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Hereditary xerocytosis is a dominant red cell membrane disorder characterized

by an increased leak of potassium from the inside to outside the red blood cell

membrane, associated with loss of water leading to red cell dehydration and

chronic hemolysis. 90% of cases are related to heterozygous gain of function

mutations in PIEZO1, encoding a mechanotransductor that translates a

mechanical stimulus into a biological signaling. Data are still required to

understand better PIEZO1-HX pathophysiology. Recent studies identified

proteomics as an accurate and high-input tool to study erythroid

progenitors and circulating red cell physiology. Here, we isolated red blood

cells from 5 controls and 5 HX patients carrying an identified and pathogenic

PIEZO1mutation and performed a comparative deep proteomic analysis. A total

of 603 proteins were identified among which 56 were differentially expressed

(40 over expressed and 16 under expressed) between controls and HX with a

homogenous expression profile within each group. We observed relevant

modifications in the protein expression profile related to PIEZO1 mutations,

identifying two main “knots”. The first contained both proteins of the

chaperonin containing TCP1 complex involved in the assembly of unfolded

proteins, and proteins involved in translation. The second contained proteins

involved in ubiquitination. Deregulation of proteins involved in protein

biosynthesis was also observed in in vitro-produced reticulocytes after

Yoda1 exposure. Thus, our work identifies significant changes in the protein

content of PIEZO1-HX erythrocytes, revealing a “PIEZO1 signature” and

identifying potentially targetable pathways in this disease characterized by a

heterogeneous clinical expression and contra-indication of splenectomy.
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Introduction

Hereditary xerocytosis (HX), also known as dehydrated

hereditary stomatocytosis (DHST) is a dominant red cell

membrane disorder characterized by an increased leak of

potassium (K+) outside of the red blood cell (RBC),

accounting for loss of water and dehydration (Gallagher 2017;

Jankovsky et al., 2021). Two main genes are involved: gain of

function mutations in PIEZO1 encoding Piezo1, a non-selective

cation channel that responds to mechanical stimuli, account for

about 90% of the cases (Zarychanski et al., 2012; Albuisson et al.,

2013; Andolfo et al., 2013), and gain of function mutations in

KCNN4, encoding the Gardos channel, a Ca2+-dependent K+

channel, account for about 10% of the cases (Glogowska et al.,

2015; Rapetti-Mauss et al., 2015). PIEZO1-HX presentation

associates various degrees of chronic hemolysis, iron overload,

pseudo hyperkalemia, perinatal edema as well as a high

thrombotic risk after splenectomy (Picard et al., 2019). In

most cases, hemolysis is ‘compensated’, showing increased

reticulocytes and a normal hemoglobin level. Recently, reports

pointed out dyserythropoiesis and defective reticulocyte

maturation in PIEZO1-HX (Caulier et al., 2020; Moura et al.,

2020), as well as defective hepcidin regulation in the liver

(Andolfo et al., 2020) and increased erythrophagocytosis (Ma

et al., 2021) both involved in the iron overload.

Data are still lacking about RBC and reticulocyte specificities

in PIEZO1-HX. Omics have been shown to be effective

approaches to identify pathophysiological mechanisms in RBC

diseases. We recently published a metabolomics study in HX that

identified a PIEZO1 signature characterized by an increased

glycolysis rate, a decreased 2.3DPG content accounting, at

least partially, for the increased hemoglobin oxygen affinity

and polycythemia observed in some patients despite

dyserythropoiesis and hemolysis (Kiger et al., 2021). In order

to better characterize RBCs and reticulocytes in PIEZO1-HX, we

have now used a proteomic approach to compare the proteome

in human PIEZO1-HX and control RBCs. Indeed, we have

previously developed proteomics in human reticulocytes and

RBCs (Gautier et al., 2016, Gautier et al., 2018). The first

proteomic studies identified more than 2000 proteins in

RBCs, however, they were limited by low purity level due to

1) contamination by leucocytes or platelets and 2) poor

separation between RBCs and reticulocytes, that have a

significantly higher protein content, transferrin receptor,

organelles, and mitochondria levels. Our improved method

allowed to detect and quantify more than 2077 proteins in a

highly purified population of human RBCs and reticulocytes

without any contamination from leucocytes or platelets (Gautier

et al., 2018). We describe here a global proteomics study of

human PIEZO1-HX RBCs, aiming to identify specific patterns

that may reflect PIEZO1-HX pathophysiology and represent

potential therapeutic targets in this disease in which treatment

are lacking since splenectomy has limited efficiency on hemolysis

and leads to frequent thrombotic complications (Picard et al.,

2019).

