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Lipid metabolism disorders are the primary causes for the occurrence and

progression of various liver diseases, including non-alcoholic fatty liver disease

(NAFLD) and alcoholic fatty liver disease (AFLD) caused by a high-fat diet and

ethanol. AMPK signaling pathway plays an important role in ameliorating lipid

metabolism disorders. Progressive research has clarified that AMPK signal axes

are involved in the prevention and reduction of liver injury. Upregulation of AMK

can alleviate FLD in mice induced by alcohol or insulin resistance, type

2 diabetes, and obesity, and most natural AMPK agonists can regulate lipid

metabolism, inflammation, and oxidative stress in hepatocytes, consequently

regulating FLD in mice. In NAFLD and AFLD, increasing the activity of AMPK can

inhibit the synthesis of fatty acids and cholesterol by down-regulating the

expression of adipogenesis gene (FAS, SREBP-1c, ACC and HMGCR);

Simultaneously, by increasing the expression of fatty acid oxidation and lipid

decomposition genes (CPT1, PGC1, and HSL, ATGL) involved in fatty acid

oxidation and lipid decomposition, the body’s natural lipid balance can be

maintained. At present, some AMPK activators are thought to be beneficial

during therapeutic treatment. Therefore, activation of AMPK signaling pathway

is a potential therapeutic target for disorders of the liver. We summarized the

most recent research on the role of the AMPK pathway in FLD in this review.

Simultaneously, we performed a detailed description of each signaling axis of

the AMPK pathway, as well as a discussion of its mechanism of action and

therapeutic significance.
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Introduction

The liver, as the body’s largest digestive gland, performs essential functions such as

secreting bile, regulating lipid metabolism, storing glycogen, and decomposing sugar

(Zhou et al., 2022). In addition, the liver is also considered to be the master regulator of

lipid homeostasis, responsible for coordinating fatty acid uptake, synthesis and oxidative

decomposition, lipid export and redistribution. To maintain liver lipid homeostasis, these

processes are complex regulated by hormones, nuclear receptors and transcription factors

under physiological conditions. Unfortunately, if the balance of lipid metabolism in the
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liver was disturbed, it would lead to abnormal accumulation of

lipid, and even induce oxidative stress, which would damage the

liver and further encourage the incidence and development of

FLD (Carotti et al., 2020). Fat accumulation is a key cause of

induction of multitude liver diseases, including non-alcoholic

fatty liver disease (NAFLD) and alcoholic fatty liver disease

(AFLD) caused by a high-fat diet and ethanol consumption

(Zhou et al., 2017; Carotti et al., 2020). It will further lead to

liver fibrosis, cirrhosis, and even primary liver cancer.

Lipid metabolism in adipose tissue of that body is regulated

by several transcription factors, and the fat storage in the body

depend on fat synthesis and catabolism, which are accomplished

through the interaction between endogenous genes and external

regulatory factors (Nielsen et al., 2014). When there is a lack of

energy in the body, lipolysis is accelerated, which mainly releases

FFA and glycerol into the blood through β-oxidation in

mitochondria, and then enters other tissues through extensive

circulation (Herzig and Shaw 2018). AMP-activated protein

kinase (AMPK) is involved in multiple aspects of anti-lipid

metabolism in cells and organisms, including oxidative

decomposition of fatty acids and triglycerides, synthesis of

fatty acids and triglycerides, to regulate cell metabolism and

promote cell proliferation, and it is critical in the pathological

mechanism of various FLD (Meng et al., 2019; Sharma et al.,

2021) Figure 1. In addition, AMPK is an evolutionarily conserved

serine/threonine protein kinase that is ubiquitous in eukaryotic

cells, acting not only a sensor of cellular energy stress, but also a

core hub for maintaining cellular energy homeostasis (Zhou

et al., 2017; Gu et al., 2019). It is considered to be an

important metabolic “master switch” that regulates the target

kinases of lipid metabolism such as acetyl-CoA carboxylase

(ACC) through phosphorylation (Ponnusamy et al., 2020).

