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Introduction: Back pain is an extremely common symptom experienced by

people of all ages and the number one cause of disability worldwide.2 Poor

posture has been identified as one of the factors leading to back pain. Digital

biofeedback technology demonstrates the promising therapeutic ability in pain

management through posture training. One common goal of such an approach

is to increase users’ posture awareness with associated movement correction.

However, we lack a deep understanding of the biofeedback therapeutic

mechanisms and the temporal dynamics of efficacy.

Objective: This study investigates the temporal dynamics of the biofeedback

learning process and associated outcomes in daily life settings, testing the

mechanism of the biofeedback-associated pain reduction.

Methods: This retrospective real-world evidence study followed 981 users who

used the UpRight posture biofeedback platform. Piecewise mixed models were

used for modeling the two-stage trajectory of pain levels, perceived posture

quality, and weekly training duration following an 8-week biofeedback training.

Also, themediation effect of perceived posture quality on the analgesic effect of

training duration was tested using Monte Carlo simulations based on lagged

effect mixed models.

Results: The analysis revealed significant pain level reduction (p <.0001) and
posture quality improvement (p <.0001) during the first 4 weeks of the training,

maintaining similar pain levels and perceived posture quality during the next

4 weeks. In addition, weekly training duration demonstrated an increase during

the first 3 weeks (p <.001) and decreased during the next 5 weeks (p <.001).
Moreover, training duration predicted following-week perceived posture

quality (p <.001) and in turn perceived posture quality predicted following-

week pain (p <.001) (p = 0.30). Finally, perceived posture quality mediated the

effect of weekly training duration on the pain levels in 2 weeks (p <.0001).
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Conclusion: Our findings provide a better understanding of the therapeutic

dynamic during digital biofeedback intervention targeting pain, modeling the

associated two-stage process. Moreover, the study sheds light on the

biofeedback mechanism and may assist in developing a better therapeutic

approach targeting perceived posture quality.

KEYWORDS

digital therapeutics, pain biofeedback, digital biofeedback, painmanagement, posture,
back pain, pain mechanism

Introduction

Overall, back pain is an extremely common symptom

experienced by people of all ages (Hartvigsen et al., 2018). It

is the most frequent cause of chronic pain with a prevalence of

around 18.3% worldwide (Vos et al., 2016). The (lower) back is

the most common site for chronic pain, with a lifetime

prevalence of 30–40% (Sielski et al., 2017), which has annual

costs in the hundreds of billions of dollars in the United States

(Kotlarz et al., 2009), and the associated pain contributes to the

opioid epidemic (Ringwalt et al., 2014; Reuben et al., 2015). Back

pain can result from several known and unknown abnormalities

or diseases. Most cases of back pain are mechanical or

nonorganic and are not caused by serious conditions, such as

inflammatory arthritis, infection, or fracture (Vos et al., 2016;

Casiano et al., 2021). Unfortunately, a precise pathoanatomical

diagnosis cannot be given in about 80% of low back pain (LBP)

patients (Foster et al., 2018), who are consequently labeled

“nonspecific LBP” (Nijs et al., 2015) and whose treatment

focuses mostly on reducing pain symptoms.

Nonpharmacologic approaches, including exercise,

psychoeducation, and behavioral interventions, are universally

recommended as the first-line treatment for the majority of

chronic musculoskeletal conditions (Qaseem et al., 2017).

Moreover, it can achieve similar outcomes to surgery with a

reduced cost and lower risk [8, 9].

Postural control refers to building up posture against gravity

and ensuring that balance is maintained. Correct posture is

considered to maintain the natural curve of the spine in the

human body and prevent damage or progressive deformation in

all positions, including standing, lying down, and sitting (Kim

et al., 2015).

Incorrect posture may have a negative effect on the spine

(Wong et al., 2009; Alamin et al., 2018; Kwon et al., 2018).

Previous studies have suggested a relationship between

sagittal spinal malalignment and LBP (Hira et al., 2021).

