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Problems with fatigue and sleep are highly prevalent in patients with chronic

diseases and often rated among the most disabling symptoms, impairing their

activities of daily living and the health-related quality of life (HRQoL). Currently,

they are evaluated primarily via Patient Reported Outcomes (PROs), which can

suffer from recall biases and have limited sensitivity to temporal variations.

Objective measurements from wearable sensors allow to reliably quantify

disease state, changes in the HRQoL, and evaluate therapeutic outcomes.

This work investigates the feasibility of capturing continuous physiological

signals from an electrocardiography-based wearable device for remote

monitoring of fatigue and sleep and quantifies the relationship of objective

digital measures to self-reported fatigue and sleep disturbances. 136 individuals

were followed for a total of 1,297 recording days in a longitudinal multi-site

study conducted in free-living settings and registered with the German Clinical

Trial Registry (DRKS00021693). Participants comprised healthy individuals (N =

39) and patients with neurodegenerative disorders (NDD, N = 31) and immune

mediated inflammatory diseases (IMID, N = 66). Objective physiological
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measures correlated with fatigue and sleep PROs, while demonstrating

reasonable signal quality. Furthermore, analysis of heart rate recovery

estimated during activities of daily living showed significant differences

between healthy and patient groups. This work underscores the promise

and sensitivity of novel digital measures from multimodal sensor time-series

to differentiate chronic patients from healthy individuals and monitor their

HRQoL. The presented work provides clinicians with realistic insights of

continuous at home patient monitoring and its practical value in quantitative

assessment of fatigue and sleep, an area of unmet need.

KEYWORDS

wearabe sensors, chronic disease, biomedical signal analysis, fatigue, sleep
disturbance, continuous monitoring, neurodegenerative diseases, immune-
mediated inflammatory disease

1 Introduction

Health-related quality of life (HRQoL) and ability to conduct

activities of daily living (ADL) are greatly impaired in patients

with chronic diseases, such as neurodegenerative disorders

(NDD) and immune mediated inflammatory diseases (IMID)

(Kluger et al., 2013; Zielinski et al., 2019). Fatigue and sleep

disturbances are known to be key factors predicting poor HRQoL

or reduced ADLs, and as such alleviation of these symptoms may

significantly improve patient’s health and quality of life (Center

for Disease Control and Prevention, 2000). Current evaluations

rely primarily on patient reported outcomes (PROs) which are

subjective and prone to recall biases and poorly capture

variability over time (Stone et al., 2002). Sensors, such as

wearable technology or standalone sensors using a wide range

of technologies, can perform continuous real-world monitoring

of patient health and thus offer the opportunity to provide digital

measures that are objective, potentially reliable and more

sensitive to change over time (Bangerter et al., 2020a; 2020b;

Luo et al., 2020).

Fatigue is defined as a multi-dimensional phenomenon in

which the biophysiological, cognitive, motivational and

emotional state of the body is affected resulting in significant

impairment of the individual’s ability to function in their normal

capacity (Davies et al., 2021). Specifically, in NDD and IMID

patients, such as those with Huntington’s Disease (HD),

Parkinson’s Disease (PD), Inflammatory Bowel Diseases

(IBD), Primary Sjögren’s Syndrome (PSS), Rheumatoid

Arthritis (RA), and Systemic Lupus Erythematosus (SLE),

fatigue and sleep disturbances are highly prevalent (Hewlett

et al., 2011; Lendrem et al., 2014; Siciliano et al., 2018;

Chavarría et al., 2019). Previous studies assessing fatigue

through digital measurement technologies are relatively sparse,

especially in chronic disease populations. Changes in physical

activity levels such as daily and bouted moderate to vigorous

physical activity (MVPA) minutes and no bouts of MVPA have

been found to be associated with fatigue in RA, SLE and Crohn’s

disease (Legge et al., 2017). Fatigue has also been shown to be

correlated with changes in the frequency spectrum of EEG signals

(Zhang et al., 2020). Individuals with chronic fatigue syndrome

were found to have lower heart rate variability (HRV) measures

such as standard deviation of the interbeat intervals of normal

sinus beats (SDNN), power spectrum densities of low frequency

(LF) and high frequency (HF) compared to controls, while total

HRV power within the frequency range of 0–0.4 Hz was shown

to be negatively associated with fatigue (Boissoneault et al., 2019;

Escorihuela et al., 2020).

Sleep disorders such as decreased sleep efficiency and

increased fragmentation are the second most frequent

complaint in PD (Stefani and Högl, 2019). In HD, sleep and

circadian rhythm alterations have been reported to correlate with

depression and cognitive impairment (Aziz et al., 2010). Sleep

disturbances, also common in RA, SLE, IBD, and PSS, have been

attributable to changes in circadian rhythms or disease

symptoms such as pain, discomfort, respiratory and

movement disorders sleep, with disruptions in sleep associated

with further worsening of disease symptoms (Swanson and

Burgess, 2017). Recording night ECG allows evaluation of the

fluctuation of the sympathetic and parasympathetic nervous

system functions, which physiologically happen during

sleep. The LF (frequency range 0.04–0.15 Hz) reflects both

sympathetic and vagal modulations, which decrease with the

depth of sleep. The HF (frequency range 0.15–0.4 Hz) is

associated with respiration and reflects the activity of the

parasympathetic nervous system, which increases in deep

sleep (Somers et al., 1993).

