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Pulmonary arterial hypertension (PAH) is a complex disease involving increased

resistance in the pulmonary arteries and subsequent right ventricular (RV)

remodeling. Ventricular-arterial interactions are fundamental to PAH

pathophysiology but are rarely captured in computational models. It is

important to identify metrics that capture and quantify these interactions to

inform our understanding of this disease as well as potentially facilitate patient

stratification. Towards this end, we developed and calibrated two multi-scale

high-resolution closed-loop computational models using open-source

software: a high-resolution arterial model implemented using CRIMSON,

and a high-resolution ventricular model implemented using FEniCS. Models

were constructed with clinical data including non-invasive imaging and invasive

hemodynamic measurements from a cohort of pediatric PAH patients. A

contribution of this work is the discussion of inconsistencies in anatomical

and hemodynamic data routinely acquired in PAH patients. We proposed and

implemented strategies tomitigate these inconsistencies, and subsequently use

this data to inform and calibrate computational models of the ventricles and

large arteries. Computational models based on adjusted clinical data were

calibrated until the simulated results for the high-resolution arterial models

matched within 10% of adjusted data consisting of pressure and flow, whereas

the high-resolution ventricular models were calibrated until simulation results

matched adjusted data of volume and pressure waveforms within 10%. A

statistical analysis was performed to correlate numerous data-derived and

model-derived metrics with clinically assessed disease severity. Several
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model-derivedmetrics were strongly correlated with clinically assessed disease

severity, suggesting that computational models may aid in assessing PAH

severity.
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hemodynamics

1 Introduction

Pulmonary arterial hypertension (PAH), defined by a mean

pulmonary arterial pressure greater than 20 mmHg (Simonneau

et al., 2019), is a complex disease that causes functional and

structural changes in the pulmonary circulation and right

ventricle (RV). Ventricular-arterial interactions play an important

role in the progression of PAH, where increases in resistance and

decreases in compliance of the pulmonary circulation lead to

structural remodeling and increased contractility of the RV, in

an attempt to maintain normal cardiac outputs (Vonk

Noordegraaf et al., 2019). RV contractility can increase four- to

five-fold until the ventricle cannot compensate for further increases

in pulmonary pressures, leading to “uncoupling” between the RV

and pulmonary arteries. Consequently, RV stroke volume and

ejection fraction decrease, ultimately leading to decompensated

RV failure (Vonk Noordegraaf et al., 2017). Given that

ventricular-arterial interactions are a key determinant of the

clinical course of PAH (Shimoda and Laurie 2013), there is a

pressing need to identify metrics that consider these interactions

to accurately describe PAH pathology.

Pediatric PAH is especially difficult to manage as diagnostic

metrics are often derived from adult data due to the lack of

clinical trials in the pediatric population (Ivy et al., 2010). Using

adult population data to guide pediatric PAH treatment can be

problematic as younger subjects present significant differences in

cardiovascular structure and function (Strait and Lakatta 2012)

and show worse survival rates (Douwes et al., 2013).

Furthermore, there are population-based differences in

children with PAH compared to adults, such as impaired lung

development and higher incidence of congenital heart disease

(Berger and Bonnet 2010). Clinical trials designed to focus on

pediatric PAH patients could help elucidate novel diagnostic

metrics for this population.

Computational models based on patient-specific clinical data

have widely been used to study mechanics and hemodynamics of

cardiovascular diseases (Humphrey and Taylor 2008; Taylor and

Figueroa 2009; Nordsletten et al., 2011; Bikia et al., 2020; Miller

et al., 2021) including hemodynamics in the cardiopulmonary

circulation (Kheyfets et al., 2013). Previous PAHmodeling efforts

have focused on either the pulmonary arteries (Tang et al., 2012;

Kheyfets et al., 2015; Zambrano et al., 2018; Yang et al., 2019) or

the RV (Rausch et al., 2011; Avazmohammadi et al., 2019; Shavik

et al., 2019). The absence of high-resolution (3D) bi-directional

(ventricular-arterial) hemodynamic interactions in these models

restricts their ability to capture phenomena such as ventricular-

arterial uncoupling. In this work, we aim to overcome this

limitation by developing high-resolution (3D) models of both

RV and pulmonary artery mechanics, a first step towards a fully

3D bi-directional model of the cardiopulmonary system.

The overall goals of this work are to (Figure 1): (1 develop and

calibrate multi-scale closed-loop models of the cardiopulmonary

circulation in PAH patients, and (2 use clinical and computational

metrics to stratify patients according to disease severity. Two

different models will be developed: a “High-Resolution Arterial

Model,” whereby image-based 3D fluid-structure interaction (FSI)

models of the large vessels are coupled to 0D models of ventricles

and distal circulation; and a “High-Resolution Ventricular Model”,

whereby image-based 3D models of passive and active ventricular

mechanics are coupled to 0D models of arterial and pulmonary

circulation. These computational models rely on the quality and

consistency of clinical data. Data were acquired using diagnostic

tools with varying tolerances, temporal and spatial resolutions, and

physiological states (i.e., level of sedation), which led to

inconsistencies. In this work, we also propose and implement

strategies to mitigate data inconsistencies to inform and calibrate

these computational models.

2 Materials and methods

Clinical data were acquired prospectively from a cohort of

8 pediatric PAH patients treated at the University of Michigan

(UM) C.S. Mott Children’s Hospital (ClinicalTrials.gov ID No.

NCT03564522). This study was approved by the UM

Institutional Review Board (HUM00117706), and informed

consent was obtained from subjects or their parents/

guardians. World Health Organization functional class

(WHO-FC) was determined for each patient.

2.1 Clinical data

Clinical data on anatomy, flow, and pressure, were acquired

using MRI and catheterization. Both MRI and catheterization

data were acquired with the patient at rest in the supine position.

The mean time between MRI acquisition and catheterization was

4.4 days (range 0–29 days).
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2.1.1 Magnetic resonance imaging
MRI was performed using a 1.5 Tesla scanner (Achieva or

Ingenia; Philips, Best, the Netherlands). Three-dimensional

diastolic vascular anatomy was obtained with a 3D steady

state free precession (SSFP) sequence (TE: 2.2 ms, TR:

4.3–4.4 ms, flip angle: 90°, field of view: 260–350 mm, slice

thickness = 1.4–1.6 mm, image resolution = 0.63–0.78 mm)

with cardiac and respiratory gating (Figure 2A). Gated phase-

contrast MRI (PC-MRI) (TE: 2.7–3.3 ms, TR: 4.1–5.1 ms, flip

angle: 12°, field of view: 250–350 mm, slice thickness = 6 mm,

image resolution = 1.4–1.6 mm) was performed to obtain

dynamic data at 40 phases of luminal area and blood flow at

five anatomical locations: ascending aorta (AAo), descending

thoracic aorta (DTA), main pulmonary artery (MPA), left

FIGURE 1
Clinical data was prospectively acquired in pediatric PAH patients and adjusted to mitigate inconsistencies. Parameters of two different closed-
loop multiscale models were calibrated and used to study computational metrics of disease severity. Clinically assessed disease severity, data-
derived metrics, and model-derived metrics were correlated to stratify patients according to disease severity.

FIGURE 2
(A) MRI 3D SSFP data is used to construct the anatomical arterial models. Flow and area waveforms were reconstructed from PC-MRI data
containing 40 phases. (B) 30 temporal phases of endocardial and epicardial surfaces were segmented from the short-axis stack of cine MRI data to
generate the ventricular volume waveforms. High-resolution (3D) ventricular models were created from these segmented surfaces. (C) Pressures at
the (1) right ventricle, (2) main pulmonary artery, and (3) right pulmonary artery were acquired with catheterization for all patients.
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TABLE 1 Summary of patient demographics and clinical metrics (MRI- and cath-derived).