Sagittal curvature of the spine and pelvis stabilize each

other to maintain a stable posture. Additionally, it was

shown that a positive sagittal balance was significantly

related to clinical symptoms in patients with adult spinal

deformity (Glassman et al., 2005). When the sagittal

alignment is anomalous, more energy is required to

maintain balance without external support (Hira et al.,

2021). Various adverse effects related to prolonged sitting

or standing behaviors with incorrect posture were examined

over longer time domains of 12 or 24 months. Cases of

exhaustion during a working day, job satisfaction,

hypertension, and low back pain among office workers

were reported (Andersen et al., 2007; Waters and Dick,

2015; Daneshmandi et al., 2017). Poor posture is a known

cause of low back pain; however, there is limited knowledge

about the mechanisms involved (Hasegawa et al., 2018).

Postural awareness is basically defined as the individual’s

mindful awareness of body posture that is mainly based on

proprioceptive feedback from the body periphery to the

central nervous system. Though the links between posture and

pain are highly complex, studies have shown that improving

habitual postural patterns might lead to improvements in

musculoskeletal pain conditions and prevent further

deterioration (Kent et al., 2015; Wälti et al., 2015; Cramer

et al., 2018). Good posture and back support are critical to

reducing the incidence of back pain. One approach to

achieving better posture is choosing ergonomic office

equipment that often provide better support and may be more

comfortable for the patient or taking breaks from prolonged

sitting/standing (John Schubbe et al., 2022). There are exercises

developed by professional physiotherapists that help alleviate

muscle tension caused by poor sitting or standing habits

(Harvard Health, 2015; NHS, 2022).

The use of biofeedback has been offered in the past as an

instrument for training that enables an individual to learn how

to change physiological activity or behavior for the purposes of

improving performance (Thanathornwong and Suebnukarn,

2019). Previous studies examined the effectiveness of

postural biofeedback added to a conventional physiotherapy

treatment for chronic low back pain (Sielski et al., 2017).

Postural training with vibrational biofeedback was shown to

reduce pain perception in the experience of LBP, the discomfort

level of LBP, and LBP-related work interference rates (Park

et al., 2018).

Interventions via the digital health platform have the

potential to improve traditional care outcomes for chronic

musculoskeletal pain by increasing patient engagement.

Practically, it can better enable patients to take a proactive

role in their therapy and learn to self-manage their pain

symptoms (Bartys et al., 2017; Auerbach, 2019). In addition,
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patient persistence to seek surgical treatment is shown to

decrease following participation in a digital health program

(Cronström et al., 2019).

Eventually, the development and utilization of digital health

interventions in a therapeutic capacity for musculoskeletal

conditions need to work toward reducing the burden of

musculoskeletal-related disability (Hewitt et al., 2020). An easy

to wear and comfortable system allowing for digital signals

suitable for evaluating “poor” or “good” posture may promote

self-awareness of individuals’ behaviors as a means of motivating

improvement and taking personal responsibility for their health

(Giansanti et al., 2009; Simpson et al., 2019).

Overall validation studies for multiple systems of wearable

posture monitoring have been favorable, although clinical

integration of these systems has not yet emerged on a larger

scale (McCullagh et al., 2016; Simpson et al., 2019). More

investigation of the value of postural training using wearable

biofeedback technology in the digital therapeutic management of

back pain is required (Park et al., 2018). Limited research has

been focused on reducing disability by improving exercise

adherence in patients with back pain using a smartphone-

based intervention, and there is still a lack of evidence for the

efficacy of mobile health embedded in care in large-scale

scientific analysis (Chhabra et al., 2018; Priebe et al., 2020). In

addition, the temporal dynamics of analgesia associated with

digital therapeutic technology is still not clear. Importantly,

although the literature suggests that supportive techniques are

effective and widely used, little is known about the mechanisms

underlying their effect on therapy and pain (Leibovich et al.,

2020). Previous research has demonstrated the ability of posture

biofeedback technology to improve posture (Mathie et al., 2004;

Park et al., 2018). Other studies have shown an association

between perceived posture quality and pain levels (Kent et al.,

2015; Wälti et al., 2015; Cramer et al., 2018). However, perceived

posture quality has never been tested as a potential source for

controlling posture biofeedback in alleviating pain.