Digital measures that can objectively assess HRQoL-related

factors, such as sleep and fatigue will be invaluable for drug

development. Despite the advent of wearable sensors, there is

limited understanding of fatigue and sleep assessment using

objective measurements in these patient population, with

existing work primarily focusing on the relationship between

physical activity measured from accelerometers with fatigue

PROs. Even among healthy cohorts, only few recent studies

have utilized wearable sensors (Luo et al., 2020) such as

inertial measurement units and heart rate monitors to assess
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fatigue, majority with smaller sample size or under tightly

controlled experimental settings. Building on these challenges,

the IDEA-FAST project (https://idea-fast.eu/) aims to utilize

multiple sensing modalities and technologies at home to

identify digital endpoints of fatigue and sleep in the six NDD

and IMID populations–HD, PD, IBD, PSS, RA, and SLE.

In this paper, we present insights from a feasibility study of

IDEA-FAST (The IDEA-FAST project consortium, 2020) and

focus specifically on evaluating the promise of capturing digital

measures of fatigue and sleep from biophysiological signals

collected in patients and healthy groups at home from a

wearable ECG device. Specifically, signal quality and coverage

of digital measures were assessed and their agreement with sleep

and fatigue PROs were investigated. Furthermore, heart rate

recovery (HRR) periods were estimated, among patients and

healthy participants, as a metric to assess physiological fitness

which could potentially be impacted by fatigue. Post-exercise

heart rate recovery reflects the interplay between the sympathetic

and parasympathetics parts of the autonomic nervous system

(Qiu et al., 2017). It is an important predictor of all-cause

mortality and related to fatal cardiovascular events (Qiu et al.,

2017). Decrease in HRR is shown to be associated with physical

fatigue (Lamberts et al., 2009; Djaoui et al., 2017) and has been

typically measured in controlled laboratory settings. Here we

explored if HRR quantified from free-living environments can

distinguish between NDD, IMID and healthy groups and those

with varying levels of fatigue.

2 Materials and methods

The presented data was obtained as a part of the IDEA-FAST

project (The IDEA-FAST project consortium, 2020; Chen et al.,

2022). Nine different candidate technologies measuring different

modalities (activity trackers, ECG-sensors, sleep trackers) were

explored in a feasibility study aiming to assess fatigue and sleep

disorders. Additionally, the participants’ social activity, cognitive

skills, and PROs were captured with smartphone applications.

This paper focuses on the continuously measured physiological

signals collected from the ECG-based VitalPatch sensor and the

concurrently collected PROs. The digital measures from

VitalPatch included heart rate (HR), R-to-R interval,

respiratory rate (RR), skin temperature (skin T), number of

steps, and posture. The first three are mainly derived from the

ECG measurement and are the main focus of this study.

2.1 Ethical approvals

Ethical approval was first granted by the Ethical Committee

of the Medical Faculty of Kiel University (D491/20) in June

2020 and then by the Research Ethics Committees of all other

study sites: Newcastle upon Tyne Hospitals National Health

Service (NHS) Foundation Trust/Newcastle University in

August 2020, Erasmus University Medical Centre in

Rotterdam in November 2020, and George-Huntington-

Institute in Münster in September 2020. The study was

registered with the German Clinical Trial Registry

(DRKS00021693) and was conducted according to the

principles of the Declaration of Helsinki (version of 2013).

2.2 Study participants

Potential participants were identified during routine

clinical visits at the hospitals and through public outreach

at information events or support groups. After providing

information about the study and obtaining informed

consent, the participants were screened for eligibility.

Inclusion criteria required age over 18 years, consent to

participate in the study for up to 60 days and according to

the study protocol, use of a smartphone in the past 3 months,

and ability to follow written and oral instructions in the local

language, to walk, sit, and stand independently and to socialize

and communicate. Another inclusion criterion was a score of

over 15 points in the Montreal Cognitive Assessment

(MoCA), which was used to evaluate cognitive abilities

(Nasreddine et al., 2005). Participants were excluded if they

had certain comorbidities like major sleep disorders, chronic

fatigue syndrome, respiratory, cardiovascular or metabolic

disorders or physical traumas with hospitalization in the

past 3 months, diagnosis of cancer in the past 3 years,

major psychiatric disorders, suicidal attempt in the past

5 years or suicidal ideation in the past 6 months, substance

or ethanol abuse or severe visual impairment.

The study was conducted at four different sites: Rotterdam

(E), Kiel (K), Muenster (G), and Newcastle (N). The study start

date was between July 2020 (Kiel) and November 2020

(Rotterdam), depending on the date of ethical approval of the

study site. The last visit of the final participant took place in

December 2021. The participants were either healthy or suffered

from one of six diseases, which we have divided into two groups:

NDDs including HD and PD, and IMIDs including IBD, PSS,

RA, and SLE. Thus, the study inspects three participant

categories: 1) the healthy participants, 2) the NDD patients,

and 3) the IMID patients.

2.3 Study design

Participants were enrolled in the study for up to 60 days.

Demographic information was collected during a baseline visit

conducted at the study center or at the participant’s home.

Subsequently, the participants were provided with a detailed

explanation of the devices and the applications. In addition, they

received informational materials and telephone support by the
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study team. Optional home visits were conducted to further

ensure accurate use of the devices.

Over a period of five consecutive days, participants wore the

VitalPatch biosensor in their home environment and were

instructed to carry out their usual daily activities. This

constituted one technology use period that was followed by at

least two rest days, after which a new technology use period could

be started. Participants were able to opt for a prolonged resting

period. The study cycle, illustrated in Figure 1, was repeated up to

four times per participant. During the technology use period,

participants were asked to report their perceptions of fatigue and

sleep quality four times daily in an e-diary using the VTT Stress

Monitor Application (SMA) (Vildjiounaite et al., 2018).

