada,

2014), and improvement in gait deviations when using FES

(Khamis et al., 2018). None of the listed reviews were specific

to our scoping review looking at the NMES application as a lower

extremity exercise for individuals with spastic CP.

4 Discussion

The findings of this scoping review indicate that NMES

applied to strengthening exercise, gait, and spasticity

reduction demonstrate potential benefits for improving muscle

physiology, neuromuscular impairments, gait patterns, and

functional mobility in individuals with spastic CP. The

twenty-six intervention publications, dating from 2003 to

2021, included a total of 558 individuals aged 3–57 years with

CP, GMFCS levels I-IV with unilateral or bilateral involvement.

The dosage of NMES intervention varied by study, as noted in

Table 2. In addition, while using NMES, the exercise activities

varied and included ROM, strengthening (i.e., isometric

contractions, progressive resistance exercises, cycling),

positioning, functional tasks, and gait. NMES included both

wearable and non-wearable devices with surface electrodes,

with the exception of two studies that utilized implanted

electrodes (Johnston et al., 2004; Stackhouse et al., 2007).

The NMES parameters utilized in these studies included

frequencies between 10 and 50 Hz, stimulation intensities

between 4 and 100 mA, with typical values below 40 mA, and

pulse width between 3 and 350 μs, as shown in Table 3. The most

substantial variation was in pulse width, which could be

attributed to individual preferences and tolerances and to the

sequence of adjusting NMES parameters during treatment.

Although pulse width affects muscle force production,

currently, there is no evidence suggesting the range of optimal

pulse width, therefore, more studies are needed. Clinical

experience suggests that electrode size and adherence to the

skin and pulse width contribute most to NMES comfort level.

4.1 Neuromuscular electrical stimulation-
assisted strengthening

NMES-assisted strengthening was found to increase strength,

WS, walking distance, gross motor skills, and functional mobility.

Three studies reported that NMES applied during exercise

provided better outcomes than exercise alone (Khalili and

Hajihassanie, 2008; Arya et al., 2012; Qi et al., 2018). This

may be attributed to increased sensory attention to task and

motor learning. Weaker muscles are likely to gain more from

NMES strengthening than stronger muscles. Physical therapy, as

well as surgical preparation and recovery, provide opportunities

to initiate NMES strengthening of weakened muscles. Clinical

expertise suggests that voluntary contraction is an important

element of strengthening and motor control versus NMES

stimulation alone. The results of this scoping review found

further evidence that supports the use of NMES-assisted

strengthening as a clinical treatment for individuals with

spastic CP. Future studies need to study the impact of NMES-

assisted strengthening on biological aspects of muscle physiology

and chronic health conditions in individuals with spastic CP.

Another benefit to muscle strengthening is increasing overall

muscle-tendon length across the joint, which may improve ROM

(Zhou et al., 2017). Increasing muscle fiber diameter through

strengthening theoretically increases overall muscle-tendon

length due to the diagonal muscle fiber pennation angle

relative to the axis of the bone (Zhou et al., 2017). Several

studies identified that muscle CSA was increased with NMES-

assisted strengthening, which likely would translate to increased

overall muscle-tendon length and improved ROM (Stackhouse

et al., 2007; Karabay et al., 2015). Future studies need to examine

the impact of NMES-assisted strengthening on overall muscle-

tendon length and joint ROM.

4.2 Neuromuscular electrical stimulation-
assisted gait

NMES-assisted gait was found to improve strength, motor

control, gait pattern, and temporal-spatial parameters.

Similar to NMES-assisted strengthening, the repetitive

movement of walking on a treadmill combined with NMES

was found to have an advantage over treadmill gait or NMES

alone for improving ankle power and gross motor skills of

standing and walking (Chan et al., 2004). Furthermore,

another study suggested that intensive use of NMES-

assisted gait in home and community settings may

facilitate motor learning (Pool et al., 2014). The results of

this scoping review further strengthens the evidence to

support NMES-assisted gait as a clinical treatment for

individuals with spastic CP. Wearable single-channel

NMES units are widely available and allow for home and

community use to improve foot clearance in swing; however

wearable multi-channel units are not widely available.