Recent studies have shown that AMPK exerted its ability to

regulate lipid metabolism by enhancing fatty acid oxidation and

autophagy, while inhibiting the production of cholesterol and

fatty acids (Gu et al., 2018; Herzig and Shaw 2018). Previous

study has explored the mechanism of L-theanine regulating lipid

metabolism in SD rats via activating the AMPK signaling

pathway (Lin et al., 2020). The results of their research

showed that L-Theanine inhibited lipid synthesis by activating

either LKB1-AMPK-SREBP-1c-FAS or LKB1-AMPK-SREBP-

1c-ACC1 pathways Figure 1. The detection of related

biochemical indicators showed that l-theanine could activate

AMPK through LKB1, and significantly downregulate the

expression levels of ACC phosphorylation and Sterol

regulatory element-binding protein 1c (SREBP-1c). At the

same time, l-theanine also significantly down-regulated the

expression of FAS and HMGCR at the mRNA and protein

FIGURE 1
Regulation of AMPK on lipid metabolism in FLD. In the case of non-alcoholic fatty liver disease caused by insulin resistance, type 2 diabetes,
obesity, high-fat diet and alcoholic fatty liver disease caused by alcohol, the related proteins in AMPK signaling pathway will be inhibited or promoted,
resulting in increased lipid accumulation and decreased fatty acid oxidation. This was reversed when AMPK was treated with AMPK agonists. AMPK,
AMP-activated protein kinase; AICAR, 5-aminoimidazole-4-carboxamide ribonucleotide; LKB1, Liver kinase B1; the auxiliary subunit STRAD,
STE20 related adaptor protein, and MO25, Mouse protein 25; Sirt1, Silent mating type information regulation two homolog1; CPT1, carnitine
acyltransferase one; PGC-1α, peroxisome proliferator-activated receptor γ co-activator -1α; ACC, acetyl-CoA carboxylase; SREBP-1c, Sterol
regulatory element-binding protein 1c; FAS, fatty acid synthase; TSC2; mTORC1, mammalian target of rapamycin1; ULK1, unc51 like kinase one;
HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase; HSL, Hormone-Sensitive triglyceride lipase; Nrf2/HO-1, nuclear factor erythroid 2-related
factor 2/heme oxygenase-1.
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levels. Additionally, detecting the phosphorylation levels of

ACC1/2 and HMGCR, they found that the synthesis of lipids

and cholesterol was inhibited, implying that AMPK was also

involved in the LKB1-AMPK-ACC1 and LKB1-AMPK-HMGCR

pathways to inhibit lipid and cholesterol synthesis. Thus, AMPK

pathway may be a promising treatment option for FLD because it

can maintain a steady state of lipid metabolism in response to

various forms of stress. We review the most recent research on

the role of the AMPK pathway in FLD. Furthermore, we also

provided a detailed description of each signaling axis of the

AMPK pathway, as well as a discussion of its mechanism of

action and therapeutic significance.

The structure of AMP-activated
protein kinase and its effect on lipid
metabolism

AMPK is a heterotrimeric complex composed of three

subunits: a 63 KDaα subunit, a 38 KDaβ subunit and a

38 KDaγ subunit, where α is the catalytic subunit and β and γ

are the regulatory subunits (Willows et al., 2017). The α subunit is

made up of three domains from N-terminal to C-terminal,

including a kinase domain, a self-inhibitory domain (AID)

that can decrease AMPK activity at low levels of AMP and a

carboxy-terminal domain (α-CTD) (Liang et al., 2017). Studies

have shown that AMPK activity can be activated by

phosphorylation of the Thr172 site of AMPKα subunit

through upstream kinases (liver kinase B1 (LKB1) and

CAMKKβ) and pharmacological activators (metformin, 5-

aminoimidazole-4-carboxamide ribonucleotide (AICAR)) (Gai

et al., 2020). In addition, AMPK activity was considerably

impacted by variations in the intracellular AMP/ATP ratio.

When AMP/ATP levels rose, AMPK was activated, inhibiting

fat synthesis and promoting fatty acid oxidation (Hardie 2016;

Ponnusamy et al., 2020). In mammals, these three subunits

contain 7 subtypes, namely α1/α2, β1/β2, γ1/γ2/γ3 (Ross

et al., 2016). Subunits α1, α2, γ1, and γ2 are mainly expressed

in liver tissue (Liang et al., 2017). AMPK, as a significant

metabolic regulatory component, can reflect the stress state of

cells when the body is under oxidative stress and energy

deficiency, and subsequently control the target proteins via

phosphorylation, influencing lipid metabolism (Hardie 2015).

Previous studies have confirmed that after AMPK was activated,

it could regulate cell lipid metabolism by phosphorylating a series

of metabolic proteins that affect fatty acid, cholesterol synthesis

and fatty acid oxidation. For instance, AMPK inhibited the

activity of 3-hydroxy-3-methylglutaryl-CoA reductase

(HMGR) through phosphorylation, which plays a key role in

regulating cholesterol synthesis (Loh et al., 2019) Figure 1. At the

same time, AMPK can also phosphorylate HSL to increase its

activity, thereby promoting the hydrolysis of fatty acylglycerol

and cholesterol lipids (Kim et al., 2016) Figure 1. In addition,

some researchers discovered that the following were the primary

ways through which AMPK reduces liver fat accumulation

(Smith et al., 2016; Li et al., 2019) Figure 1:1) Activated

AMPK can phosphorylate ACC and inactivate it, preventing

ACC dimerization and, as a result, reducing fatty acid synthesis;

2) Malonyl-CoA is not only a precursor of fatty acid synthesis,

but also a potent inhibitor of carnitine acyltransferase1 (CPT1).

AMPK phosphorylates ACC to inactivate it, reducing malonyl-

CoA synthesis, which promotes the expression of CPT1, and thus

increases fatty acid oxidation. In conclusion, AMPK can

phosphorylate the expression of downstream key target

proteins, reduce lipid accumulation, promote fatty acid

oxidation, and inhibit the synthesis of cholesterol and fatty

acids. As a result, the AMPK pathway may be a promising

treatment option for FLD.

The role of AMP-activated protein
kinase-mediated signal axes in fatty
liver

Sirt1-liver kinase B1-AMP-activated
protein kinase axis

As a tumor suppressor kinase, LKB1, also known as serine/

threonine protein kinase 1, is widely distributed in a variety of

embryonic and adult tissues. Through two mechanisms of

phosphorylation and cellular localization, it participates in the

signal regulation of intracellular fat differentiation and

generation (Xu et al., 2020; Zhang et al., 2021). LKB1 is

mainly located in the nucleus, but its functional performance

is mainly triggered by the cytoplasmic parts, which plays an

important role in the control and regulation of cell energy

metabolism and apoptosis (Zuo et al., 2020). A member of the

AMPKK family, LKB1 facilitates the movement of LKB1 from

the nucleus to the cytoplasm by acting as an upstream kinase of

AMPK, phosphorylating and activating AMPK (Zuo et al., 2020).