Patient
demographics

Subject
#1

Subject
#2

Subject
#3

Subject
#4

Subject
#5

Subject
#6

Subject
#7

Subject
#8

Average Std
Dev

Age (years) 11 15 10 5 16 11 19 6 11.6 4.8

Gender (M/F) F F M F F M F F N/A N/A

BSA (m2) 1.23 1.66 0.95 0.74 1.44 1.25 1.61 0.88 1.2 0.3

Height (cm) 154 175 123 106.7 152 152 165 121.9 143.7 23.8

Weight (kg) 33.2 56.3 26.9 18.7 49.8 35.2 56.2 23 37.4 14.9

WHO Functional Class II I II I I II I I N/A N/A

Number of PAH medications 3 2 3 2 2 3 2 3 2.5 0.5

Years since initial diagnosis 5 5 4 1 10 10 6 2 5.3 3.3

MRI-derived metrics

Aorta - Flow Rate (L/min) 4.24 4.38 3.74 2.41 5.37 4.79 4.90 3.16 4.1 1.0

MPA - Flow Rate (L/min) 4.80 4.89 3.23 2.39 5.34 3.50 4.40 2.95 3.9 1.1

Averaged Cardiac Output
(L/min)

4.52 4.63 3.49 2.40 5.36 4.15 4.65 3.06 4.0 1.0

Cardiac Index (L/min/m2) 3.7 2.8 3.7 3.2 3.7 3.3 2.9 3.5 3.3 0.4

% of flow to LPA 45% 37% 51% 40% 47% 51% 41% 49% 0.5 0.1

Pulmonary Regurgitant
Factor (%)

1% 1% N/A 1% 1% 2% 8% 0% 2.0% 2.7%

Heart Rate (bpm) 91 77 79 66 83 74 70 73 76.6 7.7

Cardiac Cycle Length (s) 0.662 0.780 0.756 0.905 0.725 0.815 0.856 0.825 0.79 0.08

RV End-Diastolic Volume (ml) 120 141 84 78 114 123 241 90 123.9 52.1

RV End-Systolic Volume (ml) 60 67 33 39 44 60 145 39 60.9 36.1

RV Stroke Volume (ml) 60 74 51 39 71 63 96 51 63.1 17.5

RV End-Diastolic Volume Index
(ml/m2)

98 85 88 105 79 98 150 102 100.7 21.7

RV End-Systolic Volume Index
(ml/m2)

49 40 35 53 31 48 90 44 48.7 18.3

RV Stroke Volume Index
(ml/m2)

49 45 54 53 49 50 60 58 52.1 5.0

RV Ejection Fraction (%) 50 52 61 49 62 51 40 57 52.8 7.2

RV Mass (g) 30 36 23 16 35 21 72 13 30.7 18.7

RV Mass Index (g/m2) 24 22 24 22 24 17 45 14 24.0 9.2

Main Pulmonary Artery Stroke
Volume (ml)

56 63 41 37 69 48 65 41 52.5 12.4

LV End-Diastolic Volume (ml) 103 124 82 68 112 139 163 72 107.9 33.5

LV End-Systolic Volume (ml) 41 55 30 30 41 60 72 30 44.9 15.9

LV Stroke Volume (ml) 62 69 51 37 71 79 91 42 62.8 18.5

LV End-Diastolic Volume Index
(ml/m2)

84 75 86 92 78 111 101 82 88.6 12.3

LV End-Systolic Volume Index
(ml/m2)

33 33 32 41 28 48 45 34 36.7 6.9

LV Stroke Volume Index
(ml/m2)

50 42 54 50 49 63 57 48 51.6 6.4

LV Ejection Fraction (%) 60 55 63 55 63 57 56 58 58.4 3.3

LV Mass (g) 55 72 43 31 59 53 92 31 54.5 20.6

LV Mass Index (g/m2) 45 43 45 42 41 42 57 35 43.9 6.2

Ascending Aorta Stroke
Volume (ml)

53 60 51 39 73 67 78 44 58.1 13.8

Sedation N N N Y N Y N N N/A N/A

(Continued on following page)
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pulmonary artery (LPA), and right pulmonary artery (RPA).

Multi-slice (10–13 slices, slice thickness: 6–8 mm), multi-phase

(30 phases) cine MR images (TE: 1.2–1.6 ms, TR: 2.5–3.1 ms, flip

angle: 60°, field of view: 250–350 mm, image resolution =

1.6–1.8 mm) were acquired by positioning the scans in the

short-axis planes perpendicular to the long-axis of the left

ventricle (LV), capturing both the LV and RV from the

cardiac base to the apex (Figure 2B).

2.1.2 Catheterization
Right heart catheterization was performed in all subjects

(Figure 2C) to measure invasive hemodynamics and assess PAH

progression. Intracardiac pressures were measured in the right

atrium, RV, and pulmonary arteries (MPA, and either LPA or

RPA) using a balloon wedge catheter (Arrow, Reading, PA) or

thermodilution catheter (Edwards Lifesciences, Irvine, CA).

Pulmonary capillary wedge pressure was measured, and

femoral arterial access was acquired for blood pressure

monitoring and blood gas analysis. In select patients with

suspected left heart disease, retrograde left heart

catheterization was performed using a pigtail catheter (Merit

Medical, South Jordan, UT) and direct pressures were measured

in the LV, AAo, and DTA. Pulmonary vascular resistance index

(PVRi) was calculated by dividing the pressure gradient (mean

pulmonary arterial pressure—mean pulmonary capillary wedge

pressure) over cardiac index, which was calculated by the Fick

principle or thermodilution.

2.2 Patient demographics and clinical
metrics

Eight PAH patients (age: 11.8 ± 4.4 years; range 6–19 years)

underwent catheterization and MRI examinations. Table 1

summarizes mean and standard deviations of basic patient

demographics and several key clinical metrics, derived from

MRI and catheterization. Five patients were classified as

WHO-FC I and three as WHO-FC II. Four patients were on

dual PAH therapy, and four on triple PAH therapy.

2.3 Strategies for mitigation of
inconsistencies in clinical data

Despite best efforts made to acquire MRI and catheterization

data in close temporal proximity, the studies were on average

4.4 days apart. Furthermore, catheterization and MRI were

performed under varying levels of sedation. This, together

with the different tolerances and temporal resolutions of MRI

and catheterization, leads to inconsistencies in the data that must

be addressed in order to use the data for simulations, where

conservation laws of mass and momentum balance must be

satisfied. Data inconsistencies include: 1) LV and RV volume

waveforms segmented from cine MRI short-axis data do not

match values obtained with PC-MRI, and 2) misaligned

ventricular pressure-volume (PV) data. Additional examples of

data inconsistencies are detailed in the Supplementary Material.

2.3.1 Ventricular volume waveforms
2.3.1.1 Ventricular volumes derived from short-axis cine

MRI data

LV and RV volume waveforms were first obtained by

manually segmenting each of the 30 phases of the cine MRI

data using the software package CVI42 (Circle Cardiovascular

Imaging, Calgary, Canada). Ventricular segmentation is a time-

consuming task susceptible to inter- and intra-observer

variability (Miller et al., 2013). It required delineation of LV

and RV endocardial surfaces from the apex to the mitral and

TABLE 1 (Continued) Summary of patient demographics and clinical metrics (MRI- and cath-derived).

Patient
demographics

Subject
#1

Subject
#2

Subject
#3

Subject
#4

Subject
#5

Subject
#6

Subject
#7

Subject
#8

Average Std
Dev

Cath-derived metrics

Pulmonary arterial mean
pressure (mmHg)

59.4 29.2 35.1 82.9 47.1 31.2 58.3 20.4 45.4 20.6

Pulmonary arterial pulse
pressure (mmHg)

30.6 18.0 35.4 66.2 36.9 26.6 48.0 24.1 35.7 15.3

Pulmonary arterial systolic
pressure (mmHg)

74.7 38.2 52.9 116.0 65.5 44.5 82.3 32.5 63.3 27.6

PVR Index (WU m2) 16.2 7.3 5.9 23.2 9.9 4.9 16.0 3.3 10.8 6.9

Rp:Rs 0.8 0.4 0.32 0.77 0.55 0.33 0.8 0.2 0.5 0.2

Pulmonary Capillary Wedge
Pressure (mmHg)

10 8 15 14 12 14 12 8 11.5 2.7

Cath Heart Rate (bpm) 69 65 78 66 72 65 66 86 71.0 7.6

Cath Cardiac Cycle Length (s) 0.870 0.918 0.770 0.909 0.830 0.920 0.905 0.695 0.9 0.1

PA Oxygen Saturation (%) 80 72 64 60 73 64 70 73 69.5 6.5

Frontiers in Physiology frontiersin.org05

Tossas-Betancourt et al. 10.3389/fphys.2022.958734

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.958734


tricuspid valve, respectively, for each of the 30 phases of the MRI

data. In the short-axis cine MRI data, slice thickness (6–8 mm) is

much larger than the in-plane image resolution (0.80–0.91 mm).