This study leverages a retrospective analysis of a home-use

posture biofeedback trainer with full data capture in a

supporting mobile app among people suffering from pain.

The purpose of this retrospective study was 1) to evaluate the

biofeedback training dynamics and its efficacy on pain and

perceived posture quality in patients suffering from back pain

and 2) to test the mediating role of perceived posture quality in

the effect of posture biofeedback on pain levels. Of note,

previous studies suggested that changes in posture and pain

outcomes appear to have the following two phases: an initial

improvement over the first 4 weeks, followed by a longer-term

sustained period (Correia et al., 2018; Park et al., 2018; Bailey

et al., 2020).

We hypothesized that during the first 4 weeks of using a

self-management app and training posture would be

associated with reduced pain levels. By modeling the two-

phase trajectory process, we expected to show the

improvement to persist over an 8-week period. The present

study aims to investigate the proposed mediation model,

according to which posture training and improvement may

fulfill the role of a mechanism of change that enables to

achieve better pain reduction outcomes.

Methods

Users

This is a retrospective cohort study that uses a posture

biofeedback digital platform with follow-up data collected

between 2018 and 2020 (UpRight by Dario Health). The

data were collected from the UpRight users during their

actual biofeedback usage in the period of the first 8 weeks.

The analysis included 981 users out of 6,098, who used the

UpRight platform between 2018 and 2020. The inclusion

criteria were as follows: high pain levels (>6) at the first

assessment and at least two self-reported assessments of

pain levels and posture quality during the first 8 weeks of

biofeedback training sessions. Based on our pilot study, users

who train less than 6 h a week are not engaged enough in the

process and do not show the same linear grade of clinical

improvement. For this reason, the users with less than six

weekly training hours were removed from the main analysis

and used as a “nonintensive training” group for sensitivity

analysis (see below). The users’ average age was 40.8 (SD =

22.7) years, with an average height of 171 cm (9.90) and a

weight of 71.8 kg (16.1). A part of 58.6% of the users was

women. Ethical and Independent Review Services (Ethical and

Independent Review Services, 2020), a professional review

board, issued the institutional review board exemption for this

study (21,048–01#).

Platform

This study utilized the postural biofeedback tactile feedback

wearable device (UpRight by DarioHealth). The UpRight device

is programmed to vibrate when slouching postures are detected

(based upon changes in tilt and curvature of the spine) and alert

users of their change in body position. The device is a postural

training device that uses a triaxial accelerometer to set target

posture and monitors body position to provide a vibration

stimulus alert when good body posture is not being maintained.

In a slouch position, each vibration cycle includes two

vibrations and a break of 10 s, which is repeated

continuously until a proper posture is achieved. The

UpRight device control circuit was built using the following

components: a system on chip based on a 32-bit ARM Cortex-
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M4F processor, a BLE transceiver operating at the 2.4 GHz

frequency band for wireless data transmission, a 3.7 V lithium

polymer battery as a power supply, and a motor driver for

feedback. A transceiver unit was interfaced with the mobile

application wirelessly to transmit the posture feedback. The

motor driver drives an ERM (eccentric rotating mass) vibration

motor. The base resonant frequency of the ERM motor is

approximately 250 Hz. Moreover, there are eight types of

vibration patterns that are available in the app for the user’s

choice and preference. The difference between the patterns is

their duty cycles and modulated PWM (pulse width

modulation) frequencies. Visual feedback is available

through the cell phone screen (Figure 1). The device is

removed from the holder, placed in the middle upper back

under the shirt, and directly connected via Bluetooth into a cell

phone, effectively converting the cell phone into the display

screen for the device. The users were instructed to attach the

UpRight device in their upper back by the instructions provided

in the UpRight app. The device allows the user to define the

sensitivity for posture indication (red range indicator) varying

between strict and relaxed using a six-level bar (1, strict; 6,

relaxed, 3° intervals) determined in reference to the calibration

state. Connecting the meter directly to the phone ensures real-

time data capture during a posture training session. In a

“calibration” screen, the user calibrates upright to his back.

