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Networks of identical coupled oscillators display a remarkable spatiotemporal

pattern, the chimera state, where coherent oscillations coexist with incoherent

ones. In this paper we show quantitatively in terms of basin stability that stable

and breathing chimera states in the original two coupled networks typically

have very small basins of attraction. In fact, the original system is dominated by

periodic and quasi-periodic chimera states, in strong contrast to themodel after

reduction, which can not be uncovered by the Ott-Antonsen ansatz. Moreover,

we demonstrate that the curve of the basin stability behaves bimodally after the

system being subjected to even large perturbations. Finally, we investigate the

emergence of chimera states in brain network, through inducing perturbations

by stimulating brain regions. The emerged chimera states are quantified by

Kuramoto order parameter and chimera index, and results show a weak and

negative correlation between these two metrics.
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1 Introduction

The Kuramoto model is known to exhibit various complex phenomena of collective

synchronization, where nonidentical oscillators spontaneously lock in a common

frequency, except those with very different natural frequency (Arenas et al., 2008).

Identical oscillators, however, were expected to display simple collective behaviors until

the discovery of a chimera state (Kuramoto and Battogtokh, 2002; Abrams and Strogatz,

2004). The chimera state is a spatiotemporal pattern where a network of coupled

oscillators is split into coexisting subpopulations of synchronized and desynchronized

oscillations (Kuramoto and Battogtokh, 2002; Abrams and Strogatz, 2004). It has been

observed theoretically in networks of general types of oscillators (Abrams et al., 2008;

Pikovsky and Rosenblum, 2008; Panaggio and Abrams, 2015), as well as in experiments

including chemical systems (Hagerstrom et al., 2012; Tinsley et al., 2012; Nkomo et al.,
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2013) and mechanical oscillators (Martens et al., 2013). In

biology, the chimera state is observed in Wilson-Cowan

oscillators (WCOs), which obey a nonlinear mean-field model

to describe the dynamics of brain network (Wilson and Cowan,

1972; Bansal et al., 2019).

Mathematical studies of chimera states have focused on a

special class of density function based on the Ott-Antonsen

ansatz and have analytically described stable and breathing

chimera states (Abrams et al., 2008). Via the Watanabe-

Strogatz theory, governing equations are reduced to low-

dimensional systems with only three transformed parameters

(Pikovsky and Rosenblum, 2008), which complements the results

of chimera states (Abrams et al., 2008). This ansatz is very

efficient for a network of Kuramoto oscillators. Note that

chimera states are stable, persistent phenomena for N → ∞
(Omel’chenko, 2013) and are sensitive to perturbations with

typically small basins of attraction. Therefore, it is crucial to

investigate the stability of chimera states against perturbations.

Basin stability indicates the likelihood that the system (or a

group) will retain a desirable state after being subjected to

even large perturbations and is calculated proportional to the

volume of the basin of attraction of the desirable state (Menck

et al., 2013).

In addition to the mathematical studies, chimera states in

brain networks have also received great attentions to deepen the

understanding of cognitive function (input, integration and

output), from various perspectives. From dynamical

perspectives, networked FitzHugh-Nagumo oscillators could

induce chimera states for certain range of coupling strengths

(Chouzouris et al., 2018). Adaptive couplings could also yield a

self-organized state and induce chimera states (Huo et al., 2019).

From structural perspectives, an empirical brain network is

applied to explore how brain structures impact chimera states

through numerical disruptions (Bansal et al., 2019). The two-

layer brain network reproduces the phenomena of

unihemispheric sleep with one hemisphere synchronized and

the other desynchronized (Kang et al., 2019). This further

explains the first-night effect in human sleep (Tamaki et al.,

2016). These results could be further utilized to analyze the

mechanism of brain functions, e.g., cognition and memory, and

so on (Wang and Liu, 2020; Parastesh et al., 2021).

In this paper, we investigate the stability of chimera states

of the coupled networks by using the coupling scheme of Ref.

(Abrams et al., 2008), where two populations are fully

connected but with different intra- and inter-coupling

strengths, by means of basin stability. We first analyze the

stability of the low-dimensional model after the phase

reduction using the Ott-Antonsen ansatz and approximate

basin stability of chimera states in terms of their attracting

basins. In comparison to the model after reduction, we

substantially perturb the original dynamics in the coupled

networks. In this way, instead of stable or breathing chimera

states, we quantitatively show that the original system is

dominated by periodic or quasi-periodic chimera states. We

also observe that after the system being subjected to even

more and large perturbations, the curve of basin stability of

the chimera states behaves bimodally. To investigate how

chimera states in brain are influenced by stimulation of

various brain regions, we integrate WCOs on brain

networks and stimulate single region with three global

coupling strengths. Results show the existing of three

different states, i.e., the coherent, chimera, and metastable

state (Yeo et al., 2011; Dimulescu et al., 2021), and suggest

that the Kuramoto order parameter is weakly and negatively

correlated with the chimera index. Besides, higher degree

nodes have a more centralized and compact distribution of

the ranked order parameter compared to lower ones.

