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An association between maternal and fetal heart rate (HR) has been reported

but, so far, little is known about its physiological implication and importance

relative to fetal development. Associations between both HRs were

investigated previously by performing beat-by-beat coupling analysis and

correlation analysis between average maternal and fetal HRs. However,

studies reporting on the presence of similarities between maternal and

fetal HRs or RR intervals (RRIs) over the short term (e.g., 5-min) at different

gestational ages (GAs) are scarce. Here, we demonstrate the presence of

similarities in the variations exhibited by maternal and fetal RRl tachograms

(RRITs). To quantify the same similarities, a cross-correlation (CC) analysis

between resampled maternal and fetal RRITs was conducted; RRITs were

obtained from non-invasive electrocardiogram (ECG). The degree of similarity

between maternal and fetal RRITs (bmfRRITs) was quantified by calculating

four CC coefficients. CC analysis was performed for a total of 330 segments

(two 5-min segments from 158 subjects and one 5-min from 14 subjects). To

investigate the association of the similarity bmfRRITs with fetal development,

the linear correlation between the calculated CC coefficients and GA was

calculated. The results from the latter analysis showed that similarities

bmfRRITs are common occurrences, they can be negative or positive, and

they increase with GA suggesting the presence of a regulation that is

associated with proper fetal development. To get an insight into the

physiological mechanisms involved in the similarity bmfRRITs, the

association of the same similarity with maternal and fetal HR variability

(HRV) was investigated by comparing the means of two groups in which

one of them had higher CC values compared to the other. The two groups

were created by using the data from the 158 subjects where fetal RRI (fRRI)

calculation from two 5-min ECG segments was feasible. The results of the

comparison showed that the maternal very low frequency (VLF) HRV

parameter is potentially associated with the similarity bmfRRITs implying

that maternal hormones could be linked to the regulations involved in the

OPEN ACCESS

EDITED BY

Amanda Sferruzzi-Perri,
University of Cambridge,
United Kingdom

REVIEWED BY

Hernâni Gonçalves,
University of Porto, Portugal
João Francisco Bernardes,
University of Porto, Portugal
Michelle M. Collins,
University of Saskatchewan, Canada

*CORRESPONDENCE

Namareq Widatalla,
namareq.widatalla@gmail.com

SPECIALTY SECTION

This article was submitted to
Developmental Physiology,
a section of the journal
Frontiers in Physiology

RECEIVED 09 June 2022
ACCEPTED 02 November 2022
PUBLISHED 21 November 2022

CITATION

Widatalla N, Khandoker A, Alkhodari M,
Koide K, Yoshida C, Kasahara Y, Kimura Y
and Saito M (2022), Similarities between
maternal and fetal RR interval
tachograms and their association with
fetal development.
Front. Physiol. 13:964755.
doi: 10.3389/fphys.2022.964755

COPYRIGHT

© 2022Widatalla, Khandoker, Alkhodari,
Koide, Yoshida, Kasahara, Kimura and
Saito. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 21 November 2022
DOI 10.3389/fphys.2022.964755

https://www.frontiersin.org/articles/10.3389/fphys.2022.964755/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.964755/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.964755/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.964755/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.964755&domain=pdf&date_stamp=2022-11-21
mailto:namareq.widatalla@gmail.com
https://doi.org/10.3389/fphys.2022.964755
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.964755


similarity bmfRRITs. Our findings in this study reinforce the role of the

maternal intrauterine environment on fetal development.

KEYWORDS

maternal-fetal RRI similarity, heart rate vaiability, very low frequency, fetal
developement, fetal programming

Introduction

The fetal programming theory postulates that the maternal

intrauterine environment can influence the offspring after birth

and into adulthood. The theory implies that the upbringing of

healthy adults is heavily dependent on maternal health and

behavior during the prenatal period (Barker, 1995; Godfrey

and Barker, 2001; Kwon and Kim, 2017). Hence, recognition

of maternal factors that may affect fetal development during

pregnancy can potentially enhance the quality of life of the fetus

during adulthood.

Currently, fetal well-being and development are widely

assessed by measuring fetal heart rate (HR) and HR variability

(HRV) (Gonçalves et al., 2006a; Gonçalves et al., 2013; DiPietro

et al., 2015). Fetal HR and HRV change throughout gestation

(DiPietro et al., 2015) and they were found to be affected by fetal

presentation (Gonçalves et al., 2014), fetal gender (Tendais et al.,

2015), fetal health (Gonçalves et al., 2006b; Gonçalves et al.,

2018), and fetal behavioral states (Nijhuis et al., 1982; Gonçalves

et al., 2007). Fetal HR and HRV were also found to be influenced

by different maternal-related factors such as respiration

(Leeuwen et al., 2009), weight (Husin et al., 2020), exercise

(Leeuwen et al., 2014; May et al., 2016), and sleep (Dipietro

et al., 2021), however, the mechanisms underlying such

influences are not fully understood yet. The placenta, which is

the point of connection between themother and fetus, is expected

to play a major role in these influences. In addition, according to

previous studies that addressed maternal-fetal HR coupling or

interaction (Leeuwen et al., 2003; Leeuwen et al., 2009; Gonçalves

et al., 2016; Khandoker et al., 2019), it is highly implied that the

mechanisms leading to changes in fetal HRs (fHRs) can be

understood through maternal HRs (mHRs).

It has been reported that fHRs have a diurnal rhythm because

they decreased and increased at night and daytime, respectively.

The diurnal changes that were observed in fHRs were in harmony

with mHRs (Vries et al., 1987; Lunshof et al., 1998). The

simultaneous increase and decrease in maternal and fetal HRs

suggest an interaction between both, but the correlation between

the same remains elusive over a short period. Until now, there is a

discrepancy in the literature regarding the association of fHR

with mHR over the short term, for example, J. Dipietro et al.