The user is instructed to sit upright and stay still, once ready to

press the “I’m upright” button. The device is recording the

upright position of the user. The user may define the delay time

for vibrotactile feedback for tilt angle with reference to

calibration. The delay time range is 5, 15, 30, or 60 s. When

the user starts logging in to the app and using the device, a

default recommendation is presented to the user to complete

the amount of time spent in an upright position in a day

(uptime goal). The first daily goal is 60 min, which increases

gradually throughout the program according to the user’s

progress (the upper limit of daily goals is 500 min).

Measures

In this retrospective cohort study, users with high pain levels

used a biofeedback posture device to improve their posture.

Training duration—the time the user used the posture

biofeedback (in hours)—was recorded. After a session, the

user was asked to rate the level of back pain using the

numerical rating scale (NRS) on a 0–10 scale (Haefeli and

Elfering, 2006) (0, no pain; 10, extreme pain) and his posture

on a 0–10 scale (0, mostly slouched; 10, mostly upright) in data

entry screens. A numerical scale was used to enable the user to

directly read the pain intensity from the screen. This graphic

rating scale was found to correlate positively with other self-

reporting measures of pain intensity (Haefeli and Elfering, 2006).

The weekly average pain level, which was defined as the mean of

all of the users’ pain ratings taken over a 7-day interval, was used

as a core outcome metric. The weekly average posture level,

which was defined as the mean of all of the users’ posture ratings

taken over a 7-day interval, was used as a mediator. Total training

duration was averaged for the same 7-day intervals using the

minute time scale. In addition, users’ demographic variables such

as gender, weight, height, and age were collected. The UpRight

device is connected to the mobile device directly. The mobile app

transmits the data to the public cloud platform, where the data

are stored in PostgreSQL and BigQuery. All data were processed

and stored in compliance with GCP and AWS standards. All data

were anonymized before extraction for this study.

Sensitivity analysis

Additional sensitivity analysis ensured that age, gender,

weight, and height did not modify the findings of the

mediation analysis. To compensate for the absence of the

control group, we conducted an additional sensitivity analysis

in the following way: all of the participants were assigned to

FIGURE 1
Digital biofeedback technology. The device is located on the upper back, and the app screens display upright and slouching positions based on
sensor assessment.
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“intensive training” or “nonintensive training” groups if, during

the first week, they used the biofeedback for six or more hours or

less than 6 h, respectively. The two groups are not associated with

age, gender, height, weight, and BMI (all P’s > 0.1).

Analytical approach

Statistical analysis consists of two parts: 1) nonlinear time

trajectory analysis of pain levels, perceived posture quality, and

weekly training duration and 2) testing the mediation effect of

perceived posture quality on the analgesic effect of training

duration. The first part is focused on modeling weekly pain

levels, perceived posture quality, and weekly training duration

throughout the users’ initial 8 weeks of using UpRight

biofeedback. The second analysis is designed to test the

mediation effect of perceived posture quality in the effect of

training duration on pain levels using lagged effects (see below).

Nonlinear trajectory analysis

Traditional linear longitudinal models assume a single growth

pattern in an outcome across time. Sometimes, this assumption does

not fit the empirical data. In contrast, piecewise-based mixed-effect

models allow flexibility in the modeling of trajectories across time

(Fundoiano-Hershcovitz et al., 2021). Herein, a mixed piecewise

model is used as a framework for analyzing pain levels and perceived

posture quality in two segments with the R package lme4, namely, 1)

training-related improvement (1–4 weeks) and 2) the training effect

maintenance (5–8 weeks). A similar analysis was also conducted for

the weekly training duration, but this time the two parts were

defined for 1–3 weeks and 4–8 weeks, correspondingly. The

piecewise approach allows for the modeling of different linear

trends over the different regions, providing an opportunity to

model curvilinear changes in the weekly pain level, perceived

posture quality, and weekly training duration as an integral

process. Following previous research (Correia et al., 2018), the

piecewise cutoff point for modeling the outcome slopes was

chosen at 5 weeks, assuming a shift in the time trajectory after

4 weeks of using UpRight posture biofeedback. The model included

person-based random slopes for both periods (1–4 and 4–8 weeks).