2 Model

In this paper, we focus on chimera states in theoretical and

applied aspects, with Kuramoto model by dimensional reduction

and the coupled Wilson-Cowan oscillators on brain networks.

The governing equations for Kuramoto model follow

(Abrams et al., 2008)

dθσi
dt

� ω + ∑2
σ′�1

Kσσ′
Nσ′

∑Nσ′

j�1
sin θσ′j − θσi − α( ), (1)

where θσi is the phase of the i-th oscillator (i = 1, . . ., Nσ) in

the population indicated by σ = 1, 2. Nσ denotes the number

of oscillators in σ. The oscillators are assumed to be identical

with the same natural frequency ω and the same phase lag α,

and they are globally coupled either with the intra-coupling

strength K11 = K22 = μ > 0 within the same population or with

the inter-coupling strength K12 = K21 = ] > 0 between

different populations. The intra-coupling is stronger than

the inter-coupling, i.e., μ > ]. We set μ + ] = 1, the coupling

disparity A = μ − ], and β = π/2 − α.

The dynamics on brain behavior are modeled by Wilson-

Cowan oscillators (WCOs), describing the evolution of

excitatory and inhibitory activity in a coupled brain

network (Wilson and Cowan, 1972; Bansal et al., 2019). In

particular, we consider a brain network with N brain regions,

the connection strength between brain regions i and j

accounted for by Aij. At time t, we use Ei(t) and Ii(t) to

denote the fraction of excitatory and inhibitory neurons

activities, respectively, in the i-th brain region. The

temporal dynamics of Ei(t) and Ii(t) are governed by

τ
dEi t( )
dt

� −Ei t( ) + SEm − Ei t( )( )XSE c1Ei t( ) − c2Ii t( ) + c5 ∑
j

AijEj t − τijd( ) + Pi t( )⎛⎝ ⎞⎠ + ηwi t( ),

τ
dIi
dt

� −Ii t( ) + SIm − Ii t( )( )XSI c3Ei t( ) − c4Ii t( ) + c6 ∑
j

AijIj t − τ ijd( )⎛⎝ ⎞⎠ + ηvi t( ), i � 1, . . . , N,

(2)

where
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SE,I x( ) � 1

1 + e−aE,I x−θE,I( ) −
1

1 + eaE,IθE,I
,

with the maximal values SEm and SIm.

In Eq. 2, the parameters c5 and c6 represent the excitatory and

inhibitory global coupling strength between brain regions,

respectively, with c6 = c5/4. The term Pi(t) determines the

external stimulation to excitatory neurons activities. The

parameter τijd represents the communication delay from

regions j to i. The spatial distance dij corresponds to the

communication delay as τijd � dij/td, with the signal

transmission velocity td = 10 m/s. White noises, wi(t) and

vi(t), are generated from a normal distribution with standard

deviation η = 0.001. Other parameters are biologically derived,

c1 = 16, c2 = 12, c3 = 15, c4 = 3, aE = 1.3, aI = 2, θE = 4, θI = 3.7, and

τ = 8 (Wilson and Cowan, 1972; Muldoon et al., 2016; Bansal

et al., 2018; Bansal et al., 2019).

To quantitatively analyze the degree of synchronization of

the population σ, we consider the complex order parameter

rσe
iψσ � 1

Nσ
∑Nσ

j�1
eiθ

σ
j , (3)

as a macroscopic quantity, where i � ���−1√
, rσ measures the

instantaneous phase coherence and ψσ indicates the average

phase in σ. Considering the continuum limit where Nσ → ∞,

the state of the population σ at time t is described by the

probability density function fσ(θ
σ, t) with ∫2π

0
fσ(θσ , t)dθσ � 1.

This yields

rσe
iψσ � ∫ eiθ

σ

fσ θσ , t( )dθσ . (4)

In what follows, we focus on the emergence of chimera states

from the theoretical derivations and numerical investigation on

an empirical brain network. The theoretical part provides the

quantitatively basin stability of the chimera state, as well as

comparing the difference of attracting basins of chimera states

between the original system and the reductional system. The

applied part provides the investigation of the impact of

stimulating single region on the brain dynamics and how the

induced chimera states are influenced by the stimulation of

various regions.

3 Low-dimensional system

To analytically investigate the dynamics, stability and

bifurcations of the system (1), it is convenient to explore a

reduction of the phase model to a low-dimensional

description of each population (Abrams et al., 2008) in

terms of the ansatz imposed by Ott and Antonsen (Ott and

Antonsen, 2008). Previous studies of chimera states focused

on a special class of density function based on the Ott-

Antonsen ansatz and have analytically described stable and

breathing chimera states (Abrams et al., 2008). In this paper,

we use a special Poisson kernel density function based on the

Ott-Antonsen ansatz and obtain a reduced system of the

original Kuramoto system. The reduced system is derived

to provide the quantitatively basin stability of the chimera

state, and to compare the difference of attracting basins of

chimera states between the original systems and the reduced

system.