2.4 Measurement setup

VitalPatch is a wireless wearable patch sensor designed for

remote patient monitoring (Areia et al., 2021). The fully

disposable 12-cm patch adheres to the skin and is worn on

the left chest. It contains a zinc-air battery that lasts up to 7 days.

Once the measurement is started, it continues whenever the

device is in skin contact, until the battery runs out. After one

patch sensor is disposed, the measurement can be continued with

a new patch. VitalPatch has CE certification as a Class IIa medical

device and FDA clearance.

The VitalPatch biosensor incorporates a single-lead ECG, a

tri-axial accelerometer, and a thermistor. It records ECG at

125 Hz sampling frequency, with derived heart rate, R-to-R

interval, and respiratory rate (partly derived from the

accelerometer) sampled at 0.25 Hz. The accelerometer is used

for step counting and posture detection at 1 Hz. The thermistor

collects skin temperature at 0.25 Hz. The recorded data is

encrypted and transferred with a latency in the order of

seconds via a wireless connection to a cloud-based patient

monitoring platform. If the connection is interrupted, the

device can store up to 10 h of data until the connection is re-

established.

2.5 Patient reported outcomes

PROs were collected using the VTT Stress Monitor

Application (SMA), an Android smartphone application that

provides a user interface for questionnaires (Vildjiounaite et al.,

2018). PROs were collected four times a day (at 9:00, 13:00, 17:00,

and 21:00 local time). The response could be submitted within

3 hours of the prompted question, except in the evening as those

responses were set due at 23:30. To promote compliance, the

application prompted a new notification again every 15 min if the

user had opened the application but did not submit the

responses, and the application had gone out of active view.

Throughout the day, the participants were requested to

respond to a total of 14 different PROs, as detailed in Table 1.

All Likert items had seven options from low (zero) to high (six).

An example of the Likert item interface is presented in Figure 1.

2.6 Data pre-processing

The HR, R-to-R interval, RR, and skin T data were pre-

processed in two steps. First, timestamps were sorted, and

duplicates removed. Second, the data were cleaned from 1)

invalid values (unsuccessfully measured) predefined by the

manufacturer, 2) physiologically unrealistic values, and 3)

contextual outliers. Such values were removed and considered

FIGURE 1
The study cycle. Participants went through a baseline visit at the beginning of the study, followed by four technology use periods (the circle)
when they were instructed to use different sensors and report certain outcomes with a mobile phone application (example screenshot on the right).
This study focuses on the participants using the depicted wearable device, VitalPatch (two alternative wear locations depicted).
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gaps in the data, except for cases 2–3 for R-to-R interval, which

were replaced using linear interpolation to improve heart rate

variability (HRV) analysis (detailed below). The first pre-

processing step along with the removal of invalid values were

also applied to the number of steps and posture.

To exclude any physiologically unrealistic values, a range of

acceptable values was defined for each feature independently.

The selected limits are presented in Table 2. The limits for HR

and R-to-R interval are adopted from previous studies (Tanaka

et al., 2001; Zhai et al., 2020). The range for respiratory rate, on

the other hand, was defined broadly, including abnormal hypo-

and hyperventilation scenarios, such as exercise (Cretikos et al.,

2008; Gutierrez et al., 2016; Nicolò et al., 2017, 2020). Finally,

skin temperature is presumed to obtain lower values as compared

to core body temperature but is allowed a range that can capture

abnormal physiological states (Martinez-Nicolas et al., 2015;

Rajbhandary and Nallathambi, 2020). Restricting the range is

expected to exclude notably exceptional measurement

conditions, even though the thermal sensor itself has been

reported to work accurately across a wider range (Selvaraj

et al., 2018).

Contextual outliers were removed to reduce unlikely

variation within short time periods. Using a sliding

window, the value at the centre of the window was

inspected: if it was not within a predefined range of the

window mean, it was considered a contextual outlier

(Karlsson et al., 2012). The ranges were 30% for all features

except for RR; threshold for respiration rate was 50%. As

respiration can be controlled at will, it is more prone to larger

variations. The size of the sliding window was 1 min for HR

and R-to-R interval, 3 min for RR, and 5 min for skin T.

Patient reported outcomes did not require pre-processing,

apart from the sleep times: they were collected with a 24-h clock

user interface, which was discovered prone to 12-h shifts in the

user input, especially when reporting late hours (12–24).

Bedtimes that exceeded the waking up or occurred

considerably late with respect to the wake-up time, were

considered as input errors and shifted by 12 h.

TABLE 1 Patient reported outcomes collected with the VTT Stress Monitor Application.

Questionnaire time

Patient reported
outcome

Type Morning (9–12) Early after-noon
(13–16)

Late after-noon
(17–20)

Evening (21–23:30)

Physical fatigue Likert item X X X X

Mental fatigue Likert item X X X X

Anxiousness Likert item X X X X

Depression Likert item X X X X

Pain Likert item X X X X

I went to bed at Clock X

I woke up Clock X

How was your sleep? Likert item X

Time to fall asleep Drop-down menu X

Time awake during night Drop-down menu X

Sleepiness, current feeling Drop-down menu X X X

My activities of the day, physically Likert item X

My activities of the day, mentally Likert item X

Other comments Free text X

TABLE 2 Accepted range for each physiological feature. The selected ranges were validated visually and by comparing them against the 1st and 99th
percentiles of the collected data.