The model formulation is as follows:

Level 1: Yij � β0j + β1j*time1 + β2j*time2 + Rij

Level 2: β1j � γ10 + U1j, β2j � γ20 + U2j,

where i represents the week, j represents a user, and

time1 and time2 are the piecewise dummy parameters for

weeks 1–4 and 4–8, respectively, and β1/β2 is their slope. R

represents the model general residuals, and U1\U2 represents

random slopes for the model slopes, while γ10 and γ20 are the

corresponding fixed effects.

Mediation analysis

The mediation model relies on the assumption of casual

associations between the predictor to mediator and the mediator

to the outcome. Practically, this is hardly achievable. Even the

analysis based on a randomized controlled trial may ensure

causality just for one of the model paths. As a solution, lagged

analysis was suggested to ensure temporal order while testing the

association of interest (Wu et al., 2018). A lag of one time unit

(1 week) is enough to create temporal order, assuming that the

predictor measured at a certain week is associated with the

following-week mediator that in turn will be associated with

the model outcome measured 1 week later.

We applied the mixed modeling framework for mediation

testing using a similar statistical framework. To examine a

mediation model, we conducted a series of analyses in which

the following were tested: 1) the association between training

duration (week t) and the following week’s (t+1) k perceived

posture quality and 2) the association between perceived posture

quality (week t+1) and users’ pain ratings in the following week

(t+2). Thus, the outcome measure for the mediation analysis was

the users’ weekly aggregated pain rating 2-week lagged, while the

mediator was users’ weekly aggregated perceived posture quality

rating 1-week lagged. Technically, we applied the following two

models: a) to test the 1-week-lagged association between training

duration and following perceived posture quality and b) to test

the association between 1-week-lagged perceived posture quality

and 2-week-lagged pain ratings, conditioned on the effect of the

training duration. Finally, the mediation effect was defined as

a*b, and statistical inferences were made based on the approach

described earlier. The mediation model was tested using a quasi-

Bayesian–Monte Carlo method with 5,000 simulations, and

White’s heteroskedasticity-consistent estimator for the

covariance matrix was used to overcome the violation of the

residual homoscedasticity assumption (Zeileis, 2006; Tingley

et al., 2014). Finally, the mediation model was tested where

the group differences in pain rating were mediated by perceived

posture quality (group→perceived posture quality→pain levels).

Taking advantage of the lagged analysis and sensitivity analysis,

the current study has the quality of the quasi-experimental design

and testing quasi-casual, thus boosting the validity of the

performed mediation analysis.

Results

Nonlinear analysis of pain levels, perceived
posture quality, and training duration
trajectories over time

Table 1 presents the descriptive statistics of the sample. The

nonintensive training group shows a similar distribution to the

intensive training group based on the collected data. Figure 2
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presents the weekly aggregates of pain levels, perceived posture

quality, and training duration trajectories. Piecewise mixed

model analysis revealed a significant pain level reduction

(B = −0.80, 95% CI −0.81 to −0.79, p <.0001; 50% reduction,

R2 = 0.09, 3.84 points) and perceived quality improvement (B =

0.72, 95% CI 0.63 to 0.82, p <.0001; R2 = 0.10) during the first

4 weeks of the training, maintaining similar pain levels (B = 0.06,

95% CI −0.03 to 0.14, p = 0.20) and perceived posture quality

(B = −0.02, 95% CI −0.16 to 0.08, p = 0.68) during the next

4 weeks. Lastly, weekly training duration demonstrated a

significant increase during the first 3 weeks (B = 47.19, 95%

CI 1.25 to 95.40, p = 0.04, R2 = 0.02) and significantly decreased

during the next 5 weeks (B = -85.75, 95% CI -106.09 to −65.28,

p <.001).