Higher variability in RV segmentation is expected since its shape

varies significantly throughout the slices (Petitjean and Dacher

2011; Caudron et al., 2012). Furthermore, delineation of the basal

regions of the ventricles can be challenging due to the 10%–20%

end-systolic shortening (Rogers et al., 1991; Klein et al., 1998)

and the motion of the valves along the long-axis. Average RV and

LV stroke volumes of 62.8 ± 18.5 ml and 63.1 ± 17.5 ml,

respectively, were obtained.

2.3.1.2 Truncated ventricular volumes

A fixed plane below the tricuspid valve was used to define

truncated volume data used in the high-resolution ventricular

computational models. This truncation yielded average LV and

RV stroke volumes of 43.0 ± 14.7 ml and 40.4 ± 14.9 ml,

respectively (see Supplementary Table S1 for values for each

patient). These volumes are 31% and 36% smaller than those

corresponding to the full ventricle. Then, the end-systolic phase

was segmented using MeVisLab (www.mevislab.de) to define

STL models of LV and RV. These end-systolic segmentations

were adjusted to match the CVI42 ventricular volume data.

The discrepancy between full ventricular and truncated

volumes used in the high-resolution computational arterial

models is accounted for by different model parameters of the

lumped parameter heart model (Section 2.4.2). Conversely, the

high-resolution computational ventricular models use the

truncated definition of the ventricular volumes. The

implications of this inconsistency will be discussed in the

limitations section.

2.3.1.3 Ventricular volumes derived from PC-MRI data

Integration of PC-MRI flow waveforms at AAo and MPA

provide alternative definitions for LV and RV ventricular volume

waveforms, respectively. Average PC-MRI-derived RV and LV

stroke volumes of 53.8 ± 11.3 ml and 51.1 ± 10.8 ml, respectively,

were obtained. This represents a difference of 19% and 23%

relative to the values obtained via segmentation of the short-axis

cine-MRI data. This difference could be due to patients holding

their breath only for the short-axis cine-MRI sequence, which

can increase stroke volume (Guz et al., 1987). In Section 2.4.3, we

describe how to combine the PC-MRI and short-axis cine MRI

definitions of volume waveforms to improve the comparison

between simulated and measured AAo and MPA flow

waveforms.

2.3.2 Automated alignment of ventricular
pressure and volume data

Ventricular pressure and volume waveforms were combined

to form a PV loop. Given the difference in temporal resolution,

pressure waveforms were down sampled to 30 phases to match

the resolution of the volume data. Then, pressure and volume

waveforms were aligned using the R-peaks of the ECG and a PV

loop was plotted. However, in most cases, the shape of the

resulting PV loop lacked defined isovolumetric contraction

and relaxation phases (Figure 3A), which can even occur

when PV loop data is acquired simultaneously with an

interventional cardiac MRI. Gusseva et al. (2021; 2022)

developed a biophysical heart model to align PV data. In this

work, we developed an algorithm to systematically shift the

pressure waveforms to determine optimally aligned PV loops.

The basis of this algorithm is as follows: Pressure data was

shifted by time increments Δt = T/30 s, where T is the cardiac

cycle length, and 30 is the number of phases. Since maximum

pressure and minimum volume must remain in close temporal

proximity, the number of Δt increments (nshifts) was limited to ±7

(e.g., nshifts= ± 1, 2, . . ., 7). Positive and negative signs indicate

forward and backwards shifting of the pressure, respectively. For

each pair of volume and shifted pressure data, a new PV loop was

defined, and an ellipse fitted to the data by least squares

minimization (Gal 2020). The optimally aligned PV loop

corresponded to the time shift which produced the fitted

ellipse with the maximum area (Figure 3B). The optimization

algorithm was used to determine the optimally aligned PV loops

for both the LV and RV. While the choice of maximum area to

identify the optimally aligned PV is arbitrary, it provides a

systematic criterion to perform PV loop alignment for every

subject.

The aligned PV loops were used to estimate ventricular

stroke work, construct the elastance waveforms of the lumped

parameter (0D) heart model used in combination with the high-

resolution arterial models (Section 2.4.2), and to calibrate the

parameters of the high-resolution ventricular models

(Section 2.5).

2.4 High-resolution arterial model

These models consist of a 3D FSI component representing

the large systemic and pulmonary arteries, and 0D lumped-

parameter models representing the heart (H) (see Figure 4)

and the distal systemic and pulmonary circulations via 3-

element Windkessel models (W) (Vignon-Clementel et al.,

2006).

2.4.1 3D FSI arterial models
Anatomical models of the large systemic and pulmonary

arteries were constructed from the diastolic phase of the 3D

steady-state free precessionMRI data, adjusted to match diastolic

areas measured with PC-MRI (Alastruey et al., 2016), see

Supplementary Material. Models were built using the open-

source cardiovascular simulation software CRIMSON (Arthurs

et al., 2021), rendering smooth analytical (NURBS) surfaces

enclosing the volume of the vessels of interest. Models were

then discretized into linear tetrahedral elements, and field-based
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adaptivity was used to refine the mesh in regions of high velocity

gradients (Sahni et al., 2006). A mesh sensitivity analysis was

performed to ensure mesh independence in flow and pressure

waveforms, and determine the mesh sizes. The combined finite

element mesh size for the aortic and pulmonary models ranged

from 1,214,922 to 1,780,093 elements.

The arterial wall was modeled as a linear elastic membrane

with spatially varying isotropic stiffness and wall thickness

(Figueroa et al., 2006). Luminal area and pressure data were

used to derive linearized stiffness, defined as (Hirai et al., 1989;

Silva Vieira et al., 2018):

E � 1.5 · ΔP · R2
i · RO(R2

O − R2
i ) · ΔR (1)

where Ri and RO are the diastolic luminal and outer vessel

radius, respectively. ΔR (� Rsystolic − Rdiastolic) is the variation in

lumen radius, and ΔP � Psystolic − Pdiastolic is the pulse pressure. A

15% ratio of wall thickness to vessel radius was used in the large

systemic (Roccabianca et al., 2014) and pulmonary (Li et al.,

2012) arteries. Linearized stiffness was assessed in the following

5 locations where arterial wall deformation was estimated using

PC-MRI: AAo, DTA, MPA, LPA, and RPA. The stiffness values

were then linearly interpolated along the vessel centerline.

Stiffness in branches was set to match that of the closest large

arterial vessel. Stiffness values in each location for each subject

are detailed in Supplementary Table S2.

Once the parameters of 3D and 0D compartments of model

are defined, multi-scale FSI simulations were performed using the

CRIMSON flow solver to solve for the Navier-Stokes equations for

an incompressible Newtonian fluid (Figueroa et al., 2006; Xiao

et al., 2013; Lau and Figueroa, 2015). All simulations were

performed using a time step size of 0.1 ms. Blood was modeled

as an incompressible Newtonian fluid with density of ρ = 0.00106 g/

mm3 and viscosity of μ = 0.004 g/mm·s. Simulations were run until

flow and pressure fields achieved cycle-to-cycle periodicity.