Additionally, this activation is constitutive and can form a

heterotrimer to phosphorylate and activate AMPK regardless

of the intracellular AMP/ATP ratio by joining with the auxiliary

subunits STRAD and MO25 (Ross et al., 2016; Herzig and Shaw

2018) Figure 1. Its downstream Silent information regulator 1

(sirt1) protein, peroxisome-proliferator-activated receptor co-

activator-1α (PGC-1α), and a few transcription factors are

then activated, helping to control the body’s lipid metabolism

by preventing lipid synthesis, promoting fatty acid oxidation, and

ultimately reducing lipid accumulation, which inhibits energy-

intensive processes (Zeqiraj et al., 2009; Sharma et al., 2021).

Sirt1, a member of the Sirtuins family, is a class III histone

deacetylase dependent on nicotinamide adenine dinucleotide

(NAD+) (Yue et al., 2016). Its activity is regulated by NAD+/

NADH, mainly distributed in the nucleus and widely expressed

in a variety of mammalian tissues, and participates in the
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regulation of cell survival and material metabolism through

deacetylation of substrates (Tian et al., 2019). However, the

biosynthesis of NAD+ decreases with increasing age, resulting

in a decline in Sirt1 activity (Ramsey et al., 2008). Interestingly,

Kim et al. (2015) demonstrated that raising AMPK expression

could enhance sirt1 expression. Cantó et al. (2009) found that

AMPK was located upstream of Sirt1 and could increase

Sirt1 activity by increasing the intracellular AMP/ATP ratio,

particularly the level of NAD+/NADH (Long et al., 2019).

Sirt1 promoted the translocation of LKB1 into the cytoplasm

by deacetylating the upstream kinase LKB1 of AMPK, and then

increased the phosphorylation and activity of AMPK to regulate

lipid metabolism (Lan et al., 2008).

Lipidmetabolism is co-regulated by the interaction of various

factors such as fatty acid synthase FAS, rate-limiting enzyme

ACC for de novo fatty acid synthesis, CPT1 for fatty acid

oxidation, and transcriptional regulator SREBP-1c, etc. The

LKB1-AMPK-sirt1 signaling axis can regulate hepatic lipid

metabolism and reduce fat accumulation through one or more

of the above factors Figure 1. Previous studies have shown that

when the intracellular AMP/ATP ratio increased, LKB1 could

promote the phosphorylation of AMPK, which in turn activated

sirt1, and ultimately led to deacetylation of downstream target

genes, such as PGC-1α, to inhibit the activities of lipid synthesis

genes ACC and FAS (Chau et al., 2010; Tian et al., 2019).

Meanwhile, in order to regulate lipid metabolism and keep

the body functioning normally, activated LKB1 could block

the expression and transcription of the adipogenesis gene

SREBP-1c and stimulate the expression and transcription of

the fatty acid-oxidizing gene CPT1 (Gu et al., 2019). As a

result, by controlling lipid metabolism, the LKB1-AMPK-

Sirt1 signaling axis could prevent FLD. Additionally, AMPK

may be developed as a novel therapeutic target, offering a

potential FLD treatment option.

AMP-activated protein kinase-ACC-
carnitine acyltransferase1 axis

It is well known that fatty acid oxidation, which includes

mitochondrial and peroxisome β-oxidation, and microsomal ω-
oxidation, is crucial for energy production and the recycling of

the carbon skeleton, with mitochondrial β-oxidation being

primarily responsible for the oxidation of short, medium, and

long chain fatty acids (Adeva-Andany et al., 2019). Under the

catalysis of relevant enzymes, fatty acids are transferred from the

cytoplasm to the mitochondrial matrix and decomposed into

acetyl-CoA, which is further completely oxidized by a series of

biochemical reactions such as tricarboxylic acid cycle. However,

since medium and long-chain fatty acids cannot freely

transmembrane into the mitochondria, they need to be

completed by CPT1 on the mitochondrial membrane, so the

activity of CPT1 is directly related to the oxidation efficiency of

fatty acids (Ribas and Vargas 2022). In contrast, the rate-limiting

enzyme ACC for de novo fatty acid synthesis is mainly

responsible for catalyzing the formation of malonyl-CoA from

acetyl-CoA, and then using malonyl-CoA as a substrate to

synthesize fatty acids (Bence and Birnbaum 2021). Malonyl-

CoA is both a precursor of fatty acid synthesis and an allosteric

inhibitor of CPT1. In liver cells, AMPK activated can inactivate

ACC by phosphorylating it, thereby reducing the synthesis of

malonyl-CoA, enhancing the expression of CPT1, and finally

reducing fatty acid synthesis and increasing fatty acid oxidation

(Tian et al., 2019). García-Villafranca et al. (2008) investigated

whether AMPK played a role in the development of ethanol-

induced fatty liver. Their results found that chronic ethanol

exposure reduced the expression and activity of AMPK and

CPT1 in hepatocytes, which was effectively reversed by

treatment with the AMPK agonist AICAR. Additionally, in

NAFLD, Sharma et al., (2021) also found that Berbamine

could activate AMPK in rat liver cells, which then

phosphorylates ACC to inactivate it and reduce the generation

of fat in liver. Therefore, activation of AMPK may inhibit ACC,

reduce malonyl-CoA synthesis, increase CPT1 activity, thereby

promoting the oxidation of fatty acids. It is also worth noting that

acetyl-CoA, formed by the oxidation of mitochondrial fatty acids,

also plays an important role in the production of ketones, which

the brain uses primarily as an energy substrate when glucose is

scarce (Ribas and Vargas 2022).