Assuming that the density function fσ(θ
σ, t) follows a special

Poisson kernel and expanding fσ(θ
σ, t) in a Fourier series in θσ, we

have

fσ θσ , t( ) � 1
2π

1 + ∑∞
n�1

aσ t( )eiθσ[ ]n + c.c.⎡⎣ ⎤⎦⎧⎨⎩ ⎫⎬⎭, (5)

where c.c. Stands for complex conjugate and |aσ(t)| ≤ 1 to avoid

divergence. Substituting the Fourier expansion Eq. 5 of the

density function into the order parameter Eq. 4 yields

rσe
iψσ � apσ t( ), (6)

where apσ(t) denote the complex conjugate of the Fourier

coefficient aσ(t).

In the limit Nσ→∞, we can get a reduction of the governing

Eq. 1. Recall that fσ satisfies the continuity equation
zfσ

zt + zfσvσ

zθσ � 0, where vσ is the phase velocity and is

determined by the right side of Eq. 1. Inserting the Fourier

expansion (5) of fσ into the continuity equation, one can

reproduce the amplitude equations (for more details in Ref.

(Abrams et al., 2008)).

The amplitude equations can be rewritten in terms of polar

coordinates rσ and ψσ according to Eq. 6 and obtain a two-

dimensional system given by

_r1 � 1 − r21
2

μr1 cos a( ) + ]r2 cos ψ + a( )( ),
_r2 � 1 − r22

2
μr2 cos a( ) + ]r1 cos ψ − a( )( ),

_ψ � 1 + r22
2r2

μr2 sin a( ) + ]r1 sin −ψ + a( )( ) − 1 + r21
2r1

μr1 sin a( )(
+]r2 sin ψ + a( )), (7)

where ψ = ψ1 − ψ2.

We have investigated the behavior of this low-dimensional

system Eq. 7. The linear stability analysis of the system has been

well performed (Abrams et al., 2008), but their attracting basins

was not studied. In particular, the basins of attraction of chimera

states have not attracted great attention (Panaggio and Abrams,

2015). Basins of attraction of Chimera states of a simple system of

two populations have been investigated using perturbative

analysis Martens et al. (2016). Following the similar notation

of symbols (e.g., 1S2D) of the reference Martens et al. (2016), we

analyze the stability diagram A and β of chimera states in low

dimensional systems.
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System Eq. 7 consists of the order parameter r1 of the first

population, that of the second one, and the mean-phase

difference ψ. With special initial conditions, one could observe

remarkable phenomena (Abrams et al., 2008), where the first

(second) population is synchronized with r1 = 1 (r2 = 1) and the

second (first) is desynchronized with r2 < 1 (r1 < 1). For

convenience, we denote these two kinds of chimera states by

1S2D and 1D2S, correspondingly. Figures 1A,C,E exhibit scatter

plots of the basins of attraction of chimera states colored in red

(blue), a set of initial conditions leading the low-dimensional

system Eq. 7 to approaching 1S2D (1D2S). At each initial value of

r1, r2 and ψ, we independently integrate Eq. 7 long enough, so

that the distribution of the state of the oscillators becomes

stationary. As predicted by the stability diagram of chimera

FIGURE 1
Basins of attraction of chimera states for the low-dimensional system Eq. 7. (A,B) The stable chimera states. (C,D) The breathing chimera states.
(E,F) The long-period breathing chimera states. In (A), (C), and (E), the red and blue color denote respectively the basins of attraction of 1S2D and
1D2S. The notations 1S2D represent that the first population is synchronized and the second is desynchronized, and 1D2S denote that the first
population is desynchronized and the second is synchronized. Mathematically, 1S2D with r1 = 1 and r2 < 1, and 1D2S with r1 < 1 and r2 = 1. In (B),
(D) and (F), red and blue solid lines are trajectories with random initial conditions inside the red and blue attracting basins respectively. Red and blue
areas in (B), (D) and (F) show the special attracting basins with the initial conditions r1 = 1 and r2 = 1 respectively. For the simulation, we set β = 0.1, A =
0.20 in (A,B), A = 0.28 in (C,D), and A = 0.35 in (E,F).
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states (Abrams et al., 2008), stable chimera corresponds to a

point, breathing chimera show as a stable limit cycle. The colored

region in Figures 1A,C,E indicates, respectively, the basin of

attraction of stable, breathing and long-period breathing chimera

states. The colored regions of Figures 1B,D,F show the basin of

attraction especially with initial value r1 = 1 for 1S2D and r2 = 1

for 1D2S. Solid lines in red and blue are trajectories with random

initial conditions within the red and blue basins, and they will

approach 1S2D and 1D2S respectively. Here, we fix the phase

shift β = 0.1 and set the coupling disparity A = 0.20 in Figures

1A,B, A = 0.28 in Figures 1C,D and A = 0.35 in Figures 1E,F.