2.4.2 Lumped-parameter (0D) heart model
A lumped-parameter (0D) heart model (H) was defined using

CRIMSON’S Netlist Editor Boundary Condition Toolbox (Arthurs

et al., 2017) (Figure 4). The lumped-parameter heart model used in

this work, developed by Kim et al. (2009), captures how changes in

either cardiac or arterial properties influence each other. Thismodel

was chosen as it was developed by our group, it is implemented in

the CRIMSON flow solver, and it has been widely adopted by the

3D hemodynamic modeling field (Sankaran et al., 2012; Marsden

2013; Arthurs et al., 2016; van Bakel et al., 2019). Resistors (RR) and

capacitors (CR) were used to represent the aortic and pulmonary

artery roots. Mitral and tricuspid valves were modeled using diodes

(DV1) and inductors (LV1) with set values. Aortic and pulmonary

valves were modeled using dynamically controlled resistors (RV2)

and inductors (LV2) (Mynard et al., 2012; Ahmed et al., 2021).

These valve models made it possible to reproduce post-systolic flow

reversal and non-zero diastolic flow, features both present in our

patient cohort.

LV and RV contractility was represented via a time-varying

pressure volume chamber representing ventricular elastance EV(t)
and a dynamic source resistance (RS) in series. An analytical ‘two-

Hill’ function (Mynard et al., 2012) was used to define a smooth

ventricular elastance EV(t) , whose parameters were adjusted to fit

the clinical values of elastance Ei � PVi/VVi, i � 1, ., 30 defined

FIGURE 3
(A) PV loop built by ECG-aligning pressure and volume waveforms shows physiologically unrealistic shape. (B) Optimization algorithm
incrementally shifts pressure waveforms to define a new PV loop and an ellipse is fitted to the PV. The optimally aligned PV loop, showing clearly
defined isovolumetric relaxation and contraction phases, is that with the largest area.

Frontiers in Physiology frontiersin.org07

Tossas-Betancourt et al. 10.3389/fphys.2022.958734

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.958734


from the optimally-aligned PV-loops for each patient (Section

2.3.2) (Supplementary Figure S1):

EV(t) � k( g1

1 + g1
)( 1

1 + g2
) + Emin (2)

where

g1 � ( t

τ1
)m1

, g2 � ( t

τ2
)m2

, k � Emax − Emin

max[( g1
1+g1)( 1

1+g2)] (3)

k is a scaling factor, m1 and τ1 and m2 and τ2 control the slope
and time translation of the ascending and descending portions of

the elastance waveform, respectively.

2.4.3 Boundary condition design and calibration
Boundary condition design and calibration are achieved via a

process which includes three stages of lumped parameter model

circuit design, iterative tuning of parameters, and adjustment of

truncated ventricular volume and elastance waveforms

(Figure 5A). The boundary condition design consists of the

following three stages (Arthurs et al., 2017):

Stage 1 open-loop arterial model with imposed aortic and

MPA flows (Figure 5B).

Stage 2 open-loop arterial model with a 0D heart model

(Figure 5C).

Stage 3 closed-loop arterial model with a 0D heart model

(Figure 5D).

Within each stage, parameters were iteratively tuned until

simulated results matched clinical data on flow and pressure (Xiao

et al., 2014). Calibrated parameters were transferred to the

corresponding lumped parameter circuits of the subsequent stage.

Following the three-stage parameter calibration, simulated inflow

waveforms did not match the shape of the measured clinical flow

waveforms (even though themean values did). Specifically, simulated

inflow waveforms underestimated the length of systole, which led to

an overestimated peak systolic flow (Figure 5E, stage A). To fix this

discrepancy, PC-MRI data were used to re-define the ventricular

volume during systole (Figure 5E, stage B). The adjusted volume

waveformswere used to define a new ventricular elastance (Figure 5E,

stage C), and simulations with the Stage 3 circuit design were re-run.

The new computed inflowwaveforms reproduced better the shape of

the clinical waveforms (Figure 5E, stage D). A detailed description

of the calibration process is given next.

2.4.3.1 Iterative tuning of lumped parameters

Lumped parameter values (Table 2) were estimated using a

fixed-point iteration algorithm (Xiao et al., 2014; Alastruey et al.,

2016). The iterative algorithm laid out by Xiao et al., (2014)

leverages their 1D models to efficiently calibrate outflow boundary

condition parameters in 3D patient-specific arterial models. This

work was used to define the iterative formulas presented below

that aim tomatch simulated results with clinical hemodynamic data.

Stage 1, open-loop arterial model with imposed aortic and

MPA flows. 3-element Windkessel models were used to represent

the resistance and compliance of the distal vascular bed.

Windkessel resistances Rj and compliances Cj for each outlet

branch j were iteratively tuned using:

Rn+1
j � Rn

j

Rn+1
T

Rn
T

, Cn+1
j � Cn

j

Cn+1
T

Cn
T

, (4)

where the total arterial resistance RT and total arterial compliance

CT were iteratively estimated as:

Rn+1
T � Rn

T +
Pmean − Pn

mean

Qn
mean

, (5)

Cn+1
T � Cn

T

Ppulse

Pn
pulse

, (6)

where n is the iteration counter. Simulated (Pn
mean,P

n
pulse) andmeasured

pressures (Pmean, Ppulse) were compared at the DTA and MPA.

FIGURE 4
Multi-scale closed-loop model consisting of high-resolution
(3D) arterial models of aorta and large pulmonary arteries, coupled
to (0D) lumped parameter models of heart (H) and distal
circulations (W).
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Stage 2, open-loop arterial model with a 0D heart model.

Initial nodal pressures of the lumped-parameter heart models

and Windkessel models for each branch were iteratively tuned:

Pn+1
initial � Pn

initialpaverage((Qmean)(Qn
mean),

(Pmean)(Pn
mean)). (7)

Simulated (Qn
mean) and measured flow rates (Qmean) were

compared at the AAo and MPA. Coefficients of the dynamic

source resistance (RS) were tuned to match the decay curve of the

inflow waveforms (Mynard et al., 2012).

Stage 3, closed-loop arterial model with a 0D heart model.

Systemic and pulmonary venous systems, represented via 3-

element Windkessel models, were added to connect the

arterial outlets to the atria of the lumped-parameter heart

models, creating a closed-loop circulation (Figure 5D).

Windkessel resistances (Formulas (4) and (5)), Windkessel

compliances (Formulas (4) and (6)), and initial nodal

pressures of the lumped-parameter models (Formula (7)) were

iteratively tuned.

For each patient-specific model, 30–70 lumped parameter

values were calibrated until all relative errors between measured

and simulated hemodynamics were below 10%. Relative errors

were calculated as |(Hdata
i −Hmodel

i )/Hdata
i |p100, where Hi �

{Pmean, Psystolic, Pdiastolic, Qmean} for a cardiac cycle once

simulated results achieved cycle-to-cycle periodicity.

Calibrated lumped parameter model values are detailed in the

FIGURE 5
(A) Workflow for boundary condition design and calibration of high-resolution arterial models. (B) Stage 1: open-loop arterial model with
imposed inflow waveforms. (C) Stage 2: open-loop arterial model with 0D heart models. (D) Stage 3: closed-loop arterial model with a 0D heart
models. (E) Strategy for ventricular volume adjustment.
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Supplementary Material (Arterial-Model-Parameter-

Values.xlsx).

2.4.3.2 Adjustment of volume and elastance waveforms

The systolic phase of the PC-MRI flow waveform was

integrated over time to derive ejected volume. PC-MRI-derived

stroke volume was scaled to match short-axis MRI stroke volume.

End-diastolic volume was assigned directly from short-axis MRI

data, and the scaled PC-MRI-derived volume guided the systolic

phase of the ventricular volume waveform. The filling phase of the

volume waveform remained unchanged (Figure 5E, stage B).

Adjusted ventricular volume waveforms were used to re-derive

elastance waveforms (Figure 5E, stage C). Adjusted ‘Two-Hill’

elastance parameter values are found in Supplementary Table S3.

The discrepancies between clinical and simulated MPA and

AAo flow waveforms were evaluated using a L2-norm metric

S � ∑n
i�1(datai − simulationi)2. Overall, following the PV-loop

alignment and adjustments of the ventricular volume waveforms

outlined earlier, reductions in L2-norm metric of 40% ± 18% at

the MPA and 10% ± 9% at the AAo were achieved.

2.5 High-resolution ventricular model

In this model, truncated 3D biventricular geometries (see

Section 2.3.1) were coupled to a 0D closed-loop circulatory

model representing the distal systemic and pulmonary

circulations, atria, and heart valves (Figure 6).

