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Diabetes is a common metabolic disease whose hyperglycemic state can

induce diverse complications and even threaten human health and life

security. Currently, the treatment of diabetes is restricted to drugs that

regulate blood glucose and have certain accompanying side effects.

Autophagy, a research hotspot, has been proven to be involved in the

occurrence and progression of the chronic complications of diabetes.

Autophagy, as an essential organismal defense mechanism, refers to the

wrapping of cytoplasmic proteins, broken organelles or pathogens by

vesicles, which are then degraded by lysosomes to maintain the stability of

the intracellular environment. Here, we review the relevant aspects of

autophagy and the molecular mechanisms of autophagy in diabetic chronic

complications, and further analyze the impact of improving autophagy on

diabetic chronic complications, which will contribute to a new direction for

further prevention and treatment of diabetic chronic complications.
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Autophagy

Autophagy is an essential catabolic process in which broken

organelles and proteins in cells are wrapped by a double layer of

vesicles to form autophagosomes, which then combine with

lysosomes to constitute autolysosomes and are finally

degraded by a variety of enzymes in the autolysosomes (Kim

and Lee, 2014). In addition to the macroautophagy described

above, autophagy also includes microautophagy and chaperone-

mediated autophagy (CMA). Autophagy is essential for the

metabolism of substances and the maintenance of energy

homeostasis by degrading biological macromolecules into

simple molecules which can re-enter the cycle for the

synthesis of other substances. In addition, autophagy degrades

lipids to produce free fatty acids which can be oxidised by

mitochondria to produce energy (Yang et al., 2019).

Autophagy not only facilitates organelle renewal and cellular

metabolism by degrading damaged organelles and proteins, but

also, is activated in response to adverse extracellular stimuli and

assists cells to resist stress. Autophagy is associated with

apoptosis and plays a protective function in regulating the cell

cycle and maintaining genomic stability (Wu et al., 2011; Yoo

and Jung, 2018). The process of autophagy is mediated by

multiple pathways and involves a variety of organelles such as

mitochondria, endoplasmic reticulum (ER), ribosomes,

peroxisomes, and lysosomes. With further studies on

autophagy, it has been proved that autophagy can be not only

non-selective but also selective. The selective degradation of

autophagy can stabilize the cellular state and prevent the

occurrence of diseases (Levine and Kroemer, 2019). The

disruption of autophagy has an impact on the development of

several diseases such as cancer (Ferro et al., 2020), diabetes

(Muralidharan and Linnemann, 2021), cardiovascular diseases

(Bravo-San Pedro et al., 2017), neurological related diseases

(Bingol, 2018) and inflammatory diseases (Yao et al., 2021)

(Figure 1).

Autophagy, a cellular degradation pathway, has been

proposed for decades. Another cellular degradation pathway,

the ubiquitin-proteasome system, is interconnected and even has

the same molecules as autophagy (Pohl and Dikic, 2019). The

multiple molecular mechanisms of autophagy respond correctly

to different cellular states and the energy generated by this

process can be utilized by the cells. The dysregulation of

autophagy in diabetes can be a potential therapeutic target

(Dikic and Elazar, 2018). Autophagy is involved in the

regulation of pancreatic β cells, protecting insulin target

tissues, and its abnormal regulation may adversely affect the

chronic complications of diabetes (Barlow and Thomas, 2015).

Hyperglycemia is a characteristic feature of diabetes, and in this

state, aberrant regulation of autophagy occurs (Barutta et al.,

2022). Abnormalities in autophagy can contribute to various

organelle dysfunctions and complications. In this paper, we

summarize the molecular mechanisms of autophagy regulation

and the latest advances in autophagy in chronic complications of

diabetes to offer a reference for its prevention and treatment in

the future.

FIGURE 1
General process of autophagy. Autophagy is a process that engulfs its own cytoplasmic proteins or organelles and encapsulates them into
vesicles and fuses with lysosomes to form autolysosomes that degrade their encapsulated contents, realizing the cell’s ownmetabolic needs and the
renewal of certain organelles.
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Classification of autophagy

In mammalian cells, autophagy occurs within the lysosome

and can be divided into three types according to the route of

transport of substances to the lysosome: microautophagy,

macroautophagy and CMA (Ravanan et al., 2017).