(Dipietro et al., 2004; Dipietro et al., 2006) investigated the

temporal associations between maternal and fetal HRs over a

50-min period but reported that there were no associations

between maternal and fetal HRs. On the other hand, in a

recent study by J. Dipietro et al. (2021), a little temporal

coupling between maternal and fetal HRs was reported, but

only at certain maternal sleep stages.

So far, the reason behind maternal-fetal HR coupling

occurrence and its association with fetal development are

unknown. In addition, there is inconsistency in the literature

regarding the cause behind maternal-fetal HR coupling and the

physiological pathways that may affect it. Previously, it was

addressed that maternal-fetal HR coupling was affected by

respiration (Leeuwen et al., 2009), on the contrary, another

study by F. Marzbanrad et al. (2015) reported that respiration

was not related to coupling. Concerning the causal effect, P.

Leeuwen et al. (2009) mentioned that the cause behind coupling

is still unknown and it could be mediated by the fetal auditory

system. On the other hand, J. Dipietro et al. (2021) suggested that

coupling may occur due to a physiological process that mediates

both maternal and fetal HRs.

The previously mentioned studies adopted different

mathematical methods to quantify maternal-fetal HR coupling

or correlation, but none of them tried to look at maternal and fetal

RR interval tachograms (RRITs) after normalizing and plotting

them together in one figure to investigate the possibility of finding

similarities between both. Due to the high dynamicity of the heart,

normalizing RRITs calculated from long recordings (e.g., more

than 15-min) may make finding such similarities difficult,

especially if high fluctuations in RRITs were present within the

record. Therefore, choosing a proper window size to investigate the

presence of similarities between maternal and fetal RRITs

(bmfRRITs) is critical.

Due to the limited knowledge in the field, identification of

mechanisms that mediate maternal and fetal HRs is challenging.

Nevertheless, understanding the patterns in which they interact

can potentially assist in identifying the cause. In addition,

understanding the same patterns may potentially contribute to

the clinical diagnosis of fetal distress and pregnancy complications.

In this study, for the first time, we report the presence of

similarities bmfRRITs. RRITs were obtained from simultaneous

non-invasivemeasurements ofmaternal and fetal electrocardiogram

(ECG). The presence of similarities bmfRRITs. RRITs was

confirmed by normalizing maternal and fetal RRITs and plotting

them together in one figure. Occasionally, the same similarities were

obvious by looking at oscillations occurring slowly in RRITs. After

confirming the presence of similarities bmfRRITs., we opted for

obtaining mathematical measures for them by using cross-

correlation (CC) analysis. We hypothesized that the similarities

bmfRRITs could be linked to fetal development, therefore, we

performed a linear correlation analysis between our developed
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CC coefficients and GA. To get more insight into the physiological

pathways or factors involved in the similarity bmfRRITs, we

investigated the association of maternal and fetal HRV with GA

as well. Also, we used CC coefficients to divide data into two groups

to explore howmaternal and fetal HR andHRVmay change relative

to the similarities bmfRRITs.

Materials and methods

Data collection

The study described in this manuscript was approved by the

Tohoku University Institutional Review Board (Approval

number: 2021-1-133). A total of 406 outpatient or in-patient

pregnant women (GA: 19–40 weeks), who visited Tohoku

University Hospital, Japan, for antenatal checkups or

treatment of pregnancy-related illnesses, were recruited during

2009–2019 for different projects that were carried out at Tohoku

University. The women were recruited after getting their

informed consent. The 406 sample size reflects the number of

participants who were recruited from among all pregnant women

who visited the Tohoku University Hospital. Pregnant women

who were recruited were at least 20 years old and could read and

understand the written informed consent in Japanese.

Before recruiting the participants, an obstetrician confirmed

the schedule and location of the ECG measurements. Then a

subject who met the selection criteria, mentioned above, was

approached for recruitment after informing her about the

research details and ECG measurements. Demographic data of

the participants were collected such as age, height, and weight.

Information regarding maternal health and medication along

with fetal weight and health were recorded. Participants were

asked to remain in a supine position and 12 electrodes were

attached to their abdominal surface to obtain simultaneous

records of non-invasive maternal and fetal ECG. The

recordings lasted for 20-min, and the sampling frequency was

1 kHz. In this study, we analyzed data retrospectively.

Data selection and fetal ECG extraction

The exclusion criteria for this study entailed: 1) fetuses who

had records of medical complications when ECG data were

collected, and 2) subjects with missing information regarding

GA or fetal or maternal health. The total number of data that met

the exclusion criteria was 211, hence, around 195 data were

considered for analysis in this study.

Extraction of fECG from maternal ECG (mECG) was

conducted by using a MATLAB 2008b code. The code

extracts fECG based on blind source separation with reference

(BSSR) which is described in detail in (Sato et al., 2007). fECG

extraction was performed for at least 5-min per subject. No

particular procedures were followed to assess the quality of the

raw abdominal signals to select a 5-min segment for fECG

extraction. A signal’s quality was considered good if the

software was able to extract clear fECG signals. Clear fECG

signals made fetal R peak detection easy. A window size of at least

5-min was chosen mainly to accommodate for the very low

frequency (VLF) band (0.0033–0.04) Hz. Due to technical

limitations related to the quality of the raw abdominal signals,

it was difficult to perform analysis on more than 5-min lengths.

fECG extraction attempts were carried out in chronological

order. Hence, fECG extractions were done starting from the

beginning of the ECG records, if the software failed to extract

fECG from the selected segments, extractions of the next 5-min

segments were attempted. If the extraction was not successful in

any 5-min segment, the data were excluded. As a result of the

latter steps, fECG signals were extracted at the beginning, middle,

or end of the recording.