2.5.1 3D biventricular models
Governing equations of the 3D biventricular models based on

a quasi-static formulation and assuming that the cardiac tissue

behaves as an incompressible material were solved using the open-

source software FEniCS (Alnæs et al., 2015), as detailed in Shavik

et al. (2019), Shavik et al. (2020), Shavik et al. (2021). An active

stress formulation was used to describe the mechanical behavior of

myocardial tissue whereby the first Piola Kirchhoff stress tensor P

was decomposed into active and passive components Pa and Pp

(P � Pa + Pp), represented with an active contractionmodel and a

passive constitutive model, respectively.

STL models of the truncated ventricles (Section 2.3.1)

generated at the end-systolic phase define the unloaded

configuration (Hadjicharalambous et al., 2021). This truncation

was performed to avoid modeling the basal regions of the heart,

including the valves and atria, which are often poorly resolved in

the short-axis MRI sequence and are represented with lumped-

parameter circuits. The 3D biventricular model was divided into

three material regions: LV free wall, septum, and RV free wall.

Helix angles of the myocardial fibers were linearly varied along the

transmural direction from 60° at the endocardium to −60° at the

epicardium (Streeter et al., 1969) using a Laplace-Dirichlet rule-

based algorithm (Bayer et al., 2012).

These models were discretized using GMSH (Geuzaine and

Remacle 2009) to define tetrahedral grids of 9,159 to

11,726 elements and 2,884 to 3,548 nodes. Mesh refinement

studies were performed to ensure that hemodynamic results were

independent of mesh size.

2.5.1.1 Active contraction model

The active stress Pa was represented using a time-varying

elastance model that depends on the length of the myocardial

muscle fiber along the local myofiber direction (Guccione et al.,

1993; Shavik et al., 2021)

Pa � Tref
Ca20

Ca20 + ECa250
C(t) ef ⊗ ef0 (8)

where Tref is the reference tension, Ca0 is the peak intracellular

calcium concentration, and ef and ef0 are the local vectors that

define the muscle fiber direction in current and reference

configurations, respectively. The function C(t) is given by

TABLE 2 Hemodynamic metrics and tuned parameters of the high-
resolution arterial model.

Hemodynamic metrics &
features

Tuned Parameter(s)

Pulmonary Arterial Mean Pressure RPulmonary
T PPulmonary

initial

Pulmonary Arterial Pulse Pressure CPulmonary
T

Pulmonary Cardiac Output RPulmonary
T PPulmonary

initial

Shape of MPA Flow Waveform KRV
S

Systemic Arterial Mean Pressure RSystemic
T PSystemic

initial

Systemic Arterial Pulse Pressure CSystemic
T

Systemic Cardiac Output RSystemic
T PSystemic

initial

Shape of AAo Flow Waveform KLV
S

FIGURE 6
High-resolution (3D) ventricular model coupled to a 0D
closed-loop circulatory model, which includes the systemic and
pulmonary arteries, venous systems, atria, and valves.
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C(t) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2
(1 − cos(π( t

t0
))), t< tt

1
2
(1 − cos(π tt

t0
)) exp(tt − t

τ
), t≥ tt

(9)

where t0 is the time at peak tension, tt is the time at which

isovolumic relaxation of the muscle starts, and τ is a time

constant associated with the relaxation duration. The length

dependent calcium sensitivity ECa50 is given by

ECa50 � (Ca0)max���������������
exp(B(l − l0) − 1)√ (10)

where (Ca0)max is the maximum peak intracellular calcium

concentration and l0 is the sarcomere length at which no

active tension develops.

The choice of active contraction constitutive models in

ventricular biomechanics depends on the needs of the study

(Wong 1971; Guccione et al., 1993; Niederer et al., 2006; Rice

et al., 2008; Chabiniok et al., 2016). In this work, we used an

active contraction model based on that from Guccione et al.,

(1993) which led to the slope of RV ESPVR having a value of

1.32 ± 0.78 mmHg/ml, which is well aligned with values reported

in literature (Dell’Italia and Walsh 1988; Brown and Ditchey

1988). Complex active contraction models that consider

tropomyosin kinetics (Hunter et al., 1998) or crossbridge

cycling (Rice et al., 2008) could have more accurately

captured ventricular active mechanics at the expense of more

model parameters. However, the modified Guccione et al., (1993)

active contraction model is computationally efficient, captures a

wide range of myocardial responses, and successfully reproduced

clinical data that satisfied the needs of our study.

2.5.1.2 Passive constitutive model

Cardiac tissue is known to be an orthotropic, viscoelastic

material (Pinto and Fung 1973; Sommer et al., 2015). Numerous

passive constitutive models have assumed a hyper-elastic

orthotropic behavior (Holzapfel et al., 2000; Costa et al., 2001;

Schmid et al., 2007), and some have included viscoelasticity

(Gültekin et al., 2016; Nordsletten et al., 2021; Zhang et al.,

2021). Orthotropic viscoelastic models can better represent

ventricular biomechanics, at the expense of a larger number of

model parameters. For the sake of simpler model

parameterization, in this work we have opted for a

phenomenological transversely isotropic hyper-elastic model

(Guccione et al., 1991; Shavik et al., 2021). In this model, the

strain energy function was given byW � 0.5 · c(eQ − 1), whereQ
is a quadratic function of the strain components defined in the

material directions:

Q � bffE
2
ff + bxx(E2

ss + E2
nn + E2

sn + E2
ns) + bfx(E2

fn + E2
nf + E2

fs

+ E2
sf).

(11)

Components of Green-Lagrange strain tensor Eij with

(i, j) ∈ (f, s, n) denote the myocardial fiber (f), sheet (s),
and sheet normal (n) directions. c is a coefficient scaling

passive stiffness. bff, bxx, and bfx are material constants.

2.5.2 Lumped-parameter (0D) vascular models
The lumped-parameter models of systemic and pulmonary

circulation are divided into arterial and venous segments with

compliances (Csa and Csv, Cpa and Cpv) and resistances (Rsa and

Rsv, Rpa and Rpv), respectively. Mitral and aortic valves are

represented via diodes with resistances (Rmv) and (Rav),

respectively. Tricuspid and pulmonary valves are represented

via diodes with resistances (Rtv) and (Rpvv), respectively. Left and

right atria were modeled using time-varying elastance functions,

respectively (see Figure 6).

2.5.3 Model calibration
2.5.3.1 Parameters of the lumped-parameter vascular

models

Parameters were iteratively calibrated until the following

simulated and clinical metrics matched within 10%: LV and

RV end-diastolic and end-systolic volumes, LV and RV end-

systolic pressures, and systemic and pulmonary arterial mean

and pulse pressures (Finsberg et al., 2018; Shavik et al., 2019;

Shavik et al., 2020), see Table 3. Resting volumes of pulmonary

and systemic veins (Vpv,0 and Vsv,0) were adjusted to match LV

and RV end-diastolic volumes, respectively. However, it should

be noted that the impact of tuning Vsv,0 and Vpv,0 in most

hemodynamic metrics is high (Kass et al., 1986), leading to

changes in ventricular end-systolic and end-diastolic pressures

TABLE 3 Hemodynamic metrics and tuned parameters of the high-
resolution ventricular models.

Hemodynamic metrics &
features

Tuned Parameter(s)

LV End-Systolic Volume Tref,LV Vpv,0 Rsa

LV End-Systolic Pressure Rsa Tref,LV Csa Vpv,0

LV End-Diastolic Volume Vpv,0

LV End-Diastolic Pressure Vpv,0 CLV

Systemic Arterial Mean Pressure Rsa

Systemic Arterial Pulse Pressure Csa

RV End-Systolic Volume Tref,RV Vsv,0 Rpa

RV End-Systolic Pressure Rpa Tref,RV Cpa Vsv,0

RV End-Diastolic Volume Vsv,0

RV End-Diastolic Pressure Vsv,0 CRV

Pulmonary Arterial Mean Pressure Rpa

Pulmonary Arterial Pulse Pressure Cpa

Time to Peak Tension t0

Start Time of Relaxation tt

Rate of Relaxation τ
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and volumes. Systemic and pulmonary arterial resistances (Rsa

and Rpa) were adjusted tomatch systemic and pulmonary arterial

mean pressures and flows, and LV and RV end-systolic volumes,

respectively. Systemic and pulmonary arterial compliances (Csa

and Cpa) were adjusted to match systemic and pulmonary

arterial pulse pressures, respectively. Therefore, LV and RV

systolic pressures were also matched by simultaneously

calibrating Rsa, Rpa, Csa and Cpa. Parameters of the left and

right atrial elastance waveforms were set based on a previous

study (Shavik et al., 2019).