Microautophagy functions in cellular metabolism, organelle

renewal and biosynthesis, and is a type of autophagy in which

lysosomes directly wrap around the cytoplasm for degradation

without the involvement of other membranes (Li et al., 2012;

Schuck, 2020). Studies have demonstrated that microautophagy

is also present in plant cells and can degrade organelles such as

broken chloroplasts to maintain normal plant cell function

(Sieńko et al., 2020). Macroautophagy is the most studied

form of autophagy and is the main form of autophagy

presented in this paper. Macroautophagy is a process in which

proteins and other substances in the cytoplasm are wrapped by

two membrane structures to form autophagosomes, which bind

to lysosomes to form autolysosomes that degrade the wrapped

substances (Feng et al., 2014). The molecular mechanism of

autophagy is complex and is associated with cellular states

and the development of many diseases. It operates in the

immune system by affecting antigen processing and antigen

presentation processes (Münz, 2021). Autophagy facilitates the

renewal of destroyed organelles and other cytoprotective

functions associated with human aging. The protective effects

of autophagy and autophagy on cells are complicated with ageing

(Nieto-Torres and Hansen, 2021). Recent studies have shown

that the regulation of proteins by neuronal autophagy is in

association with the aging of neuronal cells (Kallergi and

Nikoletopoulou, 2021). CMA is a process of selective

autophagy for specific proteins which contain a specific

targeting motif in its amino acid sequence that can be

combined with the heat shock cognate 70 (HSC70) protein

and finally transported to the lysosome for degradation.

(Kaushik and Cuervo, 2018). CMA can be a potential target

to regulate the function of hematopoietic stem cells and is

integral to the proper functioning of part of the normal

function of hematopoietic stem cells (Dong et al., 2021).

Endosomal microautophagy, a selective autophagy that occurs

through endosomal autophagy, and HSC70 chaperones

specifically bind to the KFERQ-like motif partially similar to

CMA (Tekirdag and Cuervo, 2018; Krause and Cuervo, 2021).

Regulatory factors of autophagy and
diabetes

Autophagy-associated genes (ATGs) are central to the

molecular machinery of autophagy and are involved in the

encoding of key proteins that play an active role in signal

transduction pathways. Furthermore, ATG, whose aberrant

expression can induce disease, play important functions in

different autophagic processes such as cytoplasmic

encapsulation, autophagic vesicle formation and lysosomal

fusion (Levine and Kroemer, 2019; Mizushima and Levine,

2020). ATG5 and LC3 are key genes of autophagy and their

levels are obviously lower in diabetic nephropathy (DN) model

mice than those in normal group, which affects autophagy

(Yassin et al., 2021). Autophagy is an essential regulatory

mechanism in diabetes, where the serum levels of the ATG

protein Beclin-1 are inversely correlated with carotid intima-

media thickness in patients with type 2 diabetes (T2D) (Naguib

et al., 2021). The hyperglycemic state of diabetic rats increases the

accumulation and expression of Beclin-1 simultaneously

promoting retinal Müller cell death in rats (Lopes de Faria

et al., 2016). Beclin-1 and Bcl-2 are interrelated and their

binding downregulates Beclin-1-mediated autophagy in

diabetic nephropathy (Xu and Qin, 2019; Liu et al., 2022).

TFEB, a regulatory factor, is associated with lysosomal

biosynthesis. The accumulation of phosphorylated TFEB in

cells reduces TFEB activity which in turn impacts autophagy.

Mechanistic target of rapamycin (mTOR) regulates autophagy

and lysosomal biosynthesis through phosphorylation of TFEB

(Sha et al., 2017). TFEB promotes macrophage M2 polarization

for restoring the cytoprotective function of autophagy in

mesenchymal stem cells of DN mice (Yuan et al., 2020).

Studies have shown that TFEB and glucose metabolism are

closely related, with TFEB knockdown reducing glucose

uptake in endothelial cells by about half compared to controls,

while increasing TFEB expression increases glucose uptake

exponentially (Sun et al., 2021).