Heart rate (bpm) R-to-R interval (ms) Respiratory rate (bpm) Skin temperature (°C)

Minimum 30 300 4 28

Maximum 200 2000 60 40
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2.7 Data quality assessment

The quality of the digital measures was assessed via the extent

of pre-processing necessary [corresponding to items (1), (2), (3)

as described in Section 2.6], and the data coverage after pre-

processing. For HR, RR and skin T, coverage was calculated

based on the expected number of samples. Coverage of R-to-R

interval was estimated via the sum of recorded R-to-R interval

values divided by the duration of the actual measurement period.

Data quality was first evaluated on participant-level and then

averaged over cohorts or participant groups. The participant-

level coverage was computed as the mean of midnight-to-

midnight coverage values.

Additionally, PRO coverage during VitalPatch wear periods

was evaluated for each PRO as compared to the expected number

of responses. PRO coverage was also evaluated midnight-to-

midnight for each participant and then averaged over participant

subgroups.

2.8 Feature aggregates

The features were segmented into time windows of interest

(see Section 2.9) and aggregated into statistical descriptors, to

summarize the physiological feature time series into single

values, which could be compared to the corresponding PROs.

TABLE 3 Heart rate and heart rate variability features.

Abbreviation Domain Description

NN mean Time Mean of normal-to-normal peak intervals (NN)

NN CV Time Coefficient of variation of NN

NN SD Time Standard deviation of NN

NN median Time Median of NN

NN range Time Difference between maximum and minimum of NN

RMSSD Time Root mean square of consecutive differences in adjacent NN

CVSD Time Coefficient of variation of consecutive differences in adjacent NN

SDSD Time Standard deviation of consecutive differences in adjacent NN

NN50 Time Number of interval differences greater than 50 ms

NN20 Time Number of interval differences greater than 20 ms

pNN50 Time Percentage of interval differences greater than 50 ms

pNN20 Time Percentage of interval differences greater than 20 ms

HRV HR mean Time Heart rate mean

HRV HR SD Time Heart rate standard deviation

HRV HR min Time Heart rate minimum

HRV HR max Time Heart rate maximum

VLF Frequency Power spectral density in very low frequencies (0.003–0.04 Hz)

LF Frequency Power spectral density in low frequencies (0.04–0.15 Hz)

HF Frequency Power spectral density in high frequencies (0.15–0.40 Hz)

Total power Frequency Total power spectral density; sum of VLF, LF, and HF

LF/HF Frequency The ratio of LF and HF

LFnu Frequency LF normalized to the sum of LF and HF

HFnu Frequency HF normalized to the sum of LF and HF

Triangular index Geometrical Number of all NN divided by the maximum of the NN density distribution

CSI Non-linear Cardiac sympathetic index

mCSI Non-linear Modified cardiac sympathetic index

CVI Non-linear Cardiac vagal index

SD1 Non-linear Poincaré plot, SD1

SD2 Non-linear Poincaré plot, SD2

SD2/SD1 Non-linear SD2 to SD1 ratio
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The selected statistical aggregations were the mean, standard

deviation (SD), minimum, and maximum.

Additionally, HRV parameters were computed from the R-to-R

interval data over each full window. Furthermore, the feature

coverage within each window was computed for reliability

evaluation. For HRV analysis, the R-to-R interval data was

further cleaned to achieve normal-to-normal (NN) intervals by

replacing ectopic peaks using linear interpolation (Peltola, 2012).

This was performed via the Malik method: intervals deviating more

than 20% from the previous interval were replaced (Malik et al.,

1996). Both time and frequency domain HRV features were

computed, as well as geometric and non-linear features (Malik

et al., 1996; Champseix, 2021). The included HRV features are

described in Table 3. Details of these widely-used HRV parameters

and their implications in health and performance can be found in

existing literature (Shaffer and Ginsberg, 2017).

2.9 Time windows of interest

The feature aggregates were computed over 2-h windows

preceding the time at which a PRO response was obtained. Thus,

the aggregation represents the participants’ physiological features

leading to the questionnaire response.

To estimate physiological measures during rest, major rest

periods were identified for each participant, using step count and

posture information available fromVitalPatch. As a proxy for major

rest periods, the L5metric was calculated which corresponded to the

least active 5-h (L5) periods in the day (Witting et al., 1990). A

maximum of 100 steps was allowed and a minimum of 80% laying

down was used as a threshold. The starting times of the 5 h long

resting windows were located at 1 min resolution, and the best

option among overlapping consecutive windows was selected by

maximizing the laying down percentage.

2.10 Feature normalization

Physiological parameters are affected by the subject’s age and

sex (and physical fitness) and the inter-individual differences can

be significant (Voss et al., 2015; Garavaglia et al., 2021).

Therefore, the 2-h feature aggregates were normalized on a

subject-by-subject basis to alleviate the differences. Previous

studies have normalized HRV features by adjusting the feature

according to feature baseline and range, adjusted with the 5th and

95th percentiles to account for outlier effects (Wijsman et al.,

2011; Xiao et al., 2013; Altini et al., 2014; Altini and Kinnunen,

2021). In this study, the features are normalized relative to the

L5 aggregates, according to

xnorm � x − µL5
σL5

,

where x is a feature aggregate (over a 2h window of interest),

xnorm is the normalized feature aggregate, µL5 is the mean feature

value and σL5 its standard deviation obtained as the mean and SD

(a) from the nearest previous L5 window, or (b) averaged over all

subject specific L5 windows. In approach (a), the specific instance

of x was excluded if no previous L5 window existed.

Normalization was applied to all physiological feature

aggregates (excluding the feature coverage).

2.11 Feature association with patient
reported outcomes

The association between the above-described 2-h feature

aggregates and the PROs were studied through repeated

measures correlation, to account for intra-individual

dependencies in the data (Bakdash and Marusich, 2017).