Figure 2 provides the basins of attraction of the stable

chimera in (a), of the breathing chimera in (b), and of the

long-period breathing chimera in (c), via perturbing the

second population r2 and keeping the first population

synchronized, i.e., r1 = 1. As predicted by the stability

diagram of chimera states (Abrams et al., 2008), the red

region in Figures 2A–C indicates, respectively, the basin of

attraction of stable, breathing and long-period breathing

chimera states with Max(r2) < 1. This system Eq. 7 always has

a fixed point at r2 = 1 and ψ = 0, and its corresponding attracting

basin is colored in white with Max(r2) = 1. Here, for simplicity,

we use the maximum value of r2 denoted by Max(r2) to

approximate the basins of attraction of the different states.

Saddles colored in blue are always located at the basin boundary.

The linear stability diagram for chimera states was identified

by a bifurcation analysis (Abrams et al., 2008), but it does not

show how stable a chimera state is under large perturbations.

Moreover, in realistic situations, a certain degree of perturbations

are largely unavoidable and may drive the system from one

desirable state to other unpredictable states. Therefore, it is

crucial to investigate its stability against even large perturbations.

Menck et al. (2013) proposed the concept of basin stability

(BS), which is related to the volume of the basin of attraction of a

desirable state and quantifies the likelihood that the system

returns back to the previous state or converges to an

appropriate state after being subjected to even large

perturbations. Provided that random perturbations on the

system correspond to a uniform distribution on the parameter

space, BS of chimera states is equal to the percentage of the

volume of their corresponding attracting basins.

Numerically, we perturb the three parameters (r1, r2, ψ) M

times independently inside the range of [0, 1] × [0, 1] × [ − π, π],

count the number denoted by S of the system retaining back to

chimera states, and then approximate the basin stability BS as

the likelihood S
M. As shown in Figure 3, the shaded area denotes

the basin stability of chimera states, the basin stability is projected

on the parameter space regarding A and β. They are detectable

between the two red bifurcation lines with BS > 0. The diameter

of the attracting basin BS of chimera states increases as A

increases, and therefore their BS increases. With further

increases in A, BS starts decreasing slightly. As the amplitude

of β expands and touches the saddle at the homoclinic

bifurcation, chimera states therein vanish leading to BS � 0.

With the variations of A and β, the values of BS are not always

equal to 1, indicating that there are coherent and incoherent

states coexisting with chimera sates.

4 BS on networks

The above results are achieved under the Ott-Antonsen

ansatz by considering a restricted class of density functions

following the form of a Poisson kernel. Next, we analyze the

original dynamics (1) and investigate its basin stability, to

compare with the three cases of Figure 1 as observed from the

low-dimensional system Eq. 7. Initially, the system is in the

state of stable chimera, breathing chimera or long-period

breathing chimera as predicted by the low-dimensional

solution. Numerically, we observe that the system after

perturbations will probably converge to periodic chimera

instead of stable chimera with A = 0.20, quasi-periodic

chimera instead of breathing chimera with A = 0.28,

quasi-periodic chimera instead of long-period breathing

chimera with A = 0.35. With the variations of r1, r2 and ψ,

trajectories of periodic chimera are stable and periodic with a

closed curve in polar coordinates, and trajectories of quasi-

periodic chimera are periodic while not stable with many

closed curves. We show different realizations of periodic

chimera in Figure 4A and quasi-periodic chimeras Figures

4B,C after perturbations with different parameter values. As

shown in Figure 4, with periodic chimera suggests that the

trajectories of r1, r2 and ψ are stable and periodic, and the

trajectories are a closed curve in polar coordinates.

In comparison with the results of the reduced system, in what

follows, we provide the results via perturbing especially the

second population.

FIGURE 2
Basins of attraction of chimera states of the reduced system
Eq. 7, which are colored with respect to the maximum value
Max(r2). (A) The system converges to the stable chimera (denoted
by black plus). (B) The system converges to the breathing
chimera (denoted by black circle). (C) The system converges to the
long-period breathing chimera (denoted by black circle). In (A–C),
we regard r2 and ψ as polar coordinates, and the blue pluses
indicate the location of fixed points. For the simulation, the initial
values (r2, ψ) = (0.7, − 0.1) are inside the basin of attraction of
chimera states, and we fix β = 0.1 and vary A= 0.20 (A), A = 0.28 (B)
and A = 0.35 (C).
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FIGURE 3
The projection of basin stability (BS) of chimera states of the reduced system Eq. 7 on the stability diagram A and β. At each pair of parameters (A,
β), BS is calculated independently with 1000 different realizations. Chimera states exist within the region between the saddle-node curve (the red
dashed line) and the homoclinic curve (the red solid line). BS first increases with the increase of A and starts decreasing near the homoclinic line as
shown in the insets with different values of β. The saddle-node curve is approximated by ASN(β) in (Abrams et al., 2008). The homoclinic curve is
approximated numerically. For further information, we recommend the analysis of the stability diagram in reference Martens et al. (2016).