2.5.3.2 Parameters of the 3D biventricular models

LV free wall and septum were assigned to have the same

passive stiffness CLV and contractility Tref,LV values, while RV

free wall had distinct values of passive stiffness CRV and

contractility Tref,RV. Passive stiffness parameters (CLV and

CRV) were adjusted to match LV and RV end-diastolic

pressures, respectively. LV and RV end-systolic volumes were

matched by adjusting regional contractility parameters of the

active contraction model Tref,LV and Tref,RV, respectively.

Parameters of the active contraction model (t0, tt, and τ) were

adjusted to match LV and RV volume and pressure waveforms.

The parameter t0 was adjusted to match the time to peak tension,

tt was adjusted to specify the start of the isovolumic relaxation

phase and τ was adjusted to match the rate of relaxation of the

myofibers.

For each patient-specific model, 16 parameters related to the

lumped-parameter vascular models, active contraction models,

and passive constitutive models were calibrated and are detailed

in Supplementary Table S4.

2.6 Metrics for disease severity
stratification

Patients were stratified from lowest to highest disease

severity, by a team composed of 3 pediatric cardiologists with

extensive experience in treating PAH, based on the available

clinical metrics (see Table 4). We explored the correlation

between the disease severity stratification and clinical metrics

and model-derived metrics (from both high-resolution arterial

and ventricular models). For each metric, the correlation was

assessed using Spearman’s rank correlation coefficient ρ.

2.6.1 Clinical metrics
A total of 36 data-derived metrics were evaluated in the

disease severity stratification study, including patient

demographics (age, height, weight, etc.), indexed MRI-derived

metrics (ventricular volume indices, ventricular mass indices,

cardiac index etc.), and catheterization-derived metrics

(pulmonary arterial pressures, pulmonary vascular resistance,

etc.), see Table 1.

2.6.2 Model-derived metrics
A total of 21 model-derived metrics and parameters were

included in the disease severity stratification study. The inclusion

of the parameters and metrics was determined by the following

criteria:

(1) Lumped-parameter model and 3D parameters with a direct

counterpart in the clinical data (i.e., total arterial compliance

and resistance, linearized arterial stiffness).

(2) All 3D ventricular model parameters (i.e., ventricular

contractility and passive stiffness).

(3) Model metrics with well-established clinical meaning such as

arterial pulse wave velocity and ventricular-vascular

coupling (i.e., RV ESPVR, RV Ea, RV ESPVR/Ea).

Individual lumped parameters for which there were no direct

measurements (i.e., proximal and distal resistances, venous

circuit parameters, etc.) were excluded.

2.6.2.1 High-resolution arterial models

Stiffness derived at five anatomical locations (AAo, DTA,

MPA, LPA, and RPA), peak LV and RV elastance (Section 2.4.2),

MPA-LPA, MPA-RPA, and AAo-DTA pulse wave velocities, and

distribution of central and peripheral pulmonary vasculature

resistance and compliance (Cuomo et al., 2019) were evaluated.

2.6.2.2 High-resolution ventricular models

RV end-systolic pressure volume relationship (ESPVR),

arterial elastance (Ea), and (ESPVR/Ea) ratio were evaluated.

For each calibrated subject, RV ESPVR was estimated by varying

preload (Vsv,0) and calculating the slope between peak end-

systolic elastance (Figure 7). RV Ea was estimated by dividing

end-systolic pressure over stroke volume. Calibrated values of LV

and RV contractility (Tref,LV and Tref,RV) and passive stiffness

(CLV and CRV) were also evaluated.

All clinical andmodel-derived metrics included in the disease

severity stratification study are detailed in Supplementary

Table S5.

3 Results

3.1 High-resolution arterial models

Following model parameter calibration (see Table 2),

simulation results successfully reproduced patient-specific

clinical hemodynamic data within 10% (Figure 8). Pressures

were compared between our patient cohort and a cohort of

healthy pediatric subjects (Douwes et al., 2013). Pulmonary

arterial mean pressures (45.4 ± 19.3 mmHg), and pulmonary

arterial pulse pressures (35.7 ± 14.3 mmHg) were higher than

values measured in healthy pediatric subjects. Mean systemic
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arterial pressures (69.9 ± 11.6 mmHg) were similar to those

measured in healthy pediatric subjects.

The distribution of central and peripheral pulmonary

vasculature resistance and compliance was obtained. Central

(e.g., 3D) pulmonary arteries contributed to 8% ± 8% and

56% ± 19% of the total pulmonary resistance and compliance,

respectively (Figure 9).

MPA stiffness (206.6 ± 159.7 kPa) was found to be higher

and have a greater variability than AAo stiffness (146.7 ±

19.2 kPa), in line with the severity and disease heterogeneity

of these patients. LPA, RPA, and DTA stiffness were estimated

to be 163.0 ± 192.3 kPa, 130.4 ± 105.6 kPa, and 227.3 ±

66.4 kPa, respectively.

Pulmonary and systemic arterial pulse wave velocity were

estimated to be 3.5 ± 1.5 m/s from the MPA to the LPA, 3.0 ±

0.9 m/s from the MPA to the RPA, and 3.9 ± 1.0 m/s from the

AAo to the DTA. Pulmonary arterial stiffness and pulse wave

velocity in our patient cohort were higher than in healthy

pediatric subjects (Friesen et al., 2019), confirming that our

results capture arterial remodeling reflective of PAH.

Subject #4 had the highest pulmonary resistance, lowest

pulmonary arterial compliance, highest pulmonary artery

stiffness, highest MPA-LPA pulse wave velocity, and near

systemic level of pulmonary arterial pressure, indicating that

this subject has the most severe form of pulmonary arterial

dysfunction. Furthermore, Subject #4 was the only subject

with a pulmonary arterial compliance index below the critical

threshold value of 0.9 ml/mmHg/m2, which has been correlated

with a significant reduction in life expectancy (Mahapatra et al.,

2006).

3.2 High-resolution ventricular models

Following model calibration (see Table 3), simulated PV

loops and arterial pressures were closely matched to clinical

data (Figure 10). On average, RV end-diastolic (99.0 ± 44.6 ml)

and end-systolic (58.5 ± 23.4 ml) volumes were larger than their

LV counterparts (83.5 ± 23.4 ml and 43.0 ± 14.7 ml, respectively).

RV stroke work (0.30 ± 0.17 J) was calculated to be 69% of LV

stroke work (0.42 ± 0.14 J). RV ejection fraction (42% ± 5%) was

lower than LV ejection fraction (51% ± 5%). Of note, RV ejection

fraction in our patients was found to be significantly lower than

in healthy pediatric subjects (58% ± 5%) (Friesen et al., 2019),

indicating ventricular remodeling.

Calibrated ventricular models were used to derive arterial

and RV elastance metrics: ESPVR = 1.32 ± 0.78 mmHg/ml; Ea =

1.84 ± 0.78 mmHg/ml; ESPVR/Ea = 0.75 ± 0.21. RV ESPVR in

our cohort was found to be higher than in pediatric patients with

repaired tetralogy of Fallot (0.32 ± 0.15 mmHg/ml) (Apitz et al.,

2009).