Significance level α was set to 0.05. Feature aggregates

TABLE 4 Demographics of study participants using VitalPatch.

Cohort
group

Cohort Sites N Female Male Years
since
diagnosis,
mean
(SD)

Years
since
diagnosis

Age,
mean
(SD)

Age
range

BMI,
mean
(SD)

Healthy Healthy All 39 20 19 — — 47.3 (16.3) 21–77 26.3 (4.9)

NDD HD G, K 13 7 6 4.8 (2.7)a 0–8a 44.2 (9.6) 30–60 26.3 (7.1)b

PD K 18 7 11 7.8 (5.9) 1–18a 62.3 (11.0) 37–80 24.3 (2.4)

IMID IBD E 18 9 9 12.9 (10.8) 1–35 36.7 (11.3) 22–55 24.7 (3.4)

PSS N 18 16 2 11.6 (5.4) 4–27 62.6 (13.1) 37–82 21.9 (10.3)

RA K, N 14 11 3 14.1 (9.4) 3–35 64.6 (12.2) 39–79 29.5 (7.9)

SLE K, N 16 16 0 16.7 (9.9)a 4–34a 48.3 (13.1) 31–80 23.1 (10.5)

Total 7 cohorts 4 sites 136 86 (63.2%) 50 (36.8%) 11.2 (8.4) 0–35 51.6 (16.1) 21–82 25.2 (7.0)

aFour HD, patients, one PD, patient, and nine SLE, patients with unknown years since diagnosis.
bFour HD, patients with unknown BMI.
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demonstrating lower than 70% coverage over the window of

interest were excluded from the association analysis. Moreover,

only participants with at least three pairs of PROs and feature

aggregates were included. Repeated measures correlation values

close to one indicate linear correlation between the two

compared measures.

2.12 Heart rate recovery

Heart rate recovery (HRR) was defined as the maximum

difference in the HR signal provided by the VitalPatch sensor

that was observed during a 1 min resting period after a 6-min

walk, similarly to a six-minute walking test (Roberts et al.,

2006; Bellet et al., 2012). Because the measurements were

conducted in free-living settings, applicable sequences were

retrospectively detected from the clean (non-aggregated)

sensor data. The walking periods were identified via the

“walking” posture, as classified by the wearable sensor. A

walk was required to last at least 6 min, but no upper limit

was applied. Small pauses in walking and changes of posture

lasting up to 3 s were ignored (Del Din et al., 2016). However,

a minimum average cadence of 60 steps/min was required

(Sokas et al., 2021). For the 1-min resting periods, we required

100% heart rate coverage and zero taken steps. In case of

multiple applicable sequences, the highest HRR for a

participant was selected as the representative value.

2.13 Statistical analysis

One-way and two-sided Analysis of Covariance (ANCOVA)

was used to assess whether the HRR differs significantly among

the three participant groups (healthy, NDD, and IMID). The

significance level α was again 0.05. Age and gender were taken as

covariates and the effect size was evaluated using partial η2 (eta
squared). Pairwise differences between the groups were analysed

in post hoc tests performed with Tukey’s method, which adjusts

the p-values for multiple comparisons.

All presented boxplots depict the median as the horizontal

line within the box, the interquartile range (IQR) via the box

limits, and 1.5 times the IQR through the whiskers (points

falling outside this range are displayed individually as

outliers).

3 Results

3.1 Participant number and demographics

Continuous physiological monitoring of VitalPatch was

conducted on 136 participants, 101 of which responded to

PROs collected during the patch measurement period.

Participants recorded VitalPatch data on 1–21 days, summing

up to a total of 1,297 days. Table 4 describes the demographics in

each cohort. The patients were diagnosed on average 11.2 years

before participation (SD 8.4, ranging from less than a year to

35 years, excluding 14 unknown time of diagnosis). All disease

cohorts, excluding HD, included at least one participant unable

to work (14 in total), while other participants worked full- or

part-time, or were retired. Some IBD participants even worked

several part-time jobs. While most participants were Caucasian,

four participants were of Asian ethnicity and belonged to IMID

group. One participant was African American and belonged to

the healthy group.

A flow diagram illustrating different stages of analyses and

their participant sample size is shown in Figure 2. A subset of

91 participants were applicable for the analysis of association

FIGURE 2
Participant flow diagram. The number of participants (N) in total and included in different analyses, presented with the inclusion criteria (black-
bordered box).
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between the digital measures and PROs. The concurrent

measurements of digital measures and PRO data totalled

632 days, varying between 1 and 12 days per participant, and

included 15 NDD patients (6 HD, 9 PD), 46 IMID patients

(12 IBD, 13 PSS, 10 RA, 11 SLE), and 30 healthy controls.

All VitalPatch data were scanned for sequences applicable for

heart rate recovery analysis. In total, 73 participants were

included in the HRR analysis, comprising 19 NDD patients

(9 HD, 10 PD), 33 IMID patients (11 IBD, 8 PSS, 8 RA,

6 SLE), and 21 healthy participants.

3.2 Data quality

In all VitalPatch data measured throughout the study, 2.3%

of skin temperature data were range outliers, while only

contextual outliers were identified for HR and RR (0.2% and

0.1%, respectively). For R-to-R intervals, less than 0.5% were

outliers (0.1% invalid, 0.3% range and 0.1% contextual outliers).

After outlier processing, the average daily coverage rates were

71.6% (16.3% SD) for HR, 71.7% (16.3% SD) for R-to-R interval,

70.9% (16.9% SD) for RR, and 65.5% (25.3% SD) for skin T.