Phosphorylated Akt can inhibit autophagy by activating

mTOR complex 1 (mTORC1) and inhibiting FOXO1, playing

an important role between insulin signaling and autophagy

regulation. In animal experiments using mice with adipocyte-

specific innate knockout of Atg7 and mice with adipocyte-

specific knockout of Atg1611 or Atg3, respectively, it was

concluded that innate inhibition of autophagy affects

adipocyte differentiation, promotes adipocyte browning and

increases insulin sensitivity, but selective inhibition of

autophagy in mature adipocytes leads to insulin resistance

(Frendo-Cumbo et al., 2021). Studies on excessive autophagy

have found that excessive activation of autophagy inhibits insulin

secretion by β cells on the one hand, but increases insulin

sensitivity by reducing ER stress in insulin-responsive cells on

the other (Yamamoto et al., 2018).

Autophagy and the chronic
complications of diabetes

Diabetes is a common metabolic disease with hyperglycemia.

According to statistics, the global incidence of diabetes has been

increasing since 1980 and has now doubled (NCD-RisC, 2016).

Hyperglycemia triggers various metabolic signaling pathways
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leading to autophagy, inflammation and even cell death. This

disruption of cellular metabolism contributes to diverse diabetic

complications. Complications such as diabetic retinopathy (DR),

DN, diabetic heart disease and diabetic peripheral neuropathy

(DPN) are highly prevalent in both type 1 and type 2 diabetics,

increasing the risk of diabetes and even leading to death (Forbes

and Cooper, 2013; Cole and Florez, 2020) (Figure 2).

In addition to the major complications of diabetes,

Alzheimer’s disease (AD) is closely associated with T2D,

which is referred to by some as type 3 diabetes. Insulin

resistance and insulin signalling dysfunction in T2D are

important risk factors for dementia and AD. Peripheral and

central insulin resistance leads to reduced insulin signalling,

increased Aβ toxicity, oxidative stress and even the

development of neurodegeneration. Even in non-diabetic

people, insulin resistance increases the risk of dementia and

AD (Nguyen et al., 2020).

Diabetic retinopathy

DR is a common diabetic complication associated with

microangiopathy, which can result in further health

impairment in diabetic patients with other vascular diseases

(Cheung et al., 2010). The later stages of DR can contribute to

blindness. It is beneficial to be acquainted with the

mechanisms involved in DR to prevent and treat the

disease in order to reduce the rate of blindness (Lin et al.,

2021). Factors associated with hyperglycaemia, oxidative

stress, hypoxia and ER stress in DR are closely associated

with autophagy (Gong et al., 2021).

Abnormal autophagy due to high glucose promotes the

progression of DR. High glucose facilitates ROS production by

impacting mitochondrial function, and the resulting high ROS

levels and damaged mitochondria can induce oxidative stress.

Oxidative stress is one of the molecular mechanisms of

autophagy, which can activate autophagy in DR.

Appropriate stress can be used to improve cellular status by

regulating autophagy, whereas excessive stress has the

opposite effect in facilitating disease progression (Fu et al.,

2016; Rosa et al., 2016; Dehdashtian et al., 2018). High glucose

status promotes autophagosome production and regulates

autophagy through ROS-mediated ER stress signaling (Yao

et al., 2014). In DR, high mobility group box 1 (HMGB1) is

involved in lysosomal membrane disruption through a

cathepsin B-dependent pathway, thereby inhibiting

autophagy. Inhibition of HMGB1 expression in retinal

pigment epithelial cells under high glucose conditions

resulted in downregulation of cathepsin B expression,

thereby restoring the dysfunction of the autophagic

lysosomal pathway (Feng et al., 2021). The high glucose

state can result in elevated levels of vascular endothelial

growth factor, thereby promoting neointima generation in

DR. Autophagy can reduce vascular endothelial growth factor

expression acting as a cytoprotective agent (Lopes de Faria

et al., 2016).

FIGURE 2
Diabetes complications. The high-glucose state of diabetes can contribute to diverse complications such as diabetic microangiopathy and
peripheral neuropathy. Some of these diabetic microangiopathies involve retinopathy, nephropathy and heart disease, such as Retinopathy, Blind,
Nephropathy, Proteinuria, Podocytes, Vascular and Cardiomyopathy. In contrast, peripheral neuropathy presents with Amputation and Schwann
cells.
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Diabetic nephropathy

DN, a chronic complication of diabetes mellitus, is impacted

by glycemic, lipid, lifestyle and genetic factors, for which

proteinuria, neutrophil gelatinase-associated adiponectin,

cystatin C and plasma growth differentiation factor 15 are

several representative markers (Papadopoulou-Marketou et al.,

2017). The hyperglycemic state of diabetes affects cellular

metabolism, which leads to the development of pathological

symptoms such as advanced glycosylation end products and

glomerular hypertension, facilitating the DN along with other

systemic diseases to further develop end-stage renal disease

(Wada and Makino, 2013; Xiong and Zhou, 2019). Aberrant

regulation of autophagy is associated with these multiple adverse

progressions of diabetic nephropathy (Yang D et al., 2018).