In the initial extraction attempts, the total number of 5-min

segments (1 segment per 1 subject) that were extracted from the

195 subjects was 172 (age: 22–45 years old (34 ± 5.3), GA:

19–40 weeks (30 ± 6.1). Extraction of fECG from the rest of

the 23 subjects was not possible due to noise (e.g maternal

myoelectric and environmental noise). After analysis of the

172 segments, an additional 5-min segments were extracted to

get more insights into the similarity bmfRRITs and its correlation

with HRV. Extraction of additional segments of 5-min was

possible in 158 cases (age: 22–44 years old (34 ± 5.3), GA:

19–40 weeks (30 ± 6.2)). With the second fECG extraction,

the total number of 5-min segments extracted per subject was

two in 158 subjects. The additionally extracted 5-min segments

did not overlap with the previously extracted segments.

Extraction of two segments of 5-min from all 172 subjects

was not possible due to noise in the data, also, around three

data sets had recordings of less than 10-min.

Around 44 pregnant women had no records of medical or

obstetric complications, however, the rest of the subjects had at

least one complication, more details are found in (Supplementary

Table S1). Also, the distribution of GA of the 172 subjects is

provided in (Supplementary Figure S1).

Similarity quantification with cross-
correlation analysis

RRI and HRV calculation

To investigate the presence of similarity bmfRRITs and

further investigate the similarity’s association with fetal

development, we calculated RRI and HRV. To obtain RRITs

from ECG, R peaks were detected by using the “findpeaks”

function in MATLAB 2020b and the code is described in

(Mathworks, 2022), detected R peaks were verified visually to

ensure that the code detected R peaks only, example of detected R

Frontiers in Physiology frontiersin.org03

Widatalla et al. 10.3389/fphys.2022.964755

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.964755


peaks is demonstrated in (Supplementary Figure S2). R peaks

were detected in maternal and fetal ECG signals which were

captured at 1 kHz. The “findpeaks” function detects peaks based

on a threshold value, here the threshold value was adjusted based

on the R peak amplitudes that varied among subjects. The

“findpeaks” provides the location of the detected peaks along

with their amplitudes. Following R peak detections, the time

difference between two successive R peaks was calculated to

obtain RRI signals or RRITs. By using RRI, maternal and fetal

HRV parameters were calculated.

Time and frequency-based HRV analysis was performed in

MATLAB. For HRV analysis, original non-resampled RRI data

was used and abnormal sinus RRI values were corrected manually

by replacing themwith preceding or subsequent RRI values. Time-

based HRV analysis entailed calculations of the average RRI,

standard deviation (SD) of normal RRI (SDNN), and SD of HR

(SDHR). Frequency-based analysis was done by using the Lomb-

Scargle periodogram with considering the following bands:

mECG: VLF: (0.0033–0.04) Hz, LF: (0.04–0.15) Hz, high

frequency (HF): (0.15–0.4) Hz.

fECG: VLF (0.0033–0.03)Hz, LF: (0.03–0.2) Hz, HF (0.2 - 2)Hz.

mECG bands were chosen based on previously defined bands

for human adults (Task Force of the European Society of

Cardiology the North American Society of Pacing

Electrophysiology, 1996). Since up until now there are no

well-defined bands for fECG, we used bands that were used

for infants (Chatow et al., 1995; Thu et al., 2019).

Similarity trend analysis

To check for the presence of similarity epochs bmfRRITs, the

values of RRI signals were normalized by using Eq. 1:

Normalized RRI � RRI −meanRRI

max(RRI −meanRRI) (1)

After normalization, maternal and fetal RRITs were plotted

together in one panel to visualize the similarities bmfRRITs.

Cross-correlation coefficient calculation

To obtain a similarity score or a mathematical measure of the

similarity bmfRRITs, we performed CC analysis in MATLAB

2020b. CC analysis measures the similarity between two signals

at different time lags, more details can be found in (xcorr, 2022).

Due to the difference in the range of maternal and fetal RRI values,

the number ofmaternal RRI samples per 5-min segment was lower

than that of the fetus. Hence, to unify the lengths of maternal and

fetal RRI signals per 5-min segment, we resampled both at 0.5 Hz.

Resampled RRI signals were calculated by taking the average of

RRI per 2 s. Resampling per 2 s (2000 samples) yields a signal with

150 samples for a 5-min signal (300,000 samples), 300,000
2000 � 150.

Example of a resampled signal is demonstrated in (Figure 1);

(Supplementary Figure S2) provides more information about

resampling. Resampled maternal and fetal RRI signals were

then normalized per subject by using Eq. 1.

After resampling and normalization, the resampled RRI

signals (with 150 samples) were divided into 15 segments to

calculate CC. CC coefficients were calculated per 10 samples by

using the “xcorr” function in MATLAB; CC values were

calculated with a zero-time lag. We opted for calculating CC

per 10 samples rather than the whole 150 samples to capture

transient changes in the similarity. CC analysis of the whole

resampled RRI signal (150 samples) may lead to an

underestimation of the similarity. Next, the overall similarity

per case (5-min segment) was estimated by taking the average of

the 15 coefficients. Here, we adopted four different methods to

estimate the overall similarity bmfRRITs. We used different

methods for CC coefficient calculations because, so far, it is

unknown what could be a good way to quantify similarity

bmfRRITs to get insights into fetal development. We

calculated our four CC coefficients as follows:

CC1: this coefficient was calculated by taking the absolute

average of the 15 coefficients (CC1 is not normalized).

FIGURE 1
Example of normalized and resampled maternal and fetal RR
interval tachograms (RRITs). (A) The figure shows an example of
maternal (blue) and fetal (orange) RRITs before resampling, the
amplitudes are normalized in this figure by using Eq. 1. (B) The
figure shows resampled RRITs, resampling was done by taking the
average of RRI per 2 s.
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CC1 provides a rough score for the similarity, the higher the

CC1 value is, the higher the degree of similarity bmfRRITs.