AMP-activated protein kinase-SREBP-1c-
lipin-1 axis

The Sterol regulatory element binding protein family

(SREBPs), which includes SREBP-1a, SREBP-1c, and SREBP-

2, was originally discovered as a transcription factor that

transcribed the expression of genes related to fatty acid, TG,

and cholesterol metabolism, and is now recognized as the

primary regulatory mechanism of intracellular lipid content

change (Brown and Goldstein 1997; Bertolio et al., 2019).

SREBP-1a and SREBP-1c are two similar proteins that are

transcribed by different promoters and encoded by a single

gene, with difference only in the N-terminal region (Xu et al.,

2013). SREBP-2 is a metabolic gene that activates cholesterol and

a member of the liver cholesterol metabolism transcription

factor, whereas SREBP-1c is largely expressed in liver tissue

and is in charge of controlling the expression of genes

associated to fatty acid production (Hampton 2002). SREBP-

1c is synthesized on the endoplasmic reticulum and induced, and

then transferred to the Golgi apparatus for processing, forming

an active mature form. Subsequently, SREBP-1c enters the

nucleus and activates adipogenesis genes, participating in the

regulation of downstream fatty acid synthesis rate-binding

enzyme ACC and fatty acid oxidation rate-binding

enzyme CPT1, resulting in liver lipid metabolism disorder
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(Osna et al., 2017; Ge et al., 2020). One of the three subtypes of

the lipin family (lipin-1/2/3), lipidin-1 is a bifunctional protein

with both enzymatic and transcriptional regulatory capabilities

that regulates intracellular lipid metabolism (Fan et al., 2018). As

aMg2+-dependent phosphatidic acid phosphohydrolase (PAP) in

the cytoplasm, Lipin-1 mainly catalyzes the conversion of

phosphatidic acid to diglycerides on the endoplasmic

reticulum membrane, followed by the synthesis of triglycerides

and phospholipids (Carman 2019; Reue and Wang 2019). When

lipin-1 is transferred to the nucleus, lipin-1 acts as a transcription

coactivator affecting the activity of metabolic transcription

factors such as Peroxisome proliferator-activated receptor α

(PPARα) and peroxisome proliferator-activated receptor

coactivator 1-alpha (PGC-1α) (Finck et al., 2006; Wang et al.,

2021). Their interaction promotes that oxidation of fatty acids

and inhibit the activity of SREBP-1 to reduce the synthesis of

fatty acids. Notably, when lipin-1 acts as a transcription

coactivator, its activity does not appear to require PAP

function, but it does require a hydrophobic moxa (LXXIL)

downstream of the active site of PAP to mediate the

interaction between Lipin-1 and the transcription factor

(Finck et al., 2006). Lipin-1 is further divided into two protein

subtypes in liver tissue, lipin-1α and lipin-1β. Lipin-1α is

primarily distributed in the nucleus of hepatocytes and

promotes the expression of fatty acid oxidation genes, whereas

lipin-1β is primarily distributed in the cytoplasm and promotes

the expression of fatty acid synthesis genes (Hu et al., 2013; Chen

et al., 2019b). Chen et al. investigated whether

dihydroartemisinin alleviated AFLD by regulating lipin-1

signaling pathway (Chen et al., 2019b). They discovered that

long-term ethanol exposure significantly increased the

proportion of Lipin1β/α in mouse livers and increased fatty

acid synthesis. However, after treatment with

dihydroartemisinin and rapamycin, the ratio of Lipin1β/α was

significantly reduced. It can be seen that the Lipin1β/α ratio in

liver tissue has a direct effect on the stability of liver lipid

metabolism.

The AMPK-SREBP-1c axis has been implicated in the

regulation of ethanol-induced lipid metabolism disorders,

according to research. When AMPK is activated, it can

prevent SREBP-1c protein expression from increasing in

alcohol-induced acute and chronic hepatic steatosis, restore

ACC phosphorylation, and reduce the activity and expression

of adipogenesis gene (Li et al., 2018). In addition, AMPK-SREBP-

1c axis has been confirmed to play an important role in the

upstream of lipin-1 protein and regulate the expression of lipin-1

gene in AFLD. Hu et al. (2012) overexpressed AMPK protein in

ethanol-treated AML-12 cells with AMPK agonist (AICAR).

They found that the activity of the lipin-1 promoter and its

increase in mRNA levels were significantly suppressed. However,

when SREBP-1c was overexpressed in the nucleus, the effect was

largely opposite. In conclusion, excessive drinking can inhibit

AMPK activity and increasing SREBP-1c expression, which

promotes the expression of the downstream target protein

lipin-1 of AMPK-SREBP-1c, and increases fatty acid synthesis,

ultimately aggravating alcoholic liver injury. As a result, AMPK

may be a promising target for regulating lipid homeostasis in

the body.