Abnormal autophagy caused by high glucose promotes DN

progression. The homeostasis of podocytes is related to

autophagy in which the removal of Atg5 in podocytes would

impact the cellular state of podocytes contributing to the inability

of cells to resist stimuli induced by high glucose, a change which

also exists in endothelial cells. The high glucose state in diabetes

increases the levels of the autophagy marker LC3B II in

podocytes with the consequent activation of autophagy which

is uncertain whether it protects the kidney (Lenoir et al., 2015;

Liu et al., 2018). However, high glucose could also contribute to

resulting autophagy defects and proteinuria production (Tagawa

et al., 2016). Mesenchymal stem cell-derived exosomes can

modulate the levels of autophagy-related markers in diabetic

rats and reduce renal impairment by activating autophagy for the

treatment of DN (Ebrahim et al., 2018). miR-486 in disaccharide

stem cell-derived exosomes can inhibit mTOR activation by

decreasing Smad1 expression, thereby increasing autophagy

and protecting podocytes (Jin et al., 2019). In DN, mTOR

inhibits the formation of autophagosomes in podocytes by

promoting advanced glycation end-products (AGEs) to

suppress nuclear translocation and activity of TFEB, achieving

a regulatory role in autophagy (Zhao et al., 2018). Recent studies

have identified a possible mechanism of autophagy dysregulation

in DN, where SMAD3 binds to the 3′-UTR of TFEB and

represses its transcription, and a decrease in TFEB leads to a

decrease in lysosome synthesis. Conversely, when SMAD3 is

inhibited, the inhibition of lysosomal biosynthesis is reduced,

thereby regulating the level of autophagy in DN (Yang et al.,

2021).

Diabetic heart disease

Lesions of blood vessels in diabetic patients can induce heart-

related problems such as heart failure through oxidative stress

and inflammatory stimulation, which greatly increase mortality

in diabetic patients. Vascular disease is even the most common

cause of death in patients with T2D (Blendea et al., 2003; Ritchie

and Abel, 2020). The symptoms of heart disease in diabetic

patients are not obvious in the early stages, increasing the

difficulty of treatment when detected later. Therefore, it is

significant to explore the mechanisms of diabetic heart disease

for early detection of the disease (Rawal et al., 2014). Autophagy

plays an essential role in diabetic cardiomyopathy, where

disturbances in cardiac metabolism and inhibition of

lysosomal degradation contribute to the disruption of

autophagy (Kanamori et al., 2021).

The high levels of oxidative stress generated in the diabetic

heart can induce mitochondrial dysfunction, while

mitochondrial damage and autophagy inhibition can in turn

exacerbate diabetic heart disease (Tong et al., 2019). Autophagy

protects cardiomyocytes and ameliorates myocardial injury by

removing abnormal mitochondria (Kubli and Gustafsson, 2015).

miRNA, which is associated with protein expression, has a

mechanism of effect associated with autophagy and is shown

to act in cardiac disease (Sermersheim et al., 2017). In diabetic

mice, lncRNA AK139328 affected myocardial ischemia-

reperfusion injury by regulating the level of autophagy.

lncRNA AK139328 exacerbated myocardial ischemia-

reperfusion injury in diabetic mice by promoting autophagy

via suppressing the expression level of miR-204-3p (Yu et al.,

2018). lncRNA DCRF, a similar effect as hyperglycemia,

facilitates the expression of DCRF thereby promoting

autophagy in cardiac cells and exacerbating myocardial injury.

In addition, DCRF can compete with PCDH17 as a target of miR-

551B-5p (Feng et al., 2019).

Diabetic peripheral neuropathy

DPN, a chronic complication of diabetes mellitus, usually

refers to lower extremity neuropathy. It is the leading cause of

amputation associated with diabetes and has a worse prognosis

(Selvarajah et al., 2019). Autophagy plays an active role in

neurodegenerative diseases and neurological tissue damage. In

the peripheral nerves of hypoglycemic diabetic rats, autophagy is

observed both in the early stages of axonal degeneration and in

the regeneration process, especially in the regenerating axons

(Mohseni, 2011).