CC2: this coefficient was calculated by taking the non-

absolute average of the 15 coefficients (CC2 is not

normalized). CC2 quantifies the similarity bmfRRITs by

considering directionality (whether maternal and fetal RRIs

are changing in the same or opposite directions). Since CC2 is

a non-absolute mathematical average of 15 CC coefficients, the

sign of the CC2 value reflects the dominant similarity trend,

positive or negative, within a 5-min segment.

CC3: to calculate this coefficient, the “normalized” option of

the “xcorr” function was applied in MATLAB when the

15 coefficients were calculated. After that, the absolute average

of the 15 coefficients was calculated. The meaning of CC3 is

similar to that of CC1.

CC4: the 15 coefficients were calculated similarly to CC3 (with

the “normalized” option in MATLAB), then the non-absolute

average of the 15 coefficients was calculated. The meaning of

CC4 is similar to that of CC2.

A summary of CC1, CC2, CC3, and CC4 calculations is

provided in (Supplementary Figure S3). We performed a brief

comparison among our derived coefficients based on their

potential linkage to fetal development. The linkage was

assessed by performing a linear correlation analysis between

the CC coefficients and GA.

Data classifications based on CC1 and CC3

To get more physiological insight into the similarity

bmfRRITs, we made two groups by using the 2 extracted

segments of 5-min (from the 158 subjects) to compare their

HRV features. The comparison analysis was carried out twice. In

the first comparison, the data were classified based on the

FIGURE 2
Summary of data analysis. The flowchart provides a graphical summary of the steps that were followed to analyze the data. In Step 1, 5-min
extraction of fetal electrocardiogram (fECG) was successful in 172 out of 195 subjects. In step 2, additional extraction of 5-min segments was
successful in 158 out of the 172 subjects. Both in step 1 and step 2 cross-correlation (CC) and maternal and fetal heart rate variability (HRV) analyses
were performed for the extracted 5-min segments. In step 3, a comparison of means analysis was performed to compare between group 1 and
group 2 in terms of maternal and fetal HRV analysis. Group 2 has higher CC1 or CC3 values compared to group 1.
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CC1 coefficient (CC1-based classification (CC1BC)) and in the

second comparison, data were classified based on the

CC3 coefficient (CC3-based classification (CC3BC)). Group

2 had higher values of CC1 or CC3 compared to group 1.

The main purpose of this analysis is to see if there will be

significant differences in HRV between the two groups due to

the effect of CC1 or CC3 (Figure 2). shows a summary of data

extraction and CC classification.

Here, we based our classification on CC1 and CC3 only

because, mathematically, they provide a stronger measure for the

overall similarity bmfRRITs compared to CC2 and CC4. In

CC2 and CC4, similarity quantification by using CC analysis

might be underestimated due to the mathematical summation of

negative and positive numbers. Also, data classification based on

CC2 and CC4 was not done due to the complexity involved in the

classification and interpretation of the results (more details are

found in the discussion).

Statistical analysis

Normality tests were conducted in MALTAB 2020b by

using the One sample Kolmogorov-Smirnov test (kstest) and

the Shapiro-Wilk test (swtest) (BenSaïda, 2014). Kstest

revealed that all variables were non-normally distributed

regardless of group. On the other hand, swtest revealed

that some variables were normally distributed in both

groups (group 1 and group 2), and others were normally

distributed in one group only. Hence, we based our normality

tests on the kstest only.

FIGURE 3
Demonstration of positive and negative similarity trends between maternal and fetal RR interval tachograms (bmfRRITs). Figures (A–C) show
examples of positive similarity trends in which maternal (blue) and fetal (orange) RRITs change in the same direction. Figures D, E and F (D–F) show
examples of negative similarity trends in which maternal and fetal RRITs change in opposing directions. The upper panels in Figures (D–F) show the
original signals while the lower panels show the original fetal signal with the maternal signal inversed. (A) The record belongs to a mother who
had no records of medical complications, gestational age (GA): 20 weeks. (B) The record belongs to a mother with a record of uterine/appendix
disease, GA: 23 weeks. (C) The record belongs to a mother with amedical record of respiratory disease and uterine/appendix disease, GA: 20 weeks.
(D) The record belongs to a mother with a medical record of autoimmune disease, gestational age (GA): 39 weeks. (E) The record belongs to a
mother who had a blood disease, GA: 33 weeks. (F) The record belongs to a mother with no records of medical complications, GA: 2 weeks.
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Correlation analysis between two variables was performed by

using the spearman test.

Comparison of means was performed by using the

Friedman test.

Results

Demonstration of similarities between
maternal and fetal RRITs

We hypothesized that changes occurring in maternal and

fetal RRITs may share resemblances occasionally, hence, we

aimed at investigating the possibility of finding similarities

bmfRRITs. To achieve this, we collected RRITs signals from

maternal and fetal ECG. Then, maternal and fetal RRITs were

resampled, normalized, and plotted together (Figure 3).

Maternal and fetal RRITs were found to exhibit positive and

negative similarity trends. In a positive similarity trend (Figures

3A-C), maternal and fetal RRITs change in the same direction. In

(Figure 3A), it is noticeable that the LF and VLF oscillations

exhibited by fetal RRI (fRRI) are similar to that of the maternal

RRI (mRRI). In (Figure 3B), fetal and maternal RRI increased in

synchrony before the first minute, and then, they decreased but

with a time lag at around the second minute. Similarities

bmfRRITs were found to exhibit time lags as demonstrated in

(Figure 3C) over the period 2.7–4 min.