Moreover, the median daily coverage was 77% for skin T and

about 78% for all other features. Hence, the sensor was typically

worn for most of the day.

FIGURE 3
Average daily coverage of the cleaned digital measures across participants, presented by cohort.

TABLE 5 Mean (with 95% confidence interval) feature coverage (%) in the 2-h windows preceding PRO responses, presented by participant
group. Confidence intervals are based on the empirical rule (2*SD).

Heart rate R-to-R interval Respiratory rate Skin temperature

Healthy 99.3 [91.6, 100] 99.4 [91.7, 100] 98.9 [87.0, 100] 89.0 [27.7, 100]

NDD 99.4 [93.7, 100] 99.6 [94.0, 100] 99.4 [93.3, 100] 99.6 [94.1, 100]

IMID 99.3 [93.3, 100] 99.5 [93.7, 100] 98.9 [86.7, 100] 92.3 [40.6, 100]

Total 99.3 [92.8, 100] 99.5 [93.1, 100] 99.0 [87.6, 100] 92.5 [41.3, 100]

FIGURE 4
Coverage (%) of PROs per participant group (left) and
questionnaire timing (right).
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Figure 3 illustrates the obtained coverage for each digital

measure in each study cohort. While the smaller cohort groups

(HD, RA) exhibit higher variation, the medians are comparable

across cohorts. Notably, 11 participants stand out with zero

coverage for skin T. However, further inspection revealed that

these participants were recruited at the Newcastle site. The

outliers could potentially indicate a need for improved device

usage instructions at one site.

Table 5 presents the coverage of digital measures in the

selected 2-h windows, analysed for association with PROs. Only

skin temperature, which failed for 11 participants (including

healthy, PSS, RA, and SLE participants), shows notable coverage

differences across participant groups. Themedian coverage in the

2-h windows was 100% for all measures (10% percentile was

95.9% for skin temperature and above 99% for all other

measures).

The coverage of PROs corresponding to the 2-h feature

aggregates, analysed for association with digital measures,

are presented in Figure 4. The analysis focuses on Likert item

or drop-down menu PROs with overall coverage

beyond 70%.

Figure 5 presents SD captured in the PRO responses. The

median number of distinct responses received from a participant

was 2 for the activity and sleep detail questions, 3 for the fatigue

questions, and 4 for the sleepiness question. The PRO response

distributions were similar from participant group to another.

Because the drop-down menu PROs (time to fall asleep and time

awake during night) exhibit low variability, they are excluded

from further analyses.

Self-reported sleep times were obtained for 244 nights

concurrent with the VitalPatch data, allowing a comparison

between reported sleep times and the extracted L5 periods.

Overall, 68.4% of the L5 periods were entirely within the

reported sleep time (82.0% started and 86.5% ended within the

reported sleep time), and 86.9% were within a 30-min

threshold of the reported sleep time (92.6% started and

94.3% ended within the reported sleep time). All

L5 windows overlapped with the reported sleep times to

some degree: in the case of least overlap, the L5 window

started 3 h and 19 min before the reported sleep time. We

note that the comparison only covers 54.6% of the total

447 extracted L5 periods.

3.3 L5 features in participant groups

The mean resting time (L5) physiological measures for HR,

RR, R-to-R interval, and skin T are compared across participant

groups in Figure 6 (top). The average L5 mean HR observed for

healthy participants was lower than that of either of the disease

groups, and similarly mean R-to-R interval was higher.

Additionally, a larger variety of L5 mean skin T was observed

for the healthy group.

Selected L5 HRV parameters are similarly presented in

Figure 6 (bottom). The frequency-domain features (LFnu,

HFnu, and VLF) show some variations in the value

distributions across groups. In accordance with the above-

mentioned mean R-to-R interval distributions, pNN50 shows

most R-to-R intervals exceeding 50 ms in the healthy group.

3.4 Feature aggregate association with
PROs

The association analysis between the 2-h aggregated features

and the PROs comprised a total of 1,646 (476 for healthy, 253 for

NDD, and 917 for IMID group) comparable instances collected

from 91 participants. The analysis revealed statistically

significant correlations between PROs and several feature

aggregates. Figure 7 depicts the correlation r values for each

participant group when the feature aggregates were normalized

using the L5 participant-mean parameters. The corresponding

p-values, degrees of freedom, and 95% confidence intervals are

presented in Supplementary Figures S1–S3, respectively. For the

healthy and IMID patients, the most pronounced correlations are

close to ± 0.3, most of them for sleepiness PRO. NDD group

shows most of the statistically significant correlations with sleep

quality (|r| = 0.31–0.37).

Figure 8 displays the correlation r to 2-h feature aggregates

(see Supplementary Figures S4–S6 for the p-values, degrees of

freedom, and 95% confidence intervals, respectively) normalized

using the most recent previous L5 window parameters. It

includes 1,319 (410, 209, and 700 for the healthy, NDD, and

IMID group, respectively) PRO responses coupled with feature

aggregates from a total of 84 participants. This is less than above

because a normalization window with the set requirements was

not always available. In this case, digital measure coverage shows

significant correlation with mental daily activities. For the NDD

group, the significant correlations are more spread over PROs. In

the IMID group, features correlating with daily activity levels

emerge.

FIGURE 5
The SD of responses across participant groups. Here, the
PROs correspond to the feature aggregates normalized with the
participant-mean L5 window parameters.
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3.5 Heart rate recovery

The full 1,297 days of VitalPatch data were scanned for

sequences applicable for heart rate recovery analysis. A total of

274 applicable HRR resting periods were identified, covering

73 distinct participants, as detailed in Table 6. Each

participant (among the 73) had 1–16 applicable periods

(3.8 on average). HRR by participant group is presented in

Figure 9, with the total walk durations of the accepted walks.