Testing the mediating role of perceived
posture quality in the effect of training
duration on pain levels

The direct association between training duration and pain

levels was significant (B = −0.0002, 95% CI -0.0003 to -0.0001,

p <.001, R2 = 0.1). Training duration significantly predicts

following-week perceived posture quality (B = 0.0004, 95% CI

0.0002 to 0.0006, p <.00, R2 = 0.12) and, in turn, perceived

posture quality significantly predicts following-week pain

(B = −0.10, 95% CI -0.019 to -0.009, p <.001, R2 = 0.09),

adjusting for previous week training duration quality that was

not significant in this model (B = −0.0002, 95% CI -0.0004 to

0.0001, p = 0.30). Finally, perceived posture quality significantly

mediated the effect of weekly training duration on the pain levels

in 2 weeks (M = −0.0001, p <.0001) (Figure 3).

Sensitivity analysis of the mediation effect

The sensitivity analysis conducted to establish a control

group assigned the participants to an “intensive training

group” or a “nonintensive training group” and tested the

mediation model, where group differences in pain rating are

mediated by perceived posture quality (group→perceived

posture quality→pain levels). The “intensive training” group

demonstrated significantly higher perceived posture quality

(B = 0.35, t = 3.23, p = 0.001, 0.14–0.57). Also, perceived

posture quality showed a significant negative association with

pain rating (B = -0.08, t = -4.49, p = 0.001, -0.12 to −0.04),

controlling for the group assignment that was not associated with

pain ratings in this model (B = 0.002, t = 0.02, p =

FIGURE 2
Training trajectories (weekly aggregates over a 7-day interval) of (A) pain ratings, (B) perceived posture quality, and (C) training duration (in
hours). The blue line represents locally weighted smoothed weekly averages with 95% confidence intervals (the dark grey area surrounding each
curve), and the red line represents the applied piecewise model.
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0.98, −0.21–0.21). Finally, perceived posture quality significantly

mediated the effect of the group (“intensive training” vs.

“nonintensive training”) on the pain levels (M = −0.03, p <
0.0001). The effect of the group on pain levels was saturated by

the perceived posture quality, supporting the full mediation effect

of the perceived posture quality.

Discussion

Principal results

This study presents a real-world analysis of the posture

biofeedback efficacy and the temporal resolution of its effect,

as well as testing a potential mechanism of the associated

analgesia. More specifically, we found statistically significant

and clinically meaningful pain reductions associated with the

biofeedback training. Then, 62% of the users reported pain

reduction beyond the minimal clinically important difference

(two points on the NRS), while 76% showed some pain reduction.

Interestingly, 60% of the users demonstrated pain reduction

beyond the minimal clinically important difference already

after 4 weeks of biofeedback training, confirming the findings

of our two-slope dynamic model. Our findings confirmed two

distinct phases in biofeedback training: 1) a rapid improvement

phase lasting 4 weeks, associated with pain reduction and

increased perceived posture quality, followed by 2) a

maintenance phase lasting for the next 4 weeks, associated

with no changes in pain and perceived posture quality. In

addition, weekly training duration increased during the initial

3 weeks and decreased during the following 5 weeks. This study

showed that the utilization of a piecewise mixed model statistical

framework appears to be an appropriate base model to describe

nonlinear fluctuations in pain levels, perceived posture quality,

and training duration.

Finally, we demonstrated that training duration predicts

changes in the following-week perceived posture quality,

which in turn predicts users’ pain ratings in the following

FIGURE 3
Mediation model. Training duration is significantly associated with the following-week perceived posture quality, which in turn predicts next
week’s pain levels. Perceived posture quality mediates the association between training duration and pain levels.