Wearable multi-channel units are needed to treat gait

abnormalities other than limited foot clearance in swing.

Further research and development are needed in this area.

4.3 Neuromuscular electrical stimulation
for spasticity reduction

NMES was also found to reduce spasticity, as assessed by

Tardieu or MAS in five of seven studies reviewed; one study used
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TENS (AlAbdulwahab and Al-Gabbani, 2010), and four studies

used NMES (Khalili and Hajihassanie, 2008; Pool et al., 2015;

Rajalaxmi et al., 2017; Özen et al., 2021). Corticospinal tract

injury results in a loss of descending neural signal activation and

inhibition. Muscle spasticity is a neuromuscular impairment that

results from loss of inhibition. Further research needs to

investigate the potential inhibitory effects of NMES and how

to optimize spasticity reduction and duration of treatment

effects. The location of ideal electrode placement along the

lumbar spine, over relevant dermatomes, directly over spastic

muscle, or to elicit antagonist inhibition requires further

research.

4.4 Limitations and future research

Limitations of this scoping review include the exclusion of

some NMES-related studies that did not meet inclusion criteria

due to NMES treatment duration of fewer than 4 weeks, the

absence of an exercise component, technology development trials

for NMES-assisted gait on a treadmill (Zahradka et al., 2021) or

robotics (Shideler et al., 2020). These limitations may have

eliminated some evidence in the field. However, with respect

to treatment duration, a recent publication recommended at least

8–20 weeks of exercise training to facilitate meaningful changes

in muscle structure and improve function in individuals with CP

(Moreau and Lieber, 2022). This suggests that 8–20 weeks of

exercise duration may be required, and therefore, it is possible

that some of the studies in our review lacked the proper dosage to

produce a meaningful change. While 11 out of 26 studies in this

scoping review were RCTs, further studies with larger sample

sizes and more consistent protocols using CDE outcome

measures are needed to move the field forward.

This scoping review indicates that further research is

needed to determine optimal NMES protocols and dosage

using sensitive CDE outcome measures. Furthermore, device

development of wearable NMES units that can be easily applied

for NMES-assisted strengthening, gait, and spasticity reduction

is needed for individuals with spastic CP. Understanding the

relationship between NMES strength training and functional

results, as well as the optimal NMES protocol and dosage,

requires research with a larger sample size and longer treatment

duration (i.e., 8–20 weeks). Identifying changes in

neuromuscular impairments of weakness, short-muscle

tendon unit, spasticity, and impaired SMC as well as motor

learning, and utilizing CDEs with careful attention to minimal

clinically important differences will allow us to better

comprehend the therapeutic effects of NMES. Finally,

advancing new NMES technology, such as wireless

multichannel NMES devices and hybrid robotic and

exoskeleton NMES systems, will provide evidence-based,

clinically feasible interventions for individuals with CP to

improve functional mobility.

5 Conclusion

Findings from this scoping review provide evidence that

supports the use of NMES-assisted strengthening with

therapeutic exercise and cycling, NMES-assisted gait, and

NMES for spasticity reduction to improve mobility in

individuals with spastic CP, based on validated CDE outcome

measures. Wearable and non-wearable units were utilized with

surface or implanted electrodes targeting the gluteals, hip

adductors, hamstrings, quadriceps, gastrocnemius, and tibialis

anterior to augment exercise and mobility. NMES was found to

improve muscle structure, strength, gross motor skills, gait

kinematics, WS, and walking distance and reduce spasticity.

Clinicians can consider NMES to be an effective treatment for

individuals with spastic CP. Additional research is needed to

further investigate optimal parameters, dosage, and impact of

NMES on neuromuscular impairments and functional mobility

in individuals with spastic CP.
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