In negative similarity trends, maternal and fetal RRIs change

in opposing directions (Figures 3D–F). The upper panels in

(Figures 3D–F) show the original normalized RRITs and the

lower panels show the same but with the maternal signal

inversed. After inversing maternal RRITs, the similarities

bmfRRITs are clearer. In (Figure 3D), the increase in fRRI at

around the first minute was accompanied with a decrease in

mRRI but with a time lag, the latter is made clearer in the lower

panel after inversing the maternal signal. Another example of a

negative similarity trend is demonstrated in (Figure 3E). In

(Figure 3F), RRIs are changing in opposing directions over

the period 0–3.5 min, however, the trend changes to positive

afterward.

Similarities are related to fetal
development

We hypothesized that the similarities bmfRRITs that were

demonstrated in (Figure 3) could be associated with fetal

development. Hence, we opted for obtaining mathematical

measures for the similarity bmfRRITs by using CC analysis in

which we obtained four coefficients, CC1, CC2, CC3, and CC4.

The linear correlation between the four coefficients and GA was

calculated to investigate the association of similarity bmfRRITs

with fetal development. The results of this analysis are shown in

the upper rows of (Table 1) (the correlation coefficient with GA is

represented as r).

For further investigation, we calculated the linear

correlations between fHRV and GA and between maternal

(mHRV) and GA. The mean, SD, median, and ranges of HRV

parameters along with their correlations with GA are shown in

(Table 1). Graphical representations of the previously mentioned

linear correlation analyses, CC coefficients—GA, fHRV—GA

and mHRV—GA, are demonstrated in (Figure 4).

Among the four CC coefficients, CC1 was found to have the

highest significant correlation with GA where r = 0.40 [(Table 1)

and (Figure 4A)]. At advanced GA, it was revealed that the

negative similarity trend prevails, and this is indicated in

CC2 and CC4 with r values of −0.26 and −0.20, respectively

(Table 1) and (Figure 4A). The results of fHRV—GA correlation

analysis showed that there was a significant increase in the

associations of fetal HRV and RRI with GA, (Table 1) and

(Figure 4B). The mHRV - GA correlation analysis showed that

mHRV, VLF, SDHR, and SDNNwere significantly correlated with

GA (Table 1) and (Figure 4B). Also, LF was found to be

significantly correlated with GA but with a lower r value

compared to VLF, SDHR, and SDNN (Table 1) and (Figure 4B).

Data classifications based on CC1 and CC3

We aimed at investigating how HRV is associated with the

similarity bmfRRITs (or CC coefficients) to identify mechanisms

or physiological pathways that could be associated with the same

similarity. Hence, we extracted additional 5-min segments to

make two groups such that one group would have a higher

similarity score or a CC coefficient value compared to the other

group. As was mentioned in the methods section, we made two

groups based on CC1 (CC1BC) and CC3 (CC3BC) to compare

group 1 and group 2.

After classifying the data based on CC1 and CC3, the

correlation analysis in (Table 1) was repeated, CC1BC results

are shown in (Table 2). CC3BC provided similar results (see

(Supplementary Table S2). A comparison of group 1 and group

2 in the terms of the association of fHRV with GA revealed that

the r values were found to be higher in group 2 compared to

group 1 (Table 2). Also, comparison between group 1 and group

2 revealed that maternal LF was found to be non-significantly

related to GA in group 1 (Table 2).

We conducted comparison of means tests to compare group

1 with group 2 twice, one comparison was based on CC1BC and

the other was based on CC3BC, the results of the comparison are

shown in (Table 3) (CC1BC in (Table 3) shows the same CC and

HRV values as (Table 2). The results of the comparison between

group 1 and group 2 showed that there were no significant

differences in CC2 and CC4 (Table 3). Maternal VLF and SDNN

were found to be significantly higher in group 2 compared to

group 1 in both CC1BC and CC3BC (Table 3). SDNN is known
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to be significantly correlated with VLF (Shaffer and Ginsberg,

2017), hence, the significance observed in SDNN could be largely

attributed to VLF. Maternal SDHR was found to be significantly

higher in group 2 in the CC3BC.

With respect to fHRV, generally, there were less

significant differences between group 1 and group 2. In

CC3BC, fRRI was found to be significantly lower in group

2, whereas fetal SDNN and SDHR were found to be

significantly higher in group 2.

Discussion

We demonstrated the presence of similarities bmfRRITs. After

performing a linear correlation analysis between the four CC

coefficients and GA, the same similarities were found to be

associated with fetal development (Table 1) and (Figure 4A). We

showed that the similarities can be positive (Figures 3A–C), or

negative (Figures 3D–F), and they may occur with a time lag. We

speculate that the similarities bmfRRITs arise due to physiological

processes regulated by the placenta such as oxygen and nutrition

transfer. The presence of similarity bmfRRITs suggests that

coordination between the mother and her child should exist for

proper perfusion and exchange of blood supply through the

placenta. The placenta is known to grow with GA, hence,

regulations occurring within and affecting maternal and fetal

HRs are expected to grow as well due to an increase in blood

volume and fetal demand (Díaz et al., 2014). In our study, we found

that our measure of similarity bmfRRITs, the four CC coefficients,

increased in value with GA (Table 1) and (Figure 4A), also, we

found that negative similarity trends dominate at advanced GA.

Due to the limited knowledge in the field, it is difficult to

fully interpret the physiological differences between negative

and positive similarities and this needs further research, but

we believe that they could be related to fetal behavioral states

and the typical fetal development cycle. fHRV is known to

change with fetal behavioral states and the same states were

found to change throughout gestation (Nijhuis et al., 1982;

Pillai and James, 1990). Before 32 weeks of gestation, fetal

activity has been classified into two states only which are

activity and quiescency or resting (Pillai and James, 1990). In

contrast, after 32 weeks of gestation, fetal activity was

classified into four states which are: quiet sleep 1F, active

sleep 2F, quiet awake 3F, and active awake 4F. In addition to

fetal activity, negative and positive epochs could be related to

the typical development cycle of fetal ANS. At early GA

(<30 weeks), we expect the fetus to be more dependent on

the mother for fHRV entrainment and ANS development.