Abnormal autophagy induced by high glucose promotes the

progression of DPN. Enhanced miR-30d-5p in trigeminal

sensory neurons of diabetic mice inhibited the levels of

autophagy markers LC3II and Beclin-1. In the high glucose

state, upregulation of X-inactive specific transcript of lncRNA

induced autophagy which was inhibited by MiR-30d-5p thereby

dealing with oxidative stress in Schwann cells and attenuating

DPN (Liu et al., 2021). In DPN, HDAC1 inhibited the expression

of autophagy markers LC3-II/LC3-I and P62 when high glucose

treated Schwann cell 96 thereby suppressing autophagy (Du et al.,

2019). Thioredoxin-interacting protein was associated with

neurotransmission and other dysfunctions in Schwann cells.
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Thioredoxin-interacting protein expression was significantly

increased in Schwann cells under the effect of high glucose

and inhibited the expression of autophagic markers, which

aggravated the process of DPN (Zhang X et al., 2021).

Classical mechanisms associated with the
development of chronic complications of
diabetes

AGEs associated with hyperglycaemia play an important role

in the development of diabetic complications, and in DN the

accumulation of AGEs and their receptors can further impair

renal function (Sanajou et al., 2018). In addition, AGEs can

stimulate the expression of autophagy-related proteins in

diabetic rat dermal fibroblasts and human fibroblasts and

induce autophagy, providing some support for the

demonstration that AGEs contribute to the development of

diabetic ulcers. (Sun et al., 2016). Beclin-1 and Bcl-2 are

targets of O-Glcnacylation. Increased hexamine biosynthesis

pathway fluxes and elevated protein O-Glcnacylation are

associated with impaired autophagy signaling in db/db

diabetic mouse cardiomyocytes (Marsh et al., 2013). Under

the same culture conditions, erythrocytes from patients with

type 1 diabetes accumulated more sorbitol than normal

erythrocytes over the same time period. The majority of

diabetic patients have an increased accumulation of sorbitol, a

phenomenon associated with the development of diabetes-

related complications (Malone et al., 1984). The

hyperglycaemic state of diabetes leads to increased

diacylglycerol (DAG) levels and protein kinase C (PKC)

activation. The DAG-PKC pathway can affect cardiovascular

function and accelerate the progression of diabetic complications

by regulating endothelial permeability, vasoconstriction and

cytokine activation in various ways (Das Evcimen and King,

2007). Some of these glycaemia-dependent pathways for the

development of chronic complications of diabetes have

mechanisms of action related to the regulation of autophagy.

For example, PKCα negatively regulates autophagy in diabetic

pregnancy, and removal of PKCα eliminates maternal diabetes-

induced neuroepithelial apoptosis and neural tube defect

formation (Wang et al., 2017).

Molecular mechanisms of autophagy
associated with chronic
complications of diabetes

Recently, researches at the molecular level of autophagy in

yeast and eukaryotes have been considerably explored. In chronic

complications of diabetes, autophagy is mediated by diverse

pathways such as the mTOR, AMP-activated protein kinase

(AMPK) and different stresses. Autophagy is dramatically

increased in response to cellular stresses, such as oxidative

stress and ER stress. It provides assistance to cells in handling

stress and restoring stability to the internal environment by

removing faulty proteins as well as harmful substances (Figure 3).

Mechanistic target of rapamycin

mTORC1 and mTORC2 are key components of mTOR

which activate different downstream signals to mediate

autophagy (Kim and Guan, 2015). ULK proteins, homologs of

yeast ATG1, are involved in autophagosome formation and

influence the recruitment of autophagy-associated proteins

(Hara et al., 2008; Mizushima, 2010). The ULK1 protein

kinase complex can receive signals to initiate autophagy, while

mTORC1 inhibits the initiation of autophagy by inhibiting the

phosphorylation of the ULK1 complex thereby regulating

autophagy (Al-Bari and Xu, 2020). Hyperactive mTORC1 in

the pancreas has a bidirectional regulatory effect on islet β cells.