FIGURE 4
The phase portrait of the original dynamics (1). (A) is periodic chimera, and (B,C) are quasi-periodic chimeras. The realizations vary depending
crucially on the initial conditions, perturbations and parameter values. Here we use arbitrary values of parameters A = 0.20 and q = 0.44 in (A), A =
0.28 and q = 0.64 in (B), and A = 0.35 and q = 0.66 in (C).
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Chimera states require carefully selected initial conditions,

and, therefore, it is interesting to quantify BS of chimera states

via perturbation of the fraction q ∈ [0, 1] of nodes in both

populations. In comparison with the results of the reduced

system, the system is initially located in one of stable chimera,

breathing chimera or long-period breathing chimera as predicted

by the low-dimensional solution. We select at random q percent

nodes in two populations, randomly draw initial values θ of the

selected nodes from [0, 2π], and launch the system to reach

stationary states S. At each q, we repeat the above process Mq

times independently, count the number NS;q of reaching S, and

quantify basin stability of S via

BS S; q( ) � NS;q

Mq
, (8)

with Mq = ∑SNS;q.

Numerically, we observe that the degree of phase coherence

becomes periodic or quasi-periodic after even large perturbations. In

Figure 4A, with the coupling disparityA = 0.20, the order parameter

r1 of the first population or r2 of the second population starts

oscillating and the stable chimera states become periodic. With A =

0.28 in Figure 4B or 0.35 in Figure 4C, r1 or r2 displays irregular

periodicity and breathing chimeras become quasi-periodic.

Therefore, phase portraits can not be depicted solely by the Ott-

Antonsen ansatz, though this does work for the case of the low-

dimensional system. Realizations of periodic and quasi-periodic

chimera states of Eq. 7 vary and depend heavily on the initial

conditions and parameter values.

In Figure 5, we plot the basin stability BS of different states as

a function of q. A synchronized state always exists, and we

hereafter focus on chimera states. BS of stable chimera in

Figure 5A [resp. breathing chimera in Figures 5B,C] decreases

very fast with a slight increase of q, and it vanishes at a small

percentage q ≈ 0.1. Afterwards, periodic chimera in Figure 5A or

quasi-periodic in Figures 5B,C become dominant. With

increasing q, BS of periodic chimera and quasi-periodic

chimera decreases. In Figure 5A, the basins of attraction of

chimera states are typically smaller than that of the

synchronized state with randomly selected initial

perturbations. Interestingly, with further increases in q, BS of

periodic chimera exhibits a bimodal curve with two peaks,

respectively, at q ≈ 0.5 and q ≈ 0.7. BS of periodic chimera

states vanishes at q ≈ 1.We also observe such a bimodal feature of

basin stability of multichimera states in the coupled FitzHugh-

Nagumo model. In Figures 5B,C, with further increases in q, BS
of quasi-periodic chimera increases again and then persists at 0.5.

Interestingly, we observe that, in a certain region of q, BS is higher

than that when only the second population is perturbed.

To compare with the solution of the low-dimensional model

Eq. 7, we record values of polar coordinates r2 and ψ with the

initial value r1 = 1 as basin of attraction of the corresponding

stationary state with respect to A and then project basins of

attractions of different states on the space regarding the polar

coordinates as shown in Figure 6. We observe that dominant

chimeras are periodic in Figure 6A rather than stable or quasi-

periodic in Figures 6B,C instead of breathing chimera. The basin

FIGURE 5
Basin stability BS of different states of the original system,
with respect to the percentage q of the perturbed nodes of two
populations. The coupling disparity is set by A = 0.20 in (A), A =
0.28 in (B), and A = 0.35 in (C). The emerged states include
breathing chimera (in pink), periodic chimera (in yellow), quasi-
periodic chimera (in blue), stable chimera (in red), and
synchronized (in green). Initially, the system is in the region of
stable chimera (A) and breathing chimera (B,C) as predicted by the
low-dimensional model. For the simulation, we set β = 0.1, Mq =
100 and Nσ = 128.

FIGURE 6
Projection of basins of attraction of different states of the
original system, with A = 0.20 (A), A = 0.28 (B) and A = 0.35 (C). For
comparing the results to Figure 1, we regard r2 and ψ as polar
coordinates.
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boundary between different states is not clearly separated, in

contrast to that shown in Figure 1 of the reduced system Eq. 7.

Moreover, the basins of attraction between different states are

overlapped. Recall that the calculation of BS of chimera states on

the low-dimensional model is based on the equivalence of the

uniform distribution of the space to random perturbations on

chimera states on networks. Conversely, as shown in Figure 6,

scatter plots of the attracting basin of chimera states regarding r2
sin(ψ) and r2 cos(ψ) are centralized rather than uniformly

distributed in the space.