TABLE 1 Summary of maternal and fetal HRV, CC coefficients and their correlations with GA, n = 172.

Feature Correlation between CC coefficients and GA

Median (min – max) (Mean ± SD) r

CC1 0.58 (0.11–2.5) 0.63 ± 0.32 0.40†

CC2 −0.023 (−1.3–0.80) −0.09 ± 0.36 −0.26†

CC3 0.43 (0.21–0.71) 0.44 ± 0.10 0.19*

CC4 −0.012 (-0.53–0.49) −0.03 ± 0.18 −0.20†

Feature Correlation between HRV and GA

Maternal Features Fetal features

(mean ± SD) median (min-max) r (mean ± SD) median (min-max) r

RRI (ms) 760 ± 113 −0.03 412 ± 25 0.33†

742 (530–1,125) 409 (354–512)

SDNN (ms) 35 ± 14 0.35† 16 ± 6.9 0.56†

31 (13–87) 15 (4.0–36)

SDHR (bpm) 3.7 ± 1.4 0.39† 5.7 ± 2.5 0.49†

3.5 (1.5–8.9) 5.2 (1.6–14)

VLF (Ln) 6.2 ± 0.76 0.45† 4.5 ± 1.1 0.52†

6.2 (4.1–8.2) 4.6 (1.8–6.8)

LF (Ln) 5.1 ± 0.80 0.16* 4.3 ± 0.85 0.53†

5.1 (3.3–7.7) 4.4 (1.4–6.1)

HF (Ln) 4.7 ± 1.3 0.10 2.3 ± 0.81 0.53†

4.7 (1.1–7.8) 2.4 (-0.46–4.2)

*p < 0.05, †p < 0.005. Abbreviations: HRV, heart rate (HR) variability; GA, gestational age; CC, cross-correlation; RRI, RR interval; SD, standard deviation; SDNN, SD of normal RRI;

SDHR, SD of HR; bpm, beats per minute; VLF, very low frequency power; LF: low frequency power; HF, high frequency power; r, spearman correlation coefficient.
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With fetal growth, the fetal dependency on the mother is

expected to decrease and this may explain the increase in

negative similarity epochs at advanced GA.

Fetal RRI and HRV were found to increase with GA

(Table 1), and (Figure 4B), which indicates fetal development,

our results are consistent with previous studies (David et al.,

1985; Ohta et al., 1999; Laar et al., 2014; DiPietro et al., 2015;

Amorim-Costa et al., 2017). Our results regarding fetal LF and

HF are consistent with (David et al., 1985; Ohta et al., 1999) but

different from what was reported by H. Gonçalves, et al. (2018).

H. Gonçalves et al. (2018) showed that fetal LF and HF did not

change with GA and the difference between their results and ours

could be due to differences in the devices used for fHRV

assessment. Here, we calculated HRV out of ECG, hence our

HRV assessments were based on beat-by-beat calculations. On

the other hand, H. Gonçalves et al. (2018) calculated HRV based

on fHR measurements that were collected at a fixed rate of 4 Hz;

fHRs were rounded to a quarter of a beat.

Among the mHRV features, only the maternal VLF, SDHR,

and SDNN were found to increase significantly with GA

(Table 1)and (Figure 4C). An increase in VLF with GA in

pregnant women was also reported in previous studies

(Walther et al., 2005; May et al., 2016; Mizuno et al., 2017).

The increase in VLF with GA highlights its association with the

regulation that causes the similarity bmfRRITs and this is further

confirmed by the results in Table 3 in which it is shown that

maternal VLF values are significantly higher in group 2 in both

CC1BC and CC3CB. The physiological explanation of the VLF in

pregnant women received little attention in previous literature.

Also, in non-pregnant adults, VLF is considered less defined

compared to HF and LF (Shaffer et al., 2014). The power within

the VLF is believed to be associated with hormonal-related effects

since they changed due to angiotensin-converting enzyme (ACE)

inhibition (Akselrod et al., 1981; Taylor et al., 1998) and

thermoregulation (Fleisher et al., 1996; Nkurikiyeyezu et al.,

2017). Similarly, we expect that the maternal VLF during

pregnancy could be associated with hormones that are critical

for pregnancy-related regulations. As was mentioned before, the

regulations are likely to be connected to the placenta.

The placenta lacks autonomic or neuronal innervations,

hence, perfusion of blood through the umbilical cord is

believed to be regulated by placental hormones (Díaz et al.,

2014). Blood perfusion through the placenta and umbilical

cord depends on vascular resistance and pressure (Myatt,

1992), and we expect that the regulation that causes the

similarity plays a role in controlling them. The fact that

maternal and fetal HR patterns share similarities given their

separate ANS systems suggests the presence of mediating

hormones that control both ANS, but exact identification of

such hormones is elusive and more research is needed. We

believe the estrogen to be related to the similarity and

maternal VLF because estrogen is secreted by the placenta

and increases with pregnancy weeks and it peaks in the third

trimester (Robinsona and Kleina, 2013). The increase in estrogen

with GA is consistent with our results regarding the increase of

the CC coefficients and maternal VLF with GA [(Table 1),

FIGURE 4
Scatter plots for visualizing the correlations described in
Table 1. (A) Cross-correlation (CC) coefficients – gestational age
(GA). (B) Fetal features—GA. (C) Maternal features – GA. Thick
black lines indicate the best-fitting line. The dotted black lines
indicate the 95% confidence interval (CI). The sample size is 172. r
indicates Spearman correlation coefficients.
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(Figure 4A), and (Figure 4C)]. Moreover, estrogen was found to

play a critical role in the downregulation of ACE and

upregulation of ACE 2 (Gallagher et al., 1999; Ojeda et al.,

2007; Brosnihan et al., 2008), ACE 2 promotes vasodilation

whereas ACE promotes vasoconstriction (Dhaundiyal et al.,

2021). Previously, it has been reported that inhibition of ACE

increased VLF (Akselrod et al., 1981; Taylor et al., 1998), hence,

the increase in VLF in our study could be related to the increase

in estrogen, and upregulation and downregulation of ACE 2, and

ACE, respectively, but more investigation is needed to

confirm this.