Overactivation of mTORC1 initially promotes increased β cell

mass, increased insulin levels, and improved glucose tolerance,

but over time this promoting effect becomes inhibitory and β cell

function declines more rapidly (Saxton and Sabatini, 2017).

mTOR inhibitors act on the mTOR signaling pathway leading

to elevated blood glucose by affecting insulin secretion. It is

effective in combination with metformin to prevent diabetes

caused by its use alone (Vergès and Cariou, 2015; Kezic et al.,

2018).

AMP-activated protein kinase

AMPK, an energy-related enzyme, functions in autophagy by

regulating the phosphorylation of autophagy-associated proteins.

AMPK maintains energy homeostasis through enzymatic

regulation of energy regulatory pathways (Tamargo-Gómez

and Mariño, 2018). In contrast to mTOR, the AMPK pathway

promotes autophagy. In hypoglycemic states, AMPK activates

Ulk1 to initiate autophagy through phosphorylation of Ser

317 and Ser 777. mTOR can influence the relationship

between Ulk1 and AMPK to negatively regulate autophagy

(Kim et al., 2011). Co-activator-associated arginine

methyltransferase 1 is an essential part of autophagy whose

levels are regulated by SKP2. In the presence of nutrient

deficiency, AMPK-dependent phosphorylation of FOXO3a

inhibits SKP2 transcription thereby increasing the level of Co-

activator-associated arginine methyltransferase 1, a novel

signaling axis (Shin et al., 2016). PI3K class III protein

complexes are important for autophagosome formation, while

VPS34 is a catalytic subunit. AMPK can influence autophagy by

regulating the PI3K complex to affect autophagy. AMPK

phosphorylates Beclin1 at Thr388 and promotes

Beclin1 binding to VPS34 and ATG14 (Kim and Guan, 2013).
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In the absence of nutrients, AMPK phosphorylates Ser-91 and

Ser-94 of Beclin1 and promotes autophagosome formation (Kim

et al., 2013). AMPK regulates autophagy, apoptosis,

mitochondrial homeostasis and other cellular metabolic

processes (Herzig and Shaw, 2018). AMPK can improve

diabetic cardiomyopathy by promoting fatty acid β-oxidation

via the ACC-CPT-1 pathway (Yang H et al., 2018). AMPK

regulates lipid metabolism in diabetes by inhibiting the

degradation of Insig-1 and causing a reduction in the

expression of adipogenesis-related genes, which can be

reversed by AMPK activators. A769662, an AMPK activator,

is a potential drug for the treatment of chronic complications of

diabetes (Han et al., 2019; Madhavi et al., 2019). Metformin,

another AMPK agonist, increases autophagic flux in

cardiomyocytes to reduce the burden of cardiomyopathy in

patients with type 2 diabetes (Packer, 2020).

Oxidative stress

Autophagy is sensitive to REDOX signaling. Reactive oxygen

species (ROS), a signal that maintains autophagy, which

functions in the cell depending on the concentration. Low

concentrations of ROS can act as REDOX signals, while high

concentrations of ROS can injure cells (Yun et al., 2020). High

levels of ROS produced by damaged mitochondria can react on

mitochondria to clean up damaged mitochondria and maintain

cellular homeostasis by activating autophagy (Filomeni et al.,

2015). Metabolic inflammation in diabetes is associated with

autophagy induced by oxidative stress. Blood glucose fluctuations

in diabetic patients increase oxidative stress and chronic

inflammation in endothelial cells (Chang et al., 2012; Muriach

et al., 2014). Autophagy and ROS can mediate each other. ROS

activates autophagy by increasing beclin-1 expression and over-

suppressing mTORC1, while autophagy can maintain ROS levels

by clearing mitochondria (Alexander et al., 2010; Lavallard et al.,

2012). The mutual regulation of autophagy and ROS is multi-

pathway, in which ROS can activate autophagy through different

pathways at the transcriptional and translational levels (Li et al.,

2015).