Material and methods

Blood samples from five patients diagnosed with PIEZO1-

HX (DHST 1-5) based on family history, non-spherocytic

chronic hemolysis, typical osmotic gradient ektacytometry and

molecular testing were obtained after informed consent

according to Helsinski protocol. All patients have been already

reported by our group (Picard et al., 2019) and carry four

different PIEZO1 mutations. Patients’ characteristics are

summarized in Supplementary Tables S1, S2. In parallel, five

EDTA blood samples from healthy donors (HD) were used as

controls. Mature red cell and reticulocyte purification, protein

extraction and absolute quantification were performed as

described with minor differences (Gautier et al., 2018).

Extensive protocols are summarized in Supplementary

Material S1. Briefly, venous blood samples from HX patients

or controls were first centrifuged to deplete platelets, and

leukocytes and RBCs were then separated on a Ficoll gradient.

Reticulocytes were labeled using Thiazole Orange staining, and

cells were sorted to obtain an RBC-purified fraction (RBC-PF,

Thiazole Orange negative) and a reticulocyte-purified fraction

(Ret-PF, Thiazole Orange positive). Proteomic analysis was

performed on the RBC-PF fraction, as reticulocyte count,

although moderately increased in HX patients, was too low to

enable high resolution analysis. For in vitro-produced

reticulocytes, hematopoietic stem cells (HSC) were enriched

from mobilized peripherical blood mononuclear cells

(PBMCs) of four different healthy donors by CD34+ magnetic

sorting (AutoMACS Separator, Miltenyi Biotec). CD34+-derived

cells were cultured as previously described (Caulier et al., 2020)

and exposed to DMSO or 1 µM Yoda1 from day 4 to day 24 when

GPA+/Draq5− reticulocytes were sorted on FACSAriaII. Sample

preparation was performed as previously described (Gautier

et al., 2018) on a Dionex U3000 RSLC nano-LC system

coupled to an Orbitrap Velops mass spectrometer (Thermo

Fisher Scientific, see Supplementary Material S1). Data were

analyzed on a MaxQuant software (Tyanova et al., 2015)

using the Homo sapiens Uniprot-Swissprot reviewed database.

Maxquant LFQ values were imported into the Perseus software

version 1.6.15.0 (Tyanova et al., 2015). Proteins expressed in at

least three samples of controls or patients for erythrocytes and

two samples of either condition for reticulocytes were filtered,

and statistics were performed using the Student t-test with a p-
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FIGURE 1
(A) Heatmap showing a particular PIEZO-HX (indicate as DHST) protein expression in RBCs in comparison with control (identified as HD). (B)
Analysis working string of differentially expressed protein in PIEZO-HX (identified as DHST) in RBCs in comparison with control (identified as HD).
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value < 0.5 considered significant. The mass spectrometry

proteomics data have been deposited to the ProteomeXchange

Consortium via the Pride partner repository with the dataset

identifiers PXD031963 and PXD035122 for mature RBCs and in

vitro produced reticulocytes respectively.

Results and discussion

A total of 603 proteins were quantified in at least three

samples of at least one condition (Supplementary Table S5,

Supplementary Figures S1, S2). Of those, 56 were differentially

expressed, 40 were overexpressed and 16 under expressed in

HX RBCs compared with controls (Supplementary Table S3).