Subject #7 had the largest RV end-diastolic volume,

largest RV end-systolic volume (Z-score = 5.4), lowest RV

ejection fraction (Z-score = −4.0), and largest RV stroke

work (0.71 J), suggesting that this patient had the most severe

form of RV dysfunction (Alfakih et al., 2003; Sarikouch et al.,

2010). Subject #4, who has the most severe form of

pulmonary arterial dysfunction (Section 3.1), has relatively

normal RV volumes (Friesen et al., 2019), suggesting that this

patient has not undergone significant RV remodeling. These

results highlight the importance of simultaneously

describing arterial and ventricular hemodynamics and

biomechanics.

3.3 Metrics for disease severity
stratification

The correlation between clinically assessed disease severity

(Table 4) and each data- and model-derived metric were ranked

using the absolute value of the Spearman’s rank correlation

TABLE 4 Stratification of patients from lowest (value of 1) to highest (value of 8) disease severity.

Clinical disease
severity ranking 1 2 3 4 5 6 7 8

Subject Number Subj. #8 Subj. #2 Subj. #3 Subj. #6 Subj. #5 Subj. #4 Subj. #1 Subj. #7

FIGURE 7
Metrics derived from the high-resolution ventricular models.
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coefficient ρ (Table 5). The analysis was adjusted for multiple

comparisons by controlling for a 10% false discovery rate

(Benjamini and Hochberg 1995). A metric is significantly

correlated if its p-value is smaller than its Benjamini-

Hochberg critical value (Table 5, iQ/m). After adjusting for

multiple comparisons, 13 metrics were found to be

significantly correlated, all of which were either

catheterization-derived metrics (Table 5; orange) or model-

derived metrics (Table 5; green). None of the patient

demographics (Table 5; black) or MRI-derived metrics

(Table 5; purple) were significantly correlated with disease

severity.

Mean, systolic, and diastolic pulmonary arterial pressures

were significantly correlated with clinically assessed disease

severity. Pulmonary capillary wedge pressure, which is a

measure of the post-capillary pulmonary circulation

FIGURE 8
Velocity and pressure maps of the high-resolution arterial models at peak systole. Hemodynamic comparison shows agreement between
simulated and clinical data.
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(i.e., pulmonary venous pressure and LV end-diastolic pressure),

was weakly correlated to disease severity (ρ = −0.071). Systemic

mean, systolic, and diastolic pressures were not significantly

correlated to disease severity. There were 5 model-derived

metrics (Table 5; green) strongly correlated with disease

severity. RV contractility (Tref,RV), RPA stiffness, and MPA-

RPA pulse wave velocity were all significantly correlated metrics.

Interestingly, LV contractility (Tref,LV) was the only metric that

had a negative, significant correlation with clinically assessed

disease severity, suggesting that LV contractility decreases with

PAH progression.

4 Discussion

Pediatric PAH is a complex disease with a heterogeneous

population and multiple compounding factors that contribute to

disease progression. It is thus important to identify metrics to

stratify patients and to predict disease progression.

Computational models enable the study of hemodynamics and

biomechanics in the cardiopulmonary and systemic circulations

and can be used to describe PAH pathophysiology. In this work,

computational models were used to complement clinical data by

providing high-resolution description of hemodynamics and

biomechanics, including those that are not easy to assess in a

clinical setting. To our knowledge, this is one of the first efforts to

construct and calibrate two separate high-resolution closed-loop

models of pulmonary and systemic arteries and ventricles using

data from a pediatric PAH cohort.

Model calibration entailed tuning of numerous model

parameters, identifying inconsistencies in clinical data, and

developing strategies to mitigate these inconsistencies.

Calibrated models could reproduce the following patient-

specific data: cardiac output in the MPA and AAo, pressure

waveforms at the MPA and DTA, mean flows at the DTA,

LPA, and RPA, and LV and RV PV loops. Following

calibration, our models were used to derive metrics such as

RV ESPVR, arterial elastance (Ea), ESPVR/Ea, ventricular

contractility, central pulmonary arterial stiffness and pulse

wave velocity, and distribution of pulmonary arterial

resistance and compliance between central and peripheral

vessels.

Numerous data-derived metrics were correlated with clinical

stratification of disease severity. MRI-derived metrics were not

significantly correlated with clinical disease severity stratification.

The correlation in RVmass index (ρ = 0.738) can be attributed to

the adaptive response of the RV (myocardial hypertrophy) to a

sustained afterload increase, which can also be linked to the

strong correlation seen in RV contractility (Tref,RV). RV ejection

fraction had a correlation value of ρ = -0.667, confirming that this

commonly used non-invasive metric (Courand et al., 2015;

Kjellström et al., 2020) could help in patient stratification.

Multiple catheterization-derived (n = 8) and model-derived

(n = 5) metrics had significant correlations with disease

severity clinical stratification (Table 5), suggesting the superior

specificity of these metrics in capturing PAH disease severity over

MRI metrics alone.

RV contractility (Tref,RV) had a positive, significant

correlation with disease severity, whereas LV contractility

(Tref,LV) had a negative, significant correlation. This reduction

of LV contractility related to PAH progression is commonly

attributed to impaired LV diastolic filling (Lazar et al., 1993; Gan

et al., 2006) or LV atrophy (Hardziyenka et al., 2011). However,

pulmonary capillary wedge pressure (a surrogate for LV diastolic

filling pressure) and pulmonary venous resting volume (Vpv,0)

(LV preload parameter) both had weak correlations with disease

severity, while LV mass index had a positive, moderate

correlation. These suggest that LV diastolic filling and LV

mass are not significantly affected by PAH progression. Our

results imply, however, that only LV contractility is impaired due

to PAH progression which has been confirmed in a

computational study comparing PAH patients and control

subjects (Finsberg et al., 2019) and in an experimental study

where the force-generating capacity of isolated LV

cardiomyocites was reduced in PAH patients (Manders et al.,

2014).

FIGURE 9
Distribution of total pulmonary arterial resistance and
compliance between central (3D model, shown in blue) and
peripheral (lumped-parameter models, shown in red) pulmonary
vessels.
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Our models captured PAH-induced biomechanical

adaptations, both in the central (i.e., increase in stiffness and

pulse wave velocity) and peripheral (i.e., increase in PVR index)

vessels, as well as in the ventricles (i.e., changes in contractility).

Increases in pulmonary pressures (i.e., arterial load) were

accompanied by increases in RV contractility for the cohort.

This suggests that ventricular-arterial coupling was maintained.

The weak correlation between model-derived RV ESPVR/Ea and

disease severity further supports this observation for the cohort

(Vonk Noordegraaf et al., 2017). These findings confirm that

computational models of ventricular-arterial interactions can

provide additional insight on PAH pathophysiology.

4.1 Clinical Applications

The main clinical application areas of our work are

two: 1) the potential for replacing or minimizing the

number of invasive catheterization procedures in PAH

patients, and 2) a more sensitive method for patient

stratification.

4.1.1 Potential for minimization of catheter-
based assessment in PAH

Computational models required catheterization data and

extensive calibration efforts. However, once calibrated using a

large cohort of patient data, these computational models could

then be validated against new cohorts of patient data without

directly inputting measures derived from invasive pressure.

This would entail developing correlations between imaging

markers such as MPA diameter and relative area change, RV

volume, RV ejection fraction, shape of MPA flow waveforms,

etc. (Alunni et al., 2010; Lungu et al., 2014; Lungu et al., 2016;

Dawes et al., 2017). Furthermore, our calibrated computational

models were used to virtually increase ventricular preload to

estimate RV ESPVR which obviates the need for an invasive

procedure. This model-derived estimation of RV ESPVR can

then be used to provide a description of RV contractility and

FIGURE 10
Displacement maps of ventricular models at end-systole and end-diastole. Comparison of LV and RV PV loops shows agreement between
simulated and clinical data.
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ventricular-arterial coupling (via ESPVR/Ea), which are both

known to play key roles in PAH pathophysiology (Vonk

Noordegraaf et al., 2019).

4.1.2 Patient stratification in PAH
Despite significant improvements in the understanding of

PAH pathological hemodynamics (Kheyfets et al., 2013;

Avazmohammadi et al., 2019; Finsberg et al., 2019; Yang

et al., 2019), hurdles remain in PAH patient stratification. In

this work, computational models were combined with clinical

data to stratify PAH patients according to disease severity,

confirming well-established data-derived markers (Sanz et al.,

2009; Courand et al., 2015; Yang et al., 2018; Simpson et al., 2019)

and elucidating model-derived markers that could aid in risk

stratification.