Endoplasmic reticulum stress

ER senses stress in the internal and external environment as

well as participates in the synthesis and transport of intracellular

substances, a feature associated with autophagic mechanisms in

diabetes (Su et al., 2013). ER stress can induce interrelated

autophagy and endoplasmic reticulum phagocytosis. ER stress-

mediated autophagy is associated with the IRE1α, PERK, ATF6,
and Ca2+ signaling pathways (Song et al., 2018). ER is an essential

site of protein folding, where nutritional stressors such as

inadequate nutrition, Ca2+ metabolic imbalance, and oxidative

stress may affect its cellular function, leading to the accumulation

of unprocessed proteins and thus activating the unfolded protein

response (UPR) (Bhardwaj et al., 2020). ER stress protects cells by

activating autophagy, which removes unfolded proteins and

damaged ER. At the same time, UPR activates transcription

FIGURE 3
Molecular mechanisms of autophagy associated with chronic complications of diabetes. mTORC1 regulates the initiation of autophagy by
inhibiting the phosphorylation of the ULK1 complex and has a bidirectional effect on pancreatic β-cells. AMPK can impact autophagy by activating
phosphorylation of ULK1 or regulating the PI3K complex. Autophagy and ROS can bemediated by each other. ROS activates autophagy by increasing
beclin-1 expression and over-suppressing mTORC1, while autophagy can maintain ROS levels by clearing mitochondria. ER is an essential site
of protein folding, while ER stress-mediated autophagy is associated with IRE1α, PERK, ATF6 and Ca2+ signaling pathways.
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factors to regulate the expression of autophagy-related proteins

(Deegan et al., 2013). UPR helps ER repair mishandled proteins

by activating PERK, IRE1, and ATF6. When the repair limit of

UPR is exceeded, the damaged ER is degraded by autophagy and

the degraded ER fragments can be recycled (Qi and Chen, 2019).

It has been reported that ER is associated with the size of

autophagosome formation and ATG2 transfers lipid molecules

from ER and participates in autophagosome formation

(Yamamoto and Noda, 2020). The ER stress pathway may be

associated with diabetes-related cognitive decline, but in

streptozotocin-induced diabetic mice, ER stress-mediated

autophagy induced by the JNK pathway may protect neurons

(Kong et al., 2018).

Effect of improved autophagy on
chronic complications of diabetes

With the epidemic of diabetes, a large number of novel

hypoglycemic agents have been developed, some of which can

regulate autophagy through varying signaling pathways and are

useful in the treatment of chronic complications of diabetes

(Zhang et al., 2017).

Improve autophagy to treat diabetes

Dispo85E has been shown to be a potential drug for the

treatment of diabetic vascular complications, and the mechanism

by which it acts is associated with autophagy. In a diabetic mouse

model, Dispo85E facilitates the expression of hepatocyte growth

factor in non-platelet cells, thereby promoting the degradation of

AGEs by hepatocyte growth factor-induced autophagy, which

has a therapeutic effect on diabetic complications (Peng et al.,

2011). Pioglitazone, a receptor gamma agonist, ameliorates the

consequences of cellular damage caused by the accumulation of

AGEs in diabetes by promoting autophagy (Xu et al., 2020). In

T2D, AMPK and SIRT1 signaling is inhibited, whereas

metformin and SGLT-2 inhibitors can activate both signals to

facilitate autophagy, respectively (Packer, 2020). The therapeutic

effect of metformin in autophagy regulation in diabetes is

associated with TFEB, which regulates metformin-induced

autophagy (Zhang D et al., 2021). MSL, an autophagy

enhancer, activates calcineurin and increases the conversion of

LC3-I to LC3-II. It regulates autophagy by inducing

dephosphorylation/nuclear translocation of TFEB to achieve

therapeutic effects in diabetic mice (Lim et al., 2018).

In T2D mice, the SGLT-2 inhibitor empagliflozin and the

DPP-4 inhibitor linagliptin used alone or in combination

enhance the levels of markers associated with glomerular

autophagy and contribute to the recovery of autophagy,

thus reducing the damage to the kidney in diabetes (Korbut

et al., 2020). Glucagon-like peptide 1 (GLP-1) receptor

agonist-Liraglutide may promote autophagy through

regulating the AMPK/mTOR pathway to exert

renoprotective effects in a rat remnant kidney model of

chronic renal failure (Xue et al., 2019). In addition, the

GLP-1 receptor agonist exendin-4 prevents β cell loss in

type 2 diabetes by restoring lysosomal function and

autophagic flux and facilitates the maintenance of glucose

homeostasis. Exendin-4 also alleviates tacrolimus-induced

hyperglycaemia, oxidative stress and other states of

autophagic overload by activating autophagosomal

clearance (Lim et al., 2016; Zummo et al., 2017; Arden,

2018). For cardiomyopathy, GLP-1RAs improve

mitochondrial function via regulating autophagy and

inflammatory signaling, as well as not only mediate the

inhibition of myocardial apoptosis, but also improve

cardiac energy metabolism (Ma et al., 2021). Melatonin, a

neurohormone with diverse functions, can ameliorate the

impact of DR by activating autophagy and regulating

cellular status. Melatonin can maintain cellular stability by

ameliorating hyperglycemia-induced cellular stress and

disruption of the blood-retinal intra-retinal barrier (Yan

et al., 2021).