The expression profile was homogenous within each group as

shown by the heatmap (Figure 1A). In order to identify a

PIEZO1 signature, we performed an “analysis working string”

to link these differentially expressed proteins on a functional

basis. As shown in Figure 1B, we could isolate a main knot

containing proteins involved in protein biosynthesis and

folding. The core of this knot corresponds to the

Chaperonin-containing T-complex (CCT) and proteins

involved in the elongation step of protein synthesis. The

CCT-complex, present in all eukaryote cells, is involved in

the assembly of unfolded proteins playing a role in many

cellular processes such as signalling pathways and

cytoskeleton assembly (Kaisari et al., 2017), regulating for

example the activity of the Ca2+-activated form of Gelsolin

(Svanström and Julie 2016). Thus, this dysregulated network

observed in PIEZO1-HX RBCs could represent a response to

the intracellular Ca2+-increase secondary to PIEZO1 gain-of

-function mutation. In addition to the chaperonin complex,

this knot also contained proteins involved in translation and

elongation such as RPLP2, EEF2, EIF2 subunit 1 and 3, all

upregulated in PIEZO1-HX RBCs. The persistent expression

of proteins involved in translation is probably reminiscent

from earlier stages of erythropoiesis and may reflect the delay

in erythroid precursor and reticulocyte maturation described

in PIEZO1-HX (Caulier et al., 2020; Moura et al., 2020). Of

note, expression of elongation factors is known to increase in

response to oxidative stress as a compensatory effect (Bektaş

et al., 2005; Sanchez et al., 2019). Since PIEZO1 activation

increases the intracellular ROS level in nucleus pulposus

(Wang et al., 2021) and activates ROS signalling in

cardiomyocytes and macrophages (Geng et al., 2021; Jiang

et al., 2021), expression of elongation factor that persists at a

significantly high level in mature RBCs may reflect a higher

sensitivity of erythroid cells carrying a PIEZO1 GOF mutation

to oxidative stress. The underlying mechanisms remain

unknown but could involve a decreased expression of

antioxidant proteins as Catalase (CAT) or Glutathione S

transferase Theta (GSTT1). If catalase was significantly

down-regulated in RBCs from HX patients, GSTT1 protein

was nearly absent in HX-RBCs while still expressed in controls

(Supplementary Table S5). GSTT1 null polymorphism is

known to induce a higher hematological toxicity after

benzene exposure through an increased sensitivity to

oxidative stress, and in a context of RBC disease, to worsen

the severity of sickle cell disease (Nourozi et al., 2018). Among

proteins absent in HX-RBCs, transcription elongation factor B

polypeptide 1 (TCEB1) was only detected in one sample of

HX-RBCs whereas present in four out of five controls

(Supplementary Table S5), as previously described in the

transcriptome of bone marrow samples from patients

presenting Diamond-Blackfan Anemia (Gazda et al., 2006).

This finding may participate in the dyserythropoietic features

previously described in RBCs and reticulocytes from PIEZO1-

HX patients. Of note, no retention of endoplasmic reticulum

(ER) proteins has been observed in RBCs of PIEZO1-HX

patients. It differs from observations reported in

polycythemia vera (PV), where features shared with

PIEZO1-HX as elevated levels of intra-cellular calcium and

increased Gárdos activity, were associated with altered

organelle sorting during enucleation and increased

retention of ER proteins in reticulocytes and RBCs (Buks

et al., 2021). Although sharing in part similar calcium-

mediated pathways, the difference of behaviour in RBCs

from PV and HX patients, as well as the absence of

enrichment in proteins directly regulated by calcium,

highlights the complexity of PIEZO1-HX, where calcium

influxes fail to faithfully reveal the pathophysiology of the

disease.

To further decipher the impact of PIEZO1 mutation in

RBCs, we used a Markov Clustering (MCL) Algorithm which

intends to cluster protein families more precisely (Enright,

2002) (Figure 1B). This allowed us to identify a second

functional knot corresponding to proteins involved in the

ubiquitination pathway such as the E2 ubiquitin-conjugating

enzymes and the E3 ubiquitin-ligase HUWE. Cullin-4A

(CUL4A) and DDB1- and CUL4-associated factor 11

(DCAF11) were significantly increased in PIEZO1-HX and

are parts of the E3 ubiquitin ligase complex. ARIH2, another

E3 ubiquitin-protein ligase that cooperates with Cullin-5 in an

E3-E3 complex was overexpressed in PIEZO1-HX RBCs as well.