For a comparison between the reduced system and the

original system, in terms of basin stability, the dominated

states in the reduced system are stable and are breathing

chimera states, with small basins of attraction. However, the

original system is dominated by periodic and quasi-periodic

chimera states, in contrast to the model after reduction. The

original system being subjected to even more and large

perturbations, the curve of basin stability of the chimera states

behaves bimodally. Therefore, the low-dimensional system under

the Ott-Antonsen ansatz cannot capture the behavior of the

basins.

5 Chimera states on brain networks

Up to now, we have investigated the basins of attraction of

chimera states in original and reduced Kuramoto networks. In

this section, we focus the influence of stimulating regions on the

chimera states on brain networks.

Firstly, we use the diffusion imaging data to generate brain

networks. The Diffusion imaging data are available from the

Human Connectome Project (HCP), WU-Minn Consortium

(https://www.humanconnectome.org). HCP recruits subjects in

the age range of 22–35 years, and subjects are scanned on a

customized Siemens 3 T “Connectome Skyra” at Washington

University, using a standard 32-channel Siemens receive head

coil and a “body” transmission coil (Van Essen et al., 2013). For

the simplification, we take the diffusion pre-processed data of

30 individual participant scans, randomly selected, and use DSI

Studio (http://dsi-studio.labsolver.org/) to perform whole-brain

fiber tractography between brain regions. To obtain the fiber

connectivity matrix of each participant, the fiber threshold is set

by 0.001, as the default value of DSI Studio, to filter out a small

number of connecting tracks. In this case, the fiber connectivity

between brain regions smaller than the threshold will be ignored

in the connectivity matrix (Yeh, 2017). We use the automated

anatomical atlas (AAL2), with 94 cortical brain regions (Rolls

et al., 2015), and further obtain the fiber connectivity matrices for

these participants, accounting for fiber numbers between brain

regions. The connectivity matrix and graph theoretical analysis

are conducted by using DSI Studio (http://dsi-studio.labsolver.

org). To minimize the impact of bias in the tractography

parameter scheme on connectivity matrix generation, we use

the averaged fiber connectivity matrix, across 30 subjects, to

simulate the brain networks.

Based on the generated networks, we use the WCOs Eq. 2,

employ the stochastic Euler-Maruyama method with time step

size 0.001 s, and set the initial conditions Ei(0) = 0.1, Ii(0) = 0.1

with i = 1, . . ., N. The connection strength Aij in Eq. 2 is

obtained by normalizing the averaged fiber connectivity

matrix, i.e., Aij = nij/ns, where nij is the fiber count between

regions i and j, and ns is the sum of fiber count in the whole

brain. The dynamical perturbation of the stimulated region

Pi = 1.15 is utilized as a single regional stimulation. After

stimulation, signals propagate through the network

connectivity from the stimulated regions and others,

(Bansal et al., 2019).

In what follows, we focus on the investigation of the

impact on brain dynamics (stimulated region) and the

quantification of the induced chimera states from different

regions. To characterize the emerged states in brain

dynamics, we focus on synchronized patterns on brain

systems, where regions are divided into different

functional regions with similar cognitive processes. For

this network, each region is assigned to one of eight

cognitive systems (Yeo et al., 2011), including

somatomotor (Som), default mode network (DMF),

control (Con), dorsal attention (DA), limbic (Lim), visual

(Vis), ventral attention (VA), other (Oth, subcortical regions

could not be assigned to any system) (Dimulescu et al., 2021).

Figure 7 exhibits the assignment of 94 AAL2 brain regions

within eight cognitive systems. Figures 7A–C shows the three

dimensional distribution of 94 AAL2 brain regions within

brain, with same color nodes assigned to one cognitive

system. Figure 7D is the spatial mappings of 8 cognitive

systems.

To quantify the degree of synchronization between brain

regions, we use the order parameter based on a single regional

stimulation. For the N coupling WCOs, the phase of the i-th

node follows

θi t( ) � arctan
Ii t( )
Ei t( ), i � 1, 2, . . . , N. (9)

The order parameter averaged across a long period of time T

indicates the global synchrony, i.e.,

rN � 〈rσ t( )〉T. (10)

where σ represents all regions, i.e., Nσ = N. For instance, if all

regions move coherently and act like a giant component, rN ≈ 1,

otherwise, rN ≈ 0 (Strogatz, 2000). In numerical simulations, we

set T = 1 s to estimate the averaged order parameter.