AMP-activated protein kinase-mammalian
target of rapamycin axis

Mammalian target of rapamycin (mTOR) is a highly

conserved atypical serine/threonine protein kinase in

eukaryotic cells (Fekete et al., 2020). Some research showed

that mTOR is a member of the phosphoinositide 3-kinase

(PI3K) related kinase family, which interacts with multiple

proteins to form two complexes with distinct functional and

biochemical composition, namely, mTOR complexes 1

(mTORC1) and 2 (mTORC2), which are crucial for

controlling cell growth, metabolism, and autophagy (Laplante

and Sabatini 2012; Chen et al., 2021). Complexes containing

mTOR have different sensitivities to rapamycin, as well as

different upstream inputs and downstream outputs. Five parts

make up the mammalian mTORC1 complex: mTOR, Raptor,

PRAS40 (also known as AKT1s1), DEPTOR, and MLST8 (also

known as G-L) (Rabanal-Ruiz et al., 2017). Among them, Raptor

is an mTOR regulation-related protein that mainly acts as a

scaffold to recruit downstream substrates such as 4E-BP1 and

ribosomal S6 kinase (p70S6K1) into mTORC1 complex to be

phosphorylated by mTORC1; PRAS40 is an inhibitory subunit of

40 kDa substrate containing proline-rich Akt; MLST8 is a

mammalian lethal Sec13 protein eight related to a stable

kinase activation ring and a catalytic domain; DEPTOR is an

mTOR interaction protein containing a DEP domain (Rabanal-

Ruiz et al., 2017; Holczer et al., 2019; Fekete et al., 2020). That

mTORC1 is directly regulated by cellular energy and nutritional

status, plays an important role in translation and autophagy

regulation, and is able to sense the fluctuation of growth factor

signals, cellular energy (via AMPK), and oxygen levels (Szwed

et al., 2021). It is highly sensitive to the inhibition of rapamycin,

but not mTORC2, which consists of mTOR, Rictor, mSin1

(MAPKAP1), Protor (PRR5), and mLST8, is primarily

responsible for regulating cell survival and cytoskeleton

(Holczer et al., 2019; Szwed et al., 2021). A large number of

studies have shown that AMPK andmTORC1 are two key factors

that regulate autophagy and can promote and inhibit autophagy,

respectively. At the same time, AMPK can negatively regulate

mTORC1 activity by directly phosphorylating multiple

components in the mTORC1 pathway, and then promote

cellular Autophagy. For example, 1) AMPK phosphorylates

the negative regulatory factor TSC2 upstream of

mTORC1 and activates TSC, thereby attenuating the

TORC1 pathway, which has tumor suppressive effects (Inoki

et al., 2003; Holczer et al., 2019) (Figure 1). 2) Cells negatively
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regulate mTORC1 activity through AMPK-induced

phosphorylation at the Ser722 and Ser792 on Raptor (Gwinn

et al., 2008). Notably, research has revealed that AICAR was

unable to inhibit the activity of mTORC1 in fibroblasts with TSC

deficiency even if Raptor was completely phosphorylated by

AMPK, but it inhibited the activity of mTORC1 in TSC-

deficient hepatocytes by increasing Raptor phosphorylation

(Wolff et al., 2011). It indicated that the cell type and tissue

studied were closely related to the involvement of TSC in AMPK-

induced regulation of mTORC1. 3) In glucose deficiency, after

treatment with AICAR and 2-deoxyglucose (2DG), the p38β-
PRAK pathway was activated independently of AMPK, and the

activated PRAK directly phosphorylated the Ser130 site on Rheb

to down-regulate the expression level of Rheb, thereby inhibiting

the activity of mTORC1 (Zheng et al., 2011). It should be noted

that in cells treated with AICAR (Inoki et al., 2012): 1) P38β-
PRAK-dependent regulation belongs to the persistent inhibition

of mTORC1, because the regulation mode of p38β-PRAK-
dependent Rheb phosphorylation only occurs after the initial

inhibition of mTORC1 activity. 2) TSC2-or Raptor-mediated

inhibition of mTOR RC1 is attributed to acute inhibition of

mTOR RC1. It has been confirmed that when mTORC1 is

inhibited, it will induce autophagy by activating the

downstream ULK1 complex, and AMPK can directly

phosphorylate multiple sites of ULK1, thus promoting the

function of ULK1 expression in autophagy (Kim et al., 2011;

He et al., 2020; Licheva et al., 2022).

Autophagy is an intracellular lysosomal degradation system.

In mammals, it mainly includes three mechanisms: partner-

mediated autophagy, micro-autophagy and macrophage

autophagy (Wirawan et al., 2012; Zhao et al., 2022). The

autophagy process is mainly divided into the following three

steps (Lamb et al., 2013; Zhao et al., 2022): 1) The damaged or

redundant cellular components such as proteins or organelles are

wrapped to form autophagosomes with a double-layer

membrane structure; 2) Autophagosomes fuse with

intracellular lysosomes to form autophagosomes; 3) The

inclusion is degraded into basic biomolecules by the acidic

hydrolase in the lysosome and recycled back to the cytoplasm

to realize the reuse of cell components and energy supply.