PAH requires life-long medical care, and construction and

calibration of each computational model typically requires nearly

1 month. This long calibration timeframe could be reduced with

TABLE 5 Spearman’s rank correlation coefficients (ρ), p-values, and Benjamini-Hochberg critical value (iQ/m) of each data-derived and model-
derivedmetric resulting from a comparison to clinical disease severity rankings are shown in two columns. Ametric is statistically significant if its
p-value is lower than its Benjamini-Hochberg critical value (iQ/m).

Metric ρ p-
value

iQ/
m

Metric ρ p-
value

iQ/
m

Significantly Correlated
Metrics

RPA Stiffness 0.929 <0.001 0.002 RV Systolic Pressure/LV Systolic
Pressure

0.857 0.007 0.014

R_pulmonary/R_systemic 0.929 <0.001 0.003 MPA Diastolic Pressure 0.833 0.010 0.015

RV Stroke Work/LV Stroke Work 0.905 0.002 0.005 MPA-RPA Pulse Wave Velocity 0.833 0.010 0.018

RV Contractility (TRef,RV) 0.905 0.002 0.007 LV Contractility (TRef,LV) −0.810 0.015 0.019

MPA Systolic Pressure 0.905 0.002 0.009 Total Pulmonary Arterial Resistance 0.810 0.015 0.021

RV Stroke Work 0.881 0.004 0.010 PVR Index 0.810 0.015 0.023

MPA Mean Pressure 0.881 0.004 0.012

Non-Significant Metrics MPA Stiffness 0.762 0.028 0.025 Age 0.333 0.420 0.063

MPA Pulse Pressure 0.738 0.037 0.026 Pulmonary Capillary Wedge Pressure 0.286 0.493 0.065

Pulmonary Arterial Compliance
Index

0.738 0.037 0.028 LV End-Systolic Volume Index 0.286 0.493 0.067

RV Mass Index 0.738 0.037 0.030 Percentage Flow to LPA −0.286 0.493 0.068

RV Ejection Fraction −0.667 0.071 0.032 Catheterization Heart Rate 0.238 0.570 0.070

MPA-LPA Pulse Wave Velocity 0.643 0.086 0.033 LV Passive Stiffness (CLV) −0.214 0.610 0.072

MPA Area Index 0.643 0.086 0.035 Height 0.214 0.610 0.074

RV End-Systolic Volume Index 0.643 0.086 0.037 RV Emax −0.143 0.736 0.075

Systemic Arterial Diastolic
Pressure

0.619 0.102 0.039 RV Passive Stiffness (CRV) −0.143 0.736 0.077

Total Pulmonary Arterial
Compliance

−0.595 0.120 0.040 RV ESPVR/Ea −0.119 0.779 0.079

LPA Stiffness 0.595 0.120 0.042 DTA Stiffness 0.119 0.779 0.081

RV ESPVR 0.571 0.139 0.044 Weight 0.119 0.779 0.082

LV Stroke Volume Index 0.524 0.183 0.046 BSA 0.119 0.779 0.084

LV Mass Index 0.476 0.233 0.047 AAo-DTA Pulse Wave Velocity 0.095 0.823 0.086

LV End-Diastolic Volume Index 0.476 0.233 0.049 RV SV Index 0.095 0.823 0.088

MPA Relative Area Change −0.476 0.233 0.051 Central Pulmonary Arterial
Compliance

0.071 0.867 0.089

Central Pulmonary Arterial
Resistance

−0.429 0.289 0.053 MPA Oxygen Saturation −0.071 0.867 0.091

RV Ea 0.429 0.289 0.054 AAo Stiffness −0.048 0.911 0.093

LV Emax −0.405 0.320 0.056 MRI Heart Rate −0.048 0.911 0.095

Systemic Arterial Mean Pressure 0.381 0.352 0.058 Cardiac Index 0.048 0.911 0.096

RV End-Diastolic Volume Index 0.381 0.352 0.060 Systemic Arterial Pulse Pressure 0.024 0.955 0.098

Systemic Arterial Systolic Pressure 0.333 0.420 0.061 LV Ejection Fraction 0.000 1.000 0.010

Patient demographics are shown in black font, MRI-derived metrics are shown in purple font, catheterization-derived metrics are shown in orange font, and model-derived metrics are in

green font.
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advances in data assimilation methods (Troianowski et al., 2011;

Ismail et al., 2013; Arthurs et al., 2020). Therefore, patient-

specific computational models could be used to provide

insight on PAH pathophysiology and stratification and could

ultimately help clinicians tailor a long-term management plan.

5 Limitations

A small number (n = 8) of pediatric PAH patients were

included in this study, which affects the strength of the

statistical analysis performed to correlate metrics with

clinical disease severity stratification. Therefore, due to

this small sample size, our analysis was used to broadly

describe observed correlations rather than to identify

optimal metrics to use in patient stratification.

Furthermore, control subjects were not included in our

study, which further hinders the ability to identify model

parameters for patient stratification. Future extensions of

this work will include a greater number of PAH patients as

well as control subjects to provide a more robust patient

stratification analysis.

A key data inconsistency not addressed in our work was

the mismatch in cardiac output between high-resolution

arterial and ventricular models. Arterial models were

calibrated to match cardiac outputs from PC-MRI data,

whereas ventricular models were calibrated to match stroke

volumes from truncated ventricular segmentations which

yielded lower cardiac outputs. This mismatch stems from

truncating the ventricular geometries at the tricuspid valve.

Even with this truncation of the ventricular geometries, our

ventricular models produced lower RV ejection fraction than

those seen in healthy pediatric subjects (Friesen et al., 2019),

and outputted metrics that correlated strongly with clinically

assessed disease severity.

The number of parameters in our models is much larger

than the amount of data used to calibrate our models, which

leads to issues of parameter uniqueness and identifiability.

However, our choices for the different components of the

lumped-parameter circuits are based on well accepted,

physiology-motivated, previously developed designs for

heart and segments of the circulation (Kim et al., 2009; Lau

and Figueroa, 2015; Silva Vieira et al., 2018). The lack of

data was offset by (arbitrary) modeling choices such as

breakdown of flows proportional to surface areas, ratios of

proximal to distal resistances in Windkessel models (Laskey

et al., 1990), literature values for certain components of

heart models (Mynard et al., 2012; Lau and Figueroa,

2015), etc.

A traditional parameter sensitivity analysis was

performed, where the sensitivity of certain computed

hemodynamic metrics to 10% changes in model parameters

was obtained. The analysis was performed using both the

arterial and ventricular models of Subject #6 (Supplementary

Tables S6, S7, respectively). The analysis showed that the

ventricular models had a larger sensitivity to model

parameters than the arterial models. However, this simple

analysis does deal address parameter identifiability, as it fails

to consider correlation between parameters (Colebank et al.,

2021). Therefore, a rigorous sensitivity analysis (outside the

scope of this study) that overcomes these limitations is

required to assess parameter uniqueness (Matzuka et al.,

2015; Perdikaris and Karniadakis, 2016; Caiazzo et al.,

2017; Tran et al., 2017; Arthurs et al., 2020; Colebank

et al., 2021). This analysis would therefore provide

confidence in model-derived metrics and estimated

parameters, and also quantify variability in parameters due

to uncertainty in clinical data.

Clinically assessed disease severity rankings (Table 4) were

used as the gold standard in our disease severity stratification

analysis. However, these rankings were based on a

combination of hemodynamic metrics and the clinical

team’s experience. Even though the clinical team is

comprised of pediatric cardiologists with extensive

experience in pediatric PAH management, conclusions

drawn in our study could be affected by the subjective

nature of the disease severity rankings.

High-resolution arterial and ventricular models were not

coupled bidirectionally; therefore, parameter calibration in one

model does not affect results in the other. The work presented

here serves a first step towards the ultimate goal of studying

ventricular-vascular coupling in PAH using high-resolution 3D

ventricular and arterial models.
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