Additionally, we use the order parameter to investigate the

synchronized activities between pairs of cognitive systems

based on a regional stimulation. In particular, for each pair

of systems ξi and ξj with Nξi and Nξj regions, respectively, the

phase synchronization between ξi and ξj at time t follows
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rξi ,ξj t( )eiΦ t( ) � 1
Nξi +Nξj

∑
k∈ ξi∪ξj( )

eiθk t( ), (11)

where Φ(t) is the averaged phase of oscillators within cognitive

systems ξi and ξj. The cognitive system-level order parameter is

calculated by averaging rξi ,ξj(t) on a long period T (Bansal et al.,

2019), as

rξi ,ξj � 〈rξi ,ξj t( )〉T, (12)

for each pair of cognitive systems, i.e., i, j = 1, 2, . . ., 8. For a given

regional stimulation, the system Eq. 2 may exhibit different final

states based on different coupling strengths c5. To identify the

synchronization patterns, we define a synchronization threshold

rTh, such that two cognitive systems ξi and ξj are considered to be

synchronized if rξi ,ξj ≥ rTh. In simulations, we set rTh = 0.8

(Bansal et al., 2019).

To explore how a single region drives the brain dynamics

with different underlying couplings, based on varying the

coupling strength c5, we simulate the dynamics Eq. 2 and

obtain three different synchronization patterns, including (i)

the coherent state, (ii) the chimera state with coexisting

synchronized and desynchronized subpopulations, and

(iii) the metastable state with the absence of any large-

scale stable synchronized oscillations (Bansal et al., 2019).

Figure 8 shows the corresponding numerical results, with (a)

the coherent state with the order parameter rξi ,ξj ≥ rTh and (b)

the chimera state with coexisting of synchronized and

desynchronized systems. The synchronization level within

or between ventral attention, other, dorsal attention, is

higher than other systems, i.e. the order parameters rξi ,ξj
within or between these three cognitive systems have larger

values. Besides, dorsal attention is the most synchronized

cognitive system with the largest order parameter rξi ,ξj.

Synchronization of visual between other cognitive systems

(including itself) has a lower value of rξi ,ξj < rTh. Especially,
the order parameter rξi ,ξj within visual is the smallest.

Figure 8C illustrates the metastable state with the order

parameter rξi ,ξj < rTh for any i, j = 1, 2, . . ., 8. To compare

the influences of chimera state after stimulation, we set Pi = 0

for i = 1, 2, . . ., N. Figure 8D shows that the brain dynamics

exhibit a chimera state without stimulation, with the smaller

order parameters rξi ,ξj compared to (b). Therefore, the

chimera state of the brain dynamics without stimulation

FIGURE 7
Distribution of 94 AAL2 brain regions within 8 cognitive systems. (A,B) and (D) show 3-dimensional spatial distribution of the 94 brain regions in
3 directional views, with left view (A), back view (B), and top view (D). Brain regions with the same color belong to the same cognitive systems. The
connections between brain regions are displayed, with the thickness representing the connection strength. (C) Spatial mappings show the
distribution of 8 cognitive systems. The color of map is connected to the cognitive system shown in the right column. This figure is drawn by
using DSI Studio.
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has the lower synchronization level between cognitive

systems compared to the single regional stimulation.

We further focus on how stimulation on brain regions

impacts the induced chimera states of the model Eq. 2. Given

the coupling strength c5 = 330, we stimulate the i-th brain region

and integrate Eq. 2 10 times for each region i, with i ranging from

1 to N. For each simulation, the system will converge to either

coherent, chimera, or metastable states. To identify the final state,

we calculate the system-level order parameter matrices with

elements rξi ,ξj. Each of the resulted matrices is binarized via a

matrix B, i.e., Bξi ,ξj = 1 if ξi and ξj are synchronized (rξi ,ξj ≥ rTh),
otherwise Bξi ,ξj = 0. The coherent state is identified if all elements

Bξi ,ξj of the binarized matrix B are 1; metastable state has the

binarized matrix B with each element Bξi ,ξj equal to 0. We

additionally classify the final state by the probability of

rξi ,ξj ≥ rTh in the binarized matrix B, denoted by

P � (∑8
i, j�1Bξi ,ξj)/64. The coherent state is with P = 1,

chimera state with 0 < P < 1, and the metastable state with P = 0.

We stimulate each region i and integrate Eq. 2 10 times for

each i, with N = 94. For the identified chimera state based on P,

we calculate the index of the stimulated region is and the

corresponding number of simulation nis , where 1 ≤ is ≤ 94

and 1≤ nis ≤ 10. There are 731 chimera states, found with

different stimulated region is and the number of simulation

nis. For a fixed stimulated region is with nis chimera states, we

calculate the average probability, maximal probability, minimal

probability, and exhibit the variations of these probabilities

versus stimulated node index is in Figure 9A. As shown in

Figure 9A, all the probabilities satisfy 0 < P < 1, indicating

chimera states with coexisting of synchronization and

desynchronization.