We think that their persistence at higher level is the reflexion of

defects occurring at earlier stages of erythropoiesis. Therefore,

HX pathophysiology involves deregulation of the protein

quality control pathways, particularly the Ubiquitin-

Proteasome System (UPS), which was by the way first

discovered in reticulocytes (Ciehanover and Hod, 1978).

Several reports highlighted the crucial role of UPS in

erythroid differentiation, including enucleation and

reticulocyte maturation through different processes such as

detoxification of alpha chains in excess, elimination of

misfolded or damaged proteins, degradation of activated

EPO-R or on the contrary by avoiding protein degradation
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by de-ubiquitining enzymes such as USP7 which stabilizes

GATA1 in erythroid cells through a direct interaction at

protein level (Etlinger, 1977; Chen et al., 2002; Walrafen

et al., 2005; Khandros et al., 2010; Liu et al., 2010; Liang

et al., 2019). Moreover, CUL4A’s downregulation is known

to promote cell cycle exit and erythroid maturation by

modulating key erythroid regulators such as GATA1 and

P27 (Li et al., 2006). Thus, persistence of a high CUL4A

expression in PIEZO1-HX, in addition to the deregulated

UPS pathway could explain the delayed maturation

described in PIEZO1-HX reticulocytes (Moura et al., 2020).

To confirm that our findings were specifically related to

PIEZO1-activation, we performed a proteomic analysis on

reticulocytes produced in vitro from CD34+ cells either

exposed to DMSO as a control or to the PIEZO1 activator

Yoda1 (Syeda et al., 2015). The analysis could not be

performed on mature erythrocytes because in vitro erythroid

differentiating protocols have been shown to produce primarily

reticulocytes rather than mature erythrocytes (Giarratana et al.,

2011). A total of 1,169 proteins were quantified in at least two

samples in at least one condition (Supplementary Table S5,

Supplementary Figures S3, S4). Of those, 28 proteins were

differentially expressed, 19 were overexpressed and nine under

expressed in reticulocytes exposed to Yoda1 compared with

controls (Figure 2A and Supplementary Table S4). Of note,

expression of the transferrin receptor was similar in both

conditions, ruling out the possibility that reticulocytes could

be at different maturation steps. After performing a MCL

Algorithm on the differentially expressed proteins, we

identified functional knots of proteins involved in biosynthesis

such as elongation factors EIF5B, EEF1G, EEF1D and

riboprotein RPL11, confirming the results obtained with

primary RBCs from PIEZO1-mutated HX (Figure 2B).

However, we did not identify a knot of proteins involved in

protein quality control pathways. This discrepancy may reflect

the difference in intensity and mechanism of PIEZO1 activation

induced by Yoda1 or by gain-of function mutations in HX.

Furthermore, subtle changes in the proteome of reticulocytes

exposed to Yoda1 reinforce our previous results, where activation

of PIEZO1 mainly slowed down the differentiation of erythroid

progenitors without significantly impairing the terminal

maturation and enucleation steps (Caulier et al., 2020).

In summary, we present here a descriptive extensive

proteomic study revealing a “PIEZO1 signature” characterized

by specific modifications in RBC protein content. Our study

confirms that gain of function PIEZO1 mutations, in addition to

modifying erythrocyte hydration by secondary activating the

Gárdos channel, affect several aspects of erythroid cell

physiology, resulting in deregulation of multiple cellular

processes at the protein level, with a particular focus on

elongation, post-translational folding and protein quality

control pathways. These data reinforce the pathophysiological

knowledge of this rare disease, and offer new potential targets for

the future.

Data availability statement

The mass spectrometry proteomics data have been deposited

to the ProteomeXchange Consortium via the PRIDE partner

repository (Perez-Riverol et al., 2022) with the dataset identifier

FIGURE 2
(A) Heatmap showing the proteins differentially expressed in
CD34+-derived reticulocytes after DMSO or Yoda1 exposure. (B)
Analysis working string after Markov Clustering obtained from
CD34+-derived reticulocytes exposed to DMSO or YODA1,
showing one main knot containing protein involved in protein
biosynthesis.
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PXD031963 (mature RBC DHS vs. HD) and PXD035122

(reticulocytes DMSO vs. Yoda1).
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