Moreover, as a basic homeostasis mechanism, autophagy plays

an important role in the process of various diseases in the human

body. It can remove excessive intracellular fat, which is essential

to maintain the normal function of cells and regulate lipid

balance. On the contrary, if autophagy in adipocytes is

impaired, it can lead to cellular lipid accumulation, causing

obesity, dyslipidemia, fatty liver and other diseases (Singh

et al., 2009; Zechner et al., 2017; Saito et al., 2019). AMPK-

mTOR axis plays a very important role in the regulation of lipid

metabolism. AMPKmay be a potential target for the treatment of

FLD. To date, many predecessors have confirmed this view in the

scientific research field and clinical practice. For example,

caffeine, the main ingredient extracted from coffee, can

activate autophagy and accelerate fatty acid oxidation by

blocking the mTOR pathway (Sinha et al., 2014). Some

scholars have found in the mouse model of NAFLD that

inhibiting autophagy can lead to significant lipid

accumulation, while promoting autophagy can regulate the

use of liver lipids and maintain the body energy metabolism

(Tanaka et al., 2016; Sun et al., 2018). The above research showed

that the excessive accumulation of lipid droplets in hepatocytes

could be degraded by regulating the autophagy process, and its

toxic effect on hepatocytes could be reduced, thus inhibiting the

further development of NAFLD. In addition, natural products

resveratrol and acetylshikonin can improve autophagy function

by acting on AMPK-mTOR pathway, and to a certain extent

reduce non-alcoholic liver lipid accumulation, hepatic steatosis

(Milton-Laskibar et al., 2018; Zeng et al., 2018). Similarly, Guo

et al. (2016) found that corosolic acid extracted from leaves of

Lagerstroemia speciosa could inhibit mTORC1 by activating

AMPK to a certain extent in a rat model of alcoholic liver

injury, so that the autophagy activity inhibited by alcohol is

restored, and thus the liver function is protected from alcoholic

toxicity. Therefore, AMPK-mTOR axis-mediated autophagy

plays an important role in improving FLD.

Fatty liver disease

Alcoholic liver disease

Chronic and excessive drinking can cause severe liver

diseases such as AFLD (hepatic steatosis), alcoholism

(hepatitis, fibrosis, cirrhosis) and even hepatocellular

carcinoma (HCC) (Nagy et al., 2016; Zhou et al., 2022).

AFLD, also known as hepatic steatosis, is the initial reaction

of chronic and heavy drinking, a stage of alcoholic liver disease

that is considered a vicious circle due to abnormal lipogenesis

and lipid β oxidation, characterized by excessive deposition of fat

in hepatocytes (Hsu et al., 2018). Long-term heavy drinking may

accelerate the transformation fromAFLD to alcoholic hepatitis, it

is a more severe inflammatory liver injury characterized by

steatosis, hepatocyte inflation, and neutrophil infiltration with

or without fibrosis, and may also lead to the development of

fibrosis, which is characterized by excessive deposition of

extracellular matrix proteins (Altamirano and Bataller 2011;

Hyun et al., 2021). The primary biochemical explanation for

AFLD is largely based on ethanol metabolism’s capacity to

prevent fatty acid oxidation and change the liver’s redox state

(Namachivayam and Gopalakrishnan 2021). And studies have

shown that ethanol has been found to inhibit fatty acid oxidation

and promote lipogenesis by activating SREBP-1c to induce a

series of lipase (Bai et al., 2016). The main metabolic mechanisms

of alcohol metabolism in the body and its effects are as follows

Figure 2:1) Ethanol dehydrogenase and CYP2E1 oxidize ethanol

to acetaldehyde, which is further converted to acetic acid by
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acetaldehyde dehydrogenase, and finally enters the tricarboxylic

acid cycle to generate acetyl-CoA (Marmier et al., 2015). 2) A

large amount of reactive oxygen species (ROS) is produced

during ethanol metabolism, which can reduce antioxidant

enzyme activity or promote lipid peroxidation and adduct

formation, thereby inhibiting the antioxidant capacity of

hepatocytes (Cederbaum 2012). 3) The oxidation of

acetaldehyde occurs in the mitochondria of hepatocytes, and

the generated acetic acid will induce the generation of a large

number of ROS to damage mitochondrial DNA, which will

hinder electron transfer in the oxidative respiratory chain,

reduce the activity of respiratory chain complex, thereby

inhibiting β- Oxidation of fatty acids, increasing the fat

content in hepatocytes, accelerating the occurrence and

development of FLD (Lieber 2000; Seitz et al., 2018).

Additionally, since CYP2E1 has high NADPH oxidase activity,

it can stimulate NADPH transport to the mitochondria, increase

the generation of ROS, aggravate the damage of mitochondrial

DNA, and further inhibit β-oxidation of fatty acids (Cederbaum

2001). Lu et al. (2010) performed evaluation on alcohol-induced

chronic liver injury, steatosis and oxidative stress in mice, and

they discovered that alcohol caused fatty liver and oxidative stress

in wild-type mice, which were somewhat alleviated in

CYP2E1 knockout mice, but recovered in humanized

CYP2E1 knockout mice. These results indicated that

CYP2E1 played an extremely important role in alcohol-

induced fatty liver disease and oxidative stress. In both in vivo

and in vitro experiments with alcohol exposure, AMPK activity

was downregulated as an adaptive response to alcohol-mediated

fatty liver disease and liver sensitivity to changes in AMP/ATP

ratio was reduced (García-Villafranca et al., 2008). Therefore,

AMPKmay be a potential therapeutic target for AFLD. Hsu et al.