As described in (Shanahan, 2010; Bansal et al., 2019), an ideal

chimera state occurs with half of the population synchronized

and the others desynchronized. After identifying the chimera

states with different stimulated node is and the corresponding

number of simulation nis, we analyze numerical results by using

FIGURE 8
(A) Coherent state generated with the coupling strength c5 = 1000. (B) Chimera state with the coupling strength c5 = 330. (C)Metastable state
with the coupling strength c5 = 200. In (A–C), we stimulate the 1-st brain region by applying a constant external input, i.e., Pi = 1.15 if i = 1 and Pi = 0
otherwise. (D) Chimera state of the brain dynamics without stimulation for c5 = 330. The order parameter rξi ,ξj and a threshold rTh = 0.8 are used to
classify the final states of the brain dynamics. The order parameter threshold rTh is marked on the colorbar. To obtain a stationary state, we
integrate the brain dynamics Eq. 2 in time interval [0, 150 s] with step size = 0.001 s, and set the initial conditions Ei(0) = 0.1, Ii(0) = 0.1 with i = 1, . . .,N.
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two measures of synchronization, consisting of the Kuramoto

order parameter and the chimera index. The classical Kuramoto

order parameter is calculated via Eq. 10, capturing the level of

synchrony (Kuramoto, 1975; Strogatz, 2000). The chimera index

describes how close a final state to an ideal chimera state

(Shanahan, 2010; Hizanidis et al., 2016; Bansal et al., 2019).

For a brain network with M cognitive systems ξ1, ξ2, . . ., ξM, the

chimera index follows

Γ � 〈γch t( )〉T
Γmax

, (13)

where

γch t( ) � 1
M − 1

∑M
i�1

rξi t( ) − 〈rξ t( )〉M( )2. (14)

The chimera index Γ is averaged over the long time T,

representing the averaged diversities in the order parameters

within the M cognitive systems (Bansal et al., 2019). The

normalization factor Γmax = 5/36 depicts the maximal

variations of the order parameter corresponding to an ideal

chimera state (Shanahan, 2010; Bansal et al., 2019). The

instantaneous quantity 〈rξ(t)〉M � (∑M
i�1rξi(t))/M evaluates

the averaged synchronization of M cognitive systems at time t.

Figure 9B illustrates the chimera index Γ is weakly and negatively

FIGURE 9
(A) The probability P of rξi ,ξ j ≥ rTh in the order parameter matrix versus the stimulated node index is. The red line represents the variations of
average probability versus the stimulated node index. Each red dot corresponds to a stimulated region. The shaded area shows the variation range of
the probability. The dashed line helps distinguish the probability P > 0 in the shaded area. (B) The chimera index Γ is weakly and negatively correlated
with rN, with the correlation coefficient r ≈ − 0.33 and the p-value p ≈ 2.87 × 10−19. One red dot describes a chimera state generated via the single
regional stimulation. For each single regional stimulation, simulating Eq. 2 ten times, using 0 < P < 1 identifies the generated chimera states, and Pi =
1.15. The time interval of simulating Eq. 2 is [0, 150 s], with step size = 0.001 s. The initial conditions are Ei(0) = 0.1, Ii(0) = 0.1 with i = 1, . . ., N.

FIGURE 10
(A) The linear relations between the Kuramoto order parameter rN and degree dis , with the correlation coefficient r ≈ 0.66 and the p-value p ≈
2.55 × 10−94. The blue line represents the best-fit line. (B) The chimera index Γ shows no apparent correlation with dis .
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correlates with the Kuramoto order parameter rN. This implies

that stimulating the node inducing an ideal chimera state tends to

have a lower global synchrony.

To illustrate further how the chimera states are constrained by the

underlying network structure, we investigate the Kuramoto order

parameter and the chimera index, as a function of the degree

dis � ∑N
j�1Ais,j. Figure 10A shows a linear relation between the

Kuramoto order parameter rN and the stimulated-nodes’ degree

dis . Results show that nodes is with higher degree tend to produce

a global synchronized state. This suggests that the synchronized state

induced by high-degree node is more robust with the presence of

noise. However, as shown in Figure 10B, the ranked chimera index Γ
has no such clear correlation with the ranked degree dis.

6 Conclusion

In the paper, we have firstly investigated the basin of attraction

of stable and breathing chimera states of the solvablemodel (Abrams

et al., 2008) with and without the Ott-Antonsen ansatz, and we have

implemented basin stability on chimera states and quantified their

stability after even large perturbations. Quantitatively, we have

shown that periodic and quasi-periodic chimera states of

networked oscillators, instead of stable and breathing chimera

states in the reduced system, dominate the desynchronized states

of the full system. Interestingly, we have observed that the curve of

basin stability of chimera states becomes bimodal. The same process

could be widely implemented on where chimera states are observed.

It would also be worth looking at experiments for future work.

Additionally, we have also employed a biologically

motivated, networked model WCOs, to investigate how the

induced chimera states are influenced by the stimulation of

various regions. Stimulating single region with different

coupling strength could potentially force the system to three

states, consisting of the coherent, chimera, and metastable state.

For the chimera behavior on brain networkedmodel, the chimera

state without stimulation exhibits low synchronization between

cognitive systems. Besides, the variations of Kuramoto order

parameter suggest that higher-degree nodes could induce higher

synchronization influences compared to the lower ones.
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