The similarities bmfRRITs imply that abnormal changes

inflicted in the maternal cardiovascular system may eventually

be reflected in fHRV, therefore, studying them is potentially

critical for the assessments of fetal development, and pregnancy

and birth outcomes. Understanding the patterns associated with

the similarities may help uncover the causes behind some of the

cardiovascular diseases that are believed to be related to the

maternal uterine environment (Arima and Fukuoka, 2020). Also,

the presence of similarities bmfRRITs suggests the need for

developing clinical biomarkers based on both maternal and

fetal HRs. The importance of developing biomarkers that

depend on simultaneous records of maternal and fetal HR

was also highlighted previously by H. Gonçalves et al. (2016)

who performed a simultaneous analysis of maternal and fetal HR

to identify fetal acidemia during labor.

According to the results in (Table 2), it is implied that the

similarities may impact evaluations of fetal development based

on short-term fetal RRI and HRV as the r values between both

groups were different. Also, in (Table 3), there were differences in

fetal RRI, SDRR, and SDHR values between both groups in

CC3BC. Discrepancies between CC1 and CC3 in terms of

differentiating fHRV parameters and RRI were found

(Table 2), and this implies that different parameters are being

measured by them. However, such differences do not negate the

fact that similarities bmfRRITs impact fetal RRI and HRV. It is

worth mentioning that we could base our classification on

CC1 only because it had the highest correlation with GA with

r = 0.40 [(Table 1); (Figure 4A)], however, we performed data

classification based on CC3 as well since normalized CC

TABLE 2 Comparison between group 1 and group 2 in terms of HRV and CC association with GA, n = 158.

Feature Group 1 (low CC1) Group 2 (high CC1)

Correlation between CC coefficients and GA

Median
(min – max)

(Mean ±
SD)

r Median
(min – max)

(Mean ± SD) r

CC1 0.43 (0.11–1.3) 0.47 ± 0.22 0.44† 0.67 (0.19–2.8) 0.72 ± 0.36 0.41†

CC2 −0.042 (−0.86–0.81) −0.064 ± 0.24 −0.21† −0.035 (−1.8–1.2) −0.10 ± 0.43 −0.16*

CC3 0.40 (0.21–0.69) 0.41 ± 0.09 0.07 0.45 (0.22–0.71) 0.46 ± 0.09 0.17*

CC4 −0.045 (−0.45–0.34) −0.044 ± 0.15 −0.18† −0.012 (- 0.53–0.49) −0.021 ± 0.18 −0.13

Feature Correlation between HRV and GA

Maternal Features Fetal features Maternal Features Fetal features

(mean ± SD) median
(min—max)

r (mean ± SD) median
(min—max)

r (mean ± SD) median
(min—max)

r (mean ± SD) median
(min—max)

r

RRI (ms) 762 ± 116 −0.04 412 ± 26 0.38† 763 ± 115 −0.02 413 ± 24 0.40†

761 (758–1,125) 408 (351–512) 763 (751–1,107) 410 (353–510)

SDNN
(ms)

33 ± 13 0.24† 15 ± 6.7 0.36† 36 ± 17 0.29† 16 ± 7.3 0.55†

30 (10–87) 14 (4.5–35) 31 (13–120) 15 (4.0–45)

SDHR
(bpm)

3.5 ± 1.4 0.35† 5.5 ± 2.5 0.29† 3.7 ± 1.6 0.33† 5.7 ± 2.5 0.50†

3.2 (1.3–9.2) 5.0 (1.2–14) 3.5 (1.5–11) 5.3 (1.6–14)

VLF (Ln) 6.1 ± 0.81 0.36† 4.3 ± 1.2 0.30† 6.2 ± 0.80 0.34† 4.5 ± 1.1 0.52†

6.1 (3.9–7.9) 4.4 (0.86–6.6) 6.2 (4.1–8.6) 4.6 (2.3–7.2)

LF (Ln) 5.1 ± 0.80 0.09 4.3 ± 0.80 0.37† 5.1 ± 0.81 0.19* 4.3 ± 0.87 0.50†

5.2 (2.6–7.2) 4.4 (1.9–5.9) 5.1 (3.3–7.7) 4.3 (1.4–6.5)

HF (Ln) 4.8 ± 1.3 0.05 2.3 ± 0.77 0.49† 4.8 ± 1.3 0.10 2.2 ± 0.83 0.51†

4.8 (0–8.0) 2.3 (0.67–4.2) 4.7 (1.1–7.8) 2.3 (−0.46–3.9)

*p < 0.05, †p < 0.005. Abbreviations: HRV, heart rate (HR) variability; GA, gestational age; CC, cross-correlation; RRI, RR interval; SD, standard deviation; SDNN, SD of normal RRI;

SDHR, SD of HR; bpm, beats per minute; VLF, ery low frequency power; LF, low frequency power; HF, high frequency power; r, spearman correlation coefficient. (The table wasmade based

on CC1BC data set). Group1 has lower CC1 values compared to group 2, hence the “low CC1” and “high CC2” terms are added next to group 1 and group 2, respectively.
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coefficients are widely used in research compared to non-

normalized CC coefficients.