Only one representative HRR value (the highest) is depicted

for each participant.

ANCOVA showed a significant difference with an F statistic

of 5.68 (p < 0.006) in HRR between participant groups while

adjusting for age and gender. The partial η2 implied a small effect,

with 14% of the variance explained by the group (and 10% by age

while the effect of gender was not significant). Post hoc analysis

indicated that the healthy group differs significantly from both

the NDD (T 3.95, p = 0.001) and IMID (T 2.51, p < 0.038) groups.

Among the 73 participants included in the HRR analysis,

65 had reported PROs during the full study period (3 participants

among healthy and NDD patients and 2 among IMID patients

had no response). The mean score for physical fatigue was 2.00 in

healthy, 2.33 among NDD patients, and 2.39 in IMID patients.

HRR’s relation to fatigue is explored further in the

Supplementary Material S1 (see Supplementary Figures S7,

S8). Significant HRR differences between high and low fatigue

groups were observed only within the healthy participants.

4 Discussion

Fatigue and sleep disturbances reduce the quality of life and

the activities of daily living. Digital measures collected with

wearable devices could improve the objectivity and sensitivity

of fatigue and sleep assessment, ultimately providing additional

support for disease assessment and evaluation of new therapies.

Wearable technologies could facilitate continuous monitoring

outside the clinical setting without requiring active interaction

from the patient. Moreover, digital measures in free-living

settings may enable assessment that is more meaningful to the

patient’s daily living. However, their potential for fatigue

assessment have not been extensively studied, especially in the

clinical context.

The results presented in this study suggest the feasibility of

collecting reasonable quality physiological measures with a

wearable biosensor on patients with chronic NDD and IMID

diseases, as well as healthy controls. The median coverage was

77%–78% for all digital measures, with minimal variability across

different cohorts. The coverage result implies high compliance to

using the wearable biosensor. In contrast, only 91 among the

FIGURE 6
The participants’ average L5 parameter, presented by participant group, for (top) the mean signal values and (bottom) selected frequency
domain HRV features. The figure covers 31 healthy participants, and 21 NDD and 49 IMID patients.
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136 participants reported PROs at least three times during the

study. Furthermore, in all the collected VitalPatch data, less than

0.5% of HR, RR, and R-to-R interval data and only 2.3% of skin

temperature data needed to be cleaned out, indicating a sufficient

data quality given the criteria used in this study.

To evaluate the association between the digital physiological

measures and fatigue and sleep, we presented results of repeated

measures correlation. We selected to evaluate the association

between features aggregated over a 2-h window prior to a self-

evaluation instance. Thus, the results represent the relationship

between the 2-h physiological measures and the PRO at any time

of the day. In the morning, the 2-h window may overlap with

sleep. To account for the natural person-to-person variability in

the digital measures, we further normalized the aggregated

features with respect to the participant’s average parameters at

rest, representing their typical resting state. The L5 windows

representing rest were identified utilizing the activity measures

available from the same wearable sensor. The L5 periods were

reasonably aligned with the self-reported sleep times. While no

major differences were observed in the participant-mean

FIGURE 7
Repeated measures correlation r values between the 2-h feature aggregates and the corresponding PROs. Here, the 2-h feature aggregates
have been normalized with the participant-mean L5 parameters. Statistically significant correlation results (p-value<0.05) are emphasized with black
borders, other r values have faded annotation.
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FIGURE 8
Repeated measures correlation r values between the 2-h feature aggregates and the corresponding PROs. Here, the 2-h feature aggregates
have been normalized with the participants’ latest L5 window parameters. That is, as compared to Figure 7, the normalization parameters are not
averaged over the full study periods. Statistically significant correlation results (p-value<0.05) are emphasized with black borders, other r values have
faded annotation.

TABLE 6Number of participants and sequences applicable for HRR analysis, and themedian duration of walks leading to the inspected resting period.

Group Cohort N Sequences
for HRR analysis

Median
walk duration (min)

Healthy Healthy 21 91 9

NDD HD 9 21 9

PD 10 27 8

IMID IBD 11 32 11

PSS 8 45 11

RA 8 36 9

SLE 6 22 8

Total 7 cohorts 73 274 9
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L5 parameters themselves across participant groups, some

expected variations appeared. For instance, we observed lower

mean HR and higher R-to-R intervals for the healthy, which is

consistent with the presumption that increased fatigue is

associated with reduced HRV (Escorihuela et al., 2020).

Interestingly, the NDD group showed higher skin

temperatures than others, with less variation, too. Although

the group is small, this observation is in line with study by

Eggenberger et al. (2021) where they found that cognitively

healthy adults have lower skin temperatures than those with

mild cognitive impairment. It is noted that the skin temperature

may be affected by ambient temperatures.

The statistically significant correlations between the 2-h

feature aggregates and the PROs varied from participant

group to another. For NDD patients, most of the significant

correlations associated with sleep quality. For the IMID patients,

most correlations were found for sleepiness, whereas a reasonable

number of correlations were also identified for both physical and

mental fatigue. The same is true for the healthy participants,

although there is some variance in the specific digital measures

that correlate with the PROs.

We also proposed an alternative method for feature

normalization, which uses the latest L5 parameters instead of

the averaged ones. Using this method revealed correlations for

physical and mental fatigue also in the NDD patient group. In the

IMID group, significant correlations with the physical activities

of the day emerged. This normalization approach may be better

able to account for shifts in the daily baseline.