TABLE 1 Descriptive statistics of the sample.

Nonintensive training (N = 656) Intensive training (N = 981) Overall

Gender

Female 63.9% 59.1% 61.5%

Male 36.1% 40.9% 38.5%

Age

Mean (SD) 38.6 (38.8) 39.8 (12.7) 39.2 (29.0)

BMI

Mean (SD) 24.6 (4.85) 24.5 (4.52) 24.6 (4.69)

Training duration (min)

Mean (SD) 224 (189) 1,350 (785) 819 (812)
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week. Perceived posture quality significantly mediated the lagged

association between training duration and pain levels.

Comparison to prior work

Consistent with the literature, we found that users of

digital biofeedback experienced the most change in their

first few weeks of use and generated comparable

improvements that are in line with the recent trends of

healthcare delivery toward home-based care (Kramer et al.,

2003; Correia et al., 2018; Bailey et al., 2020).

Biofeedback treatment can lead to improvements on various

pain-related outcomes in the short and long terms (Sielski et al.,

2017).

The precise physiological mechanism of posture biofeedback

is still not clear. Our findings are in line with previous studies that

showed that increasing training hours and providing feedback

regarding faulty static posture for 3 weeks was associated with

improved perception of spinal posture (Park et al., 2018).

One line of the research states that in order to obtain good

posture, inactive individuals need to build up the proper muscle

balance, strength, and endurance to stabilize the spine

(Budhrani-Shani et al., 2016; Canadian Chiropractic

Association - Association chiropratique canadienne, 2018).

However, it was also reported that postural training with

biofeedback may help to reduce stress, fatigue, and

psychological disorders that are associated with faulty spinal

posture (Park et al., 2018). Indeed, recent studies have shown that

an increase in strength over the first few weeks of resistance

training has a neural component, demonstrating brain

neuroplastic changes associated with pain (Pearcey et al.,

2021). When the brain experiences pain over and over, neural

pathways get strengthened and sensitized (Woolf, 2011; Baliki

and Apkarian, 2015).

Recently, back pain was associated with neural activity in the

brain regions responsible for emotional processing rather than

typical nociceptive processing (Hashmi et al., 2013). However,

due to the data limitations, we cannot ensure that all of the users

had primary chronic pain. Thus, other types of chronic pain can

be involved in other potential therapeutic mechanisms.

Moreover, back pain is related to emotional perception in the

body (Chojnacka-Szawłowska et al., 2019; Goldstein et al., 2020),

while perceived body posture quality can be driven by changes in

subjective perception of one’s posture. The links between posture

and pain are complex; however, studies have shown that

improving habitual postural patterns might lead to

improvements in musculoskeletal pain conditions and prevent

further deterioration (Kent et al., 2015; Wälti et al., 2015; Cramer

et al., 2018). Changing patterns of posture using motion-sensor

biofeedback in people with LBP resulted in a reduction in pain

and activity limitation when compared with guideline-based

medical or physiotherapy care (Kent et al., 2015).

Previous research studies have shown a complex interaction

between pain and body perception disturbances (Lewis et al.,

2007). Clinical evidence supports the use of treatments that target

cortical areas, which may reduce body perception disturbances

and pain (Moseley, 2006). A greater knowledge of body posture

perception may provide valuable insights into the mechanisms of

the central neural system associated with analgesia. There is

convincing evidence demonstrating links between poor or

disrupted awareness of sensory information or interoceptive

awareness and difficulties with physical and emotional

regulation (Borg et al., 2018).

In line with the health behavior change theory, it posits that

new health behaviors emerge when people gain both knowledge

and awareness (Lawson and Flocke, 2009; Lustria et al., 2013; van

der Laan et al., 2017). We suggest that the time of training one’s

posture using biofeedback is a prime opportunity for reinforcing

knowledge and executing behavioral change that further affect

pain level. In other words, by posture training, people with pain

pay attention to their positioning and movement and turn it into

a moment of reflection on their actions preceding that training.