In our study, we avoided classifying our data based on

CC2 and CC4 due to the complexity involved in dividing the

data and interpreting the results. CC2 and CC4 measure

positive and negative similarity trends. In (Table 1);

(Figure 4A), positive and negative trends were found to

cluster before and after GA = 30 weeks, respectively.

Hence, classifying data based on positive and negative

trends is an indirect way of classifying data based on GA.

The latter may provide a false interpretation of the connection

of HRV with the similarity bmfRRITs. Also, a comparison

between positive and negative groups may lead to a

comparison between two subjects rather than two (5-min)

epochs of the same subject. In CC1BC and CC3BC, we are

comparing two 5-min segments that belong to the same

subject, therefore, we are negating the effect of GA and

other factors (e.g., maternal weight, age).

We used a 2-s window for CC analysis because we aimed

at using the lowest optimal window size to capture detailed beat-

by-beat variations induced simultaneously by fetal and

maternal HRV. The maximum average value of mRRI was

around 1,125 ms, hence we used a 2-s window to

accommodate for the mRRI. Our conclusions regarding the

increase in similarity bmfRRITs with GA (Table 1);

(Figure 4A), were based on 5-min segments, hence, analysis

of different time segments may provide different results.

Also, different results could be obtained if different

methods were used for similarity assessments. We collected

our data in a supine position which is known to reduce HR

(Watanabe et al., 2007; Li et al., 2019), hence it is unknown

how similarities along with their assessments may change

with body postures.

The retrospective design of the study constitutes the major

limitation. Our sample consisted of subjects of different ages

and pregnancy complications, which might have affected the

correlations to some extent. Also, fetal behavioral states

(Nijhuis et al., 1982; Gonçalves et al., 2007) and fetal gender

(Bernardes et al., 2008; Gonçalves et al., 2017) are known to

affect fHRV, therefore, they might have also affected the

correlations as well. Hence, further studies are needed to

study the effect of pregnancy complications, age, fetal

gender, or fetal behavior on the similarities bmfRRITs and

HRV. It is worth mentioning that we did not have further

information regarding fetal gender because the data were

anonymized for ethical purposes.

In conclusion, we discussed the presence of similarity

bmfRRITs. The same similarity, which was quantified by

TABLE 3 Comparison in medians between Group 1 and Group 2 (n = 158).

CC1BC CC3BC

Feature Group 1 median
(min—max)

Group 2 median
(min—max)

P—value Group 1 median
(min—max)

Group 2 median
(min—max)

P—value

CC1 0.43 (0.11–1.3) 0.67 (0.19–2.8) p < 0.01 0.47 (0.11–1.3) 0.58 (0.15–2.8) p < 0.01

CC2 −0.042 (- 0.86–0.81) −0.035 (-1.8–1.2) 0.87 - 0.032 (- 0.10–0.81) −0.086 (−1.8–1.2) 0.11

CC3 0.40 (0.21–0.69) 0.45 (0.22–0.71) p < 0.01 0.38 (0.21–0.65) 0.48 (0.27–0.71) p < 0.01

CC4 −0.045 (−0.45–0.34) −0.012 (−0.53–0.49) 1 −0.016 (−0.39–0.41) −0.030 (−0.52–0.49) 0.43

Maternal features

RRI (ms) 761 (758–1,125) 763 (751–1,107) 0.42 751 (537–1,125) 757 (530–1,107) 1

SDNN (ms) 30 (10–87) 31 (13–120) 0.026 30 (10–76) 33 (13–120) 0.039

SDHR (bpm) 3.2 (1.3–9.2) 3.5 (1.5–11) 0.17 3.2 (1.3–11) 3.6 (1.3–9.4) 0.031

HF (Ln) 4.8 (0–8.0) 4.7 (1.1–7.8) 0.13 4.7 (0–7.8) 4.7 (1.1–8.0) 0.81

LF (Ln) 5.2 (2.6–7.2) 5.1 (3.3–7.7) 0.17 5.0 (2.6–7.5) 5.1 (3.3–7.8) 0.69

VLF (Ln) 6.1 (3.9–7.9) 6.2 (4.1–8.6) 0.011 6.0 (3.9–8.0) 6.3 (4.1–8.6) 0.003

Fetal features

RRI (ms) 408 (351–512) 410 (353–510) 0.87 411 (358–512) 407 (351–510) 0.002

SDNN (ms) 14 (4.5–35) 15 (4.0–45) 0.20 14 (4.0–45) 15 (4.5–36) 0.034

SDHR (bpm) 5.0 (1.2–14) 5.3 (1.6–14) 0.94 5.0 (1.2–14) 5.3 (1.7–14) 0.002

HF (Ln) 2.3 (0.67–4.2) 2.3 (-0.46–3.9) 0.81 2.4 (-0.46–4.1) 2.2 (0.46–4.2) 0.81

LF (Ln) 4.4 (1.9–5.9) 4.3 (1.4–6.5) 0.87 4.3 (1.4–6.3) 4.4 (1.6–6.5) 0.52

VLF (Ln) 4.4 (0.86–6.6) 4.6 (2.3–7.2) 0.63 4.3 (0.86–7.2) 4.6 (1.8–6.8) 0.11

Abbreviations: CC, cross-correlation; CC1BC, CC1 based classification; CC3BC, CC3 based classification; SD, standard deviation; RRI, RR interval; SDNN, SD of normal RRI; SDHR, SD of

heart rate; VLF: very low frequency power; LF, low frequency power; HF, high frequency power.
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using CC analysis, was found to be associated with fetal

development. HRV analysis and data classification based on

CC coefficients showed that maternal VLF is potentially

associated with the similarity as well indicating that maternal

hormones could be a major regulator of the similarities

bmfRRITs.
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