(2018) found that aqueous extract of Pepino leaf (AEPL) could

down-regulate the expression of AMPK downstream

adipogenesis gene (SREBPs, ACC, and FAS) by up-regulating

AMPK activity, to reduce lipid accumulation and inhibit further

ethanol-induced proliferation and fibrosis of C57BL/6J mice

hepatocytes. Moreover, Wang et al. (2022b) took SD rats as

the research object to explore the protective effect of selenium tea

extract on fatty liver induced by high-fat diet/alcohol. They found

that after treatment with selenium tea extract, the activities of

SREBP1 and FAS proteins in rats with AFLD were inhibited, and

the expression of p-AMPK, PPAR-α and CPT1 proteins was

significantly increased. At the same time, serum and liver TC and

TG levels and serum LDL-C level of AFLD rats were decreased,

and serum HDL-C level was increased. The above results

indicated that selenium tea extract might reduce lipid

deposition and alleviate the metabolic imbalance of AFLD by

stimulating AMPK/SREBP1-c/FAS and PPAR-α/CPT1 signaling
pathways. In addition, studies have shown the activation of

AMPK in AFLD may regulate autophagy of cells through a

dual “failure-safe” mechanism. Normally, acute alcohol

exposure induces autophagy to alleviate liver injury, whereas

chronic alcohol exposure inhibits autophagy and triggers lipid

accumulation in the liver (Thomes et al., 2015; Chao et al., 2018).

This may be a protective mechanism of rapid response by cells to

FIGURE 2
Occurrence and development of AFLD. Alcohol metabolites, including acetaldehyde, will further damage mitochondria, reduce AMPK activity
and sensitivity to AMP/ATP, and cause serious lipid accumulation. ROS, reactive oxygen species; CYP2E1, the cytochrome P4502E1; ADH, alcohol
dehydrogenase; ALDH, aldehyde dehydrogenase; NADPH, reduced nicotinamide adenine dinucleotide phosphate; NAD+, oxidized nicotinamide
adenine dinucleotide.
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reduce the damage to themselves caused through adverse

external stimulation during acute ethanol exposure. However,

when exposed to chronic ethanol, the self-protective autophagic

flow and related membrane structures were damaged by long-

term ethanol stimulation, which resulted in the inhibition of

autophagy. Thus, AMPK may be a potential therapeutic target.

Non-alcoholic fatty liver disease

NAFLD, as currently the most common liver disease in the

world, is a lipotoxic disease characterized by liver steatosis and

oxidative stress. The signature feature of NAFLD is the

accumulation of intrahepatic triglycerides (TG), and in some

patients may develop more serious non-alcoholic steatohepatitis

(NASH), cirrhosis or even HCC(Rinella 2015; Schwabe et al.,

2020; Gosis et al., 2022). The pathogenesis of NAFLD is very

complex. In the pathological condition, it is mainly caused by the

increased uptake of fatty acids and de novo synthesis of fatty acids

by the liver, the imbalance of fatty acid oxidative decomposition,

and abnormal lipid output (Ipsen et al., 2018; Rui and Lin 2022).

In patients with non-alcoholic hepatitis and animal models,

Sunny et al. (2017) discovered that mitochondria had a wide

range of structural and functional abnormalities. In other words,

the function of mitochondrial respiratory chain is damaged,

which changes the balance between anti-oxidation and pro-

oxidation mechanisms, and prevents the β oxidation of fatty

acids, resulting in the increase of non-metabolized fatty acids in

cytosol, inducing the production of excessive cytokines and ROS,

and thus leading to lipid peroxidation and lipid accumulation

(Zhou et al., 2022) Figure 3. Moreover, the ROS and lipid

peroxidation products can further disrupt the function of the

respiratory chain and form a vicious cycle (Masarone et al.,

2018). According to previous studies, it is generally believed that

the pathogenesis of NAFLD involves two steps, that is, the so-

called “two-hit” model (Chen et al., 2018). Among them, the

“first hit” mainly refers to the increase in insulin resistance (IR)

due to the intake of high-fat and high-sugar diet or the increase of

normal genetic lesions, which in turn causes liver adipocyte

infiltration and lipid accumulation (Lim et al., 2010; Chen

et al., 2018). The “second hit” means that, based on the first

hit, damaged liver cells can cause an increase in inflammatory

factors in the body, an imbalance in antioxidant capacity, etc.,

thereby inducing the combined effects of oxidative stress,

endoplasmic reticulum stress and inflammatory cytokines, and

finally reversely aggravating the progression of fatty liver, leading

to inflammation, necrosis or fibrosis of hepatocytes (Lim et al.,

2010; Luo et al., 2022). However, it is worth noting that the

application of the “two-hit” theory cannot accurately explain

some metabolic disorders and molecular mechanisms in the

development of NAFLD. With the deepening of the study,

researchers have found that there were many pathogenic

factors related to the occurrence and development of NAFLD.

These pathogenic factors could interact with each other, or

inhibit or promote, to cause repeated blows to the liver.