This time period of focused awareness-building may be a key

piece in launching a virtuous process of improved future health

behaviors (Moseley, 2004).

In this study, it was demonstrated that users’ pain ratings

changed nonlinearly over time. Previous reviews of randomized

clinical trials for low back pain showed comparable changes. In

line with our findings, they have also demonstrated

musculoskeletal pain reduction in the initial period of 4 weeks

(Artus et al., 2010; Correia et al., 2018; Bailey et al., 2020).

One of the objectives of the digital biofeedback technology

concept is to prevent patients at risk from developing chronic

pain. To boost the efficacy of the preventive intervention, we

need a better understanding of its mechanism. Through the

retrospective analysis of the existing data collected through

the app, it became evident that perceived posture quality is

potentially one of these mechanisms.

Mobile technology use was previously shown to effectively

promote certain desired behaviors including physical activity.

However, there is a lack of studies that focused on reducing pain

or disability by improving training adherence and behavioral

change in patients suffering from back pain using a smartphone-

based intervention (Evans et al., 2012; Chhabra et al., 2018).

Based on our findings of the mediation model created on the

lagged association between training duration, perceived posture

quality, and pain levels, we suggest that perceived posture quality

is a potential mechanism of posture training-related analgesia.

Behavioral changes are mostly nonlinear in time and

modeled here in two linear trajectories (Glasgow et al., 2012;

Shan et al., 2019; Bailey et al., 2020; Fundoiano-Hershcovitz et al.,

2021). Herein, we show it as a single process applying the

piecewise model. Piecewise-based mixed-effect models allow

for flexibility in the modeling of variable change trajectories

across time. Herein, a mixed piecewise model assessed
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differences in the weekly average pain and posture levels in two

segments (Kohli et al., 2018). Future research should focus on

personalizing biofeedback technology by identifying target

populations and optimizing training programs.

Limitations

Several limitations should be mentioned. First, as in all studies

involving retrospective real-world data, the casual interference here

is limited due to the nonexperimental design of the study and the

absence of the control group. Additionally, real-world data source

and type of data usedmay limit the generalizability of the results and

of the endpoints and only evaluate association and not causality. To

increase the validity of the proposed mediation model, we created

temporal lags for the variables involved in the mediation analysis for

the quasi-causal inference.

Second, using a digital therapeutic tool that allows for the

recruitment and management of an increased number of subjects

for the study limits the number of applied assessments. Third, in

this real-world data analysis, the time scale was designed to reflect

weekly interval change over an 8-week period. However, the

relationships of interest in this study could be potentially

investigated in different scales emphasizing daily fluctuations.

Owing to the difficulty in tracking daily changes in digital

engagement in real-world studies, most studies focus on

weekly or monthly fluctuations. Investigating fine-grained

measurements with microintervals for tagging would certainly

contribute to the literature (Wagner et al., 2017). Fourth,

demographic data were limited. While age, gender, weight,

and height did not affect the findings, uncontrolled

demographic biases (e.g., race) might have been present from

other demographic factors. Additionally, the exact pain

condition, other treatments, or medications used are missing,

and the exclusion of the nonresponders from the main analysis

may bias the findings. Fifth, although the NRS is considered the

“gold standard” for the assessment of clinical and suprathreshold

experimental pain, more comprehensive assessments may

improve the accuracy of the collected subjective information

(e.g., pain interference, fear of pain, and PROMIS pain intensity).

Conclusion

It appears highly likely that posture biofeedback may serve as

a potential tool for the associated pain management. We found

statistically significant pain reduction associated with the

biofeedback training, focusing on the temporal resolution of

the associated effects. Finally, we have demonstrated that

perceived posture quality may serve as a potential mechanism

associated with posture training analgesia.

Future work investigating posture mechanisms such as

motion capture and electromyography on a larger scale is

required. In addition, longer time intervals of 3–6 months of

postural training and follow-up may increase the reliability

and validity of the clinical efficacy and associated

mechanisms.
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