Inspecting the individual feature aggregates in Figures 7, 8

further imply the relevance of the digital measures. HR is

relevantly associated with sleepiness, both in the healthy

group and IMID patients. Interestingly, this association is not

seen in the NDD group, suggesting that neurodegeneration

breaks this association, e.g., by affecting the central autonomic

nuclei and/or pathways. Significant associations between skin T

and the dependent variables in the healthy and the IMID

patients, but not in NDD patients in Figure 7, suggest a

similar mechanism. These observations may be related to the

circadian rhythm abnormalities in NDD patients reported in

previous studies (Hood and Amir, 2017). The LF/HF ratio, which

in controlled settings reflects the ratio between sympathetic

nervous system and parasympathetic nervous system activity,

was associated with daytime symptoms in the healthy, but not in

the NDD and IMID patients, suggesting an affection of this

balance in NDD and IMID in the daytime. It is also noteworthy

that in NDD most of the significant results occur between the

dependent variables and sleep quality, and in IMID between

dependent variables and (daytime) sleepiness, which speaks for

different mechanisms of vegetative control between the different

types of diseases. Conversely, it is also interesting to observe that

sleepiness and mental/physical fatigue obviously represent

different concepts and mechanisms, since the distribution of

the significances for the respective variables is very different. A

detailed analysis of the clinical relevance of the findings is,

however, out of the scope of this work and will be left for

future research. The clinical implications of free-living heart

rate variability details may require further examination

(Hayano and Yuda, 2019, Hayano and Yuda, 2021). Since

wearable devices often utilize a lower sampling frequency to

reduce power consumption and prolong the battery life, careful

consideration on the sampling rate should be made during

experiment planning. Although prior work has demonstrated

reliability and clinical utility of heart rate variability measures

quantified from a sampling frequency of 125 Hz (Ellis et al., 2015;

Nallathambi et al., 2020; Hirten et al., 2021; Lee et al., 2022), very

low variability in R-to-R interval, such as those observed in heart

failure patients, may require higher sampling frequencies for

sufficient temporal resolution (Kuusela, 2013).

We note that most of the correlations are modest, and a

larger group especially of NDD patients is required to validate the

presented findings. More advanced features beyond the 2-h

statistical aggregators and classical HRV features should be

studied in the future to capture more complicated temporal

patterns. Additionally, although repeated measure correlation

was selected to account for participant-to-participant differences

in PRO reporting, the subjectivity and limited sensitivity of the

PROs could limit the possibilities to detect associations.

The PRO-association analysis was complemented by an

explorative analysis of 1-min HRR during rest, after periods

of sustained activity. We discovered that the NDD and IMID

patients showed significantly (p = 0.001 and p = 0.0378,

respectively) lower HRR values as compared to the healthy

controls. This finding is consistent with previous research

indicating deteriorated HRR in the HD, PD, IBD, RA, and

SLE cohorts as compared to healthy controls after an exercise

FIGURE 9
Heart rate recovery (left) in the three participant groups,
including one representative value for 21 healthy participants,
18 NDD (9 HD, 10 PD), and 33 IMID patients (11 IBD, 8 PSS, 8 RA,
6 SLE). The adjusted p-values from post hoc analysis with
Tukey’s method indicate the significance of the differences. The
total duration of each accepted walk leading to a 1-min resting
period is presented on the right.
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test either on a treadmill or on a cycle ergometer (Dogdu et al.,

2010; Sarli et al., 2016; Bienias et al., 2017; Pecąnha et al., 2018;

Roberson et al., 2018; Steventon et al., 2018). The presented result

suggests that the difference may also be observed in the context of

daily walking activities using wearable technology in free living

participants. While the 6-min walk test in controlled settings has

been previously established as a valid test beside the more intense

treadmill exercise, our results suggest that useful information can

also be extracted from at-home continuous physiological

measurements (Roberts et al., 2006). On the other hand, NDD

are associated with disruption to blood flow, hypertension, and

reduction in cerebral blood flow (Youwakim and Girouard,

2021). These factors may contribute to the variation in the

HRR results in comparison to the healthy participants. For

SLE, HRR deterioration has been suggested to associate with

disease severity (Bienias et al., 2017). More research is required to

assess the connection of HRR monitored by wearables to disease

severity in the NDD and IMID patients.

The study did not show any significant association between

HRR and fatigue in the patient groups, although on average the

NDD and IMID patients reported higher fatigue than the healthy

participants. However, the participant group correlated

significantly to HRR and may act as a confounder whose

effect dominates over that of fatigue. In the healthy group, in

contrast, a significant difference in HRR was observed between

high and low fatigue groups. Furthermore, because of the

subjective differences in self-assessment of fatigue, the

association between HRR in free-living settings and fatigue

should be studied with repeated measures on a subject level,

in a study covering a longer study period. A notably longer study

period could also enable more advanced analysis, like evaluating

the sensitivity of HRR to within-subject changes in fatigue.

Given the multifactorial nature of fatigue, future work will

combine physiological measures studied here with multiple

sensing modalities. For instance, acceleration signals could be

utilized to investigate physiological responses in the context of

specific activities, or physiological measures could be combined

with the observed sleep stages to further investigate connections

with sleep. The IDEA-FAST consortium intends to validate

findings of this pilot study using multiple sensing modalities

in a larger cohort of patient and healthy participants (N = 2000)

and over a longer study period. The large-scale nature of this

future study will enable further investigation on the sensitivity of

HRR and other digital measures to changes in fatigue and sleep.
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