Therefore, the theory of “multiple blows” has gradually been

recognized (Buzzetti et al., 2016). Previous studies have found

that in the process of the second strike, the AMPK signaling

pathway, as an energy-regulating metabolic enzyme, is almost

involved in the entire process of the occurrence and development

of NAFLD (Dahlhoff et al., 2014) Figure 3. AMPK activation can

reduce NAFLD mainly through three ways: inhibiting fat

production in liver, increasing fatty acid oxidation in liver and

promoting mitochondrial functional integrity in adipose tissue

FIGURE 3
Occurrence and development of NAFLD.
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(Smith et al., 2016). The AMPK signaling pathway-related

proteins not only effectively balance food and energy

consumption, but also promote mitochondrial generation,

further fatty acid and glucose metabolism, and effectively

reduce the production of ROS and pro-inflammatory

cytokines, ultimately inhibiting the development of fatty liver.

(Dahlhoff et al., 2014). In recent years, some scholars have

established a liver-specific AMPKα1/α2 double-knockout and

diet-induced obesity and NAFLD mouse model through genetic

engineering technology (Garcia et al., 2019; Zhao et al., 2020).

The study found that liver-specific AMPK knockout could

aggravate liver lipid accumulation, steatosis, fibrosis and

inflammation, and TUNEL staining showed that the number

of apoptotic hepatocytes in AMPK knockout mice was

significantly increased. The above-mentioned findings provide

further support for the role of AMPK as a potential prophylactic

and therapeutic target for NAFLD. Lee et al. (2020) found that

AMPK-ULK1 (UNC-51-like autophagy-activated kinase 1) axis

played a very important role in protecting the lipotoxicity by

activating an atypical KEAP1-NFe2L2 pathway dependent on

SQSTM1 through their study of mice with SQSMT1 gene

knockout. By activating SESN2-mediated AMPK

phosphorylation, SQSTM1 can enhance the interaction

between AMPK and ULK1, further mediate

ULK1 phosphorylation, to induce autophagy in response to

fatty liver toxicity, promote the formation of AMPK-ULK1-

SQSTM1 complex, cause autophagic degradation of Keap1,

and activate the non-normalized Keap1-Nrf2 signaling

pathway, thereby protecting the mouse liver from

lipotoxicity (Lee et al., 2020). The important clinical

significance of this pathway has also been demonstrated in

liver samples from human NAFLD patients. Although the

pathophysiology of NAFLD is complicated, IR, which

virtually involves the entire process, is the most important

factor. Therefore, reversing IR is the key for treating NAFLD.

AMPK agonists can improve IR by increasing liver lipid

synthesis, fatty acid oxidation, and mitochondrial function

repair, as previously mentioned. At the same time, a large

number of studies have also shown that regulating the

production of adipocytokines or the expression of

adipocyte-specific genes was one of the most effective

approaches to improve IR. For example, adiponectin, as a

cytokine secreted by adipocytes, was a specific cytokine of

adipocytokines that is most closely related to IR and has the

effect of regulating lipid metabolism in the liver (Caselli 2014;

Wang et al., 2019). Adiponectin could improve insulin

sensitivity when it binds to the adiponectin receptor

(AdipoR1/2). Furthermore, adiponectin could activate

AMPK activity, which in turn enhances insulin signal

transduction of adipose cells, reverses IR, and inhibits the

occurrence and development of NAFLD (Wang et al., 2019;

Yang et al., 2022). Therefore, AMPK may be a potential new

target for the prevention and treatment of NAFLD.

Research status of fatty liver disease
treatment drugs

FLD is a kind of metabolic stress liver injury disease closely

related to IR, alcohol, type 2 diabetes, obesity and other diseases.

The pathogenesis of FLD is complex, and various factors can act

independently or mutually, simultaneously or sequentially,

leading to the occurrence and development of AFLD or

NAFLD. Even though we have a certain understanding of the

occurrence and development of FLD, clinically there is still a lack

of the most ideal drug for the treatment of FLD. As AMPK

signaling pathway is a key pathway for organisms to resist lipid

metabolism disorders. Activation of the AMPK pathway can

effectively reduce the accumulation of TG, fatty acids and

cholesterol in hepatocytes, slow down the development of

fatty liver, and prevent the occurrence and development of

liver fibrosis by inducing the normal expression of

adipogenesis genes and fatty acid oxidation genes. However,

although the current research on FLD has made great

progress, due to the multiple intersections of signaling

pathways, it has brought great difficulties to further in-depth

research on FLD. For example, the latest studies from cultured

hepatocytes and animal liver have shown that, on the one hand,

Sirt1 could regulate AMPK upstream kinases to activate AMPK;

On the other hand, activated AMPK could increase intracellular

NAD+ level via LKB1, and then activate the Sirt1 signaling

pathway (Cantó et al., 2009; Bai et al., 2016; Sharma et al.,

2021); sirt1 and lipin-1 not only involved in the regulation of

inflammatory response, but also participated in the lipid

metabolism pathway mediating FLD (You et al., 2015; You

et al., 2017); SREBP-1c could directly or indirectly regulate

the oxidation of fatty acids, and could also promote the

synthesis of fatty acids in cells. Meanwhile, Shen et al. took

C57BL/6 mice as the research object to explore whether aucubin

could inhibit lipid accumulation and oxidative stress through

Nrf2/HO-1 and AMPK signaling pathways (Shen et al., 2019)

Figure 1. The results showed that AMPK could alleviate the