Improve autophagy to treat cognitive
impairment

Apoptosis regulator (TP53-inducible glycolysis and

apoptosis regulator, TIGAR), an inhibitor of glycolysis, its

expression level is decreased in high glucose state. High

expression of TIGAR mitigates autophagy damage induced by

high glucose and positively regulates autophagy. TIGAR protects

neuronal cells through autophagy in diabetic neuropathy and

attenuates cognitive impairment (Zhou et al., 2019). Increased

expression of HMGB1 protein and defective autophagy in type

2 diabetic mice during intermittent hypoxia exacerbate cognitive

impairment (Guo et al., 2019). Liraglutide protects neurons and

improves diabetes-induced cognitive impairment by

ameliorating hippocampal neuronal and synaptic damage

(Yan et al., 2019). Metformin or pioglitazone can improve

cognitive function induced by diabetic vascular injury by

modulating neuronal autophagic flux (Fakih et al., 2020).

Rosiglitazone increases the survival rate of beta cells in

diabetic patients by promoting AMPK phosphorylation to

activate autophagy (Wu et al., 2013).

In a study of newly diagnosed T2D patients in Korea, there were

1675 AD cases with 8375 control cases. The study suggests that

metformin use is associated with an increased incidence of AD in

patients with type 2 diabetes and that the duration of diabetes

increases the risk of AD (Ha et al., 2021). Interestingly, another study

has shown that the use of metformin is beneficial in improving the

cognitive status of people with T2D and that adherence to

Mediterranean diet may be more effective than metformin
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(Soldevila-Domenech et al., 2021). In the APP/PS1 mouse model of

AD, metformin activates CMA via the TAK1-IKKα/β-
Hsc70 signalling pathway and effectively reduces the accumulated

brain Aβ plaques, providing a therapeutic effect in AD (Xu et al.,

2021). Based on the above studies, the alleviating effect of metformin

on cognitive impairment in diabetic patients may be related to its

modulation of autophagy. In a clinical trial of metformin in non-

diabetic patients, venous blood and stool were collected and

evaluated in subjects taking metformin within 90 days and after

30 days, and the results showed additional anti-inflammatory, anti-

aging and anti-thrombotic properties of metformin (Zuckerbraun,

2018). In addition, in a trial on the effect of metformin on surrogate

markers of cellular senescence and autophagy in adults with

prediabetes, a 12-weeks trial of metformin versus CaCO3

(placebo) was conducted and the results so far are that

LC3 levels in leukocytes were increased in the metformin group,

indicating enhanced autophagic activity (Burge, 2017).

Conclusion

Autophagy is an essential metabolic pathway in vivo with a vital

role in the chronic complications of diabetes. However, its specific

mechanisms have not been fully explored, with relevant theories

requiring further research. Although some studies have shown that

complete remission is possible in T2D patients treated with intensive

lifestyle changes, this study has many limitations and further

improvements are needed in diabetes research (Kelly et al., 2020).

For diabetes, first of all, we should strictly control blood sugar so that

complications can be prevented. Then we have to do more research

on diabetes in the field of metabolism to figure out the metabolic

mechanisms and vital markers of chronic complications of diabetes.

Overall, therapeutic approaches to diabetes targeting autophagy

need to be better designed. In this review, we describe the molecular

mechanisms associated with autophagy and diabetic complications

and summarise the latest autophagy-related drugs to improve

diabetes and its complications. These results highlight the role of

autophagy in the amelioration of diabetic complications and

contribute to the research and application of glucose-lowering

drugs related to the molecular mechanisms of autophagy.

Currently, common approaches to modulating autophagy in

diabetes are the use of autophagy inhibitors or knocking out

autophagy-related genes, which have shown good modulation in

animal experiments but still lack clinical trials. Therefore, further

research is still needed on drugs that modulate autophagy, and

modulating autophagy may be a potential research direction for the

treatment of chronic complications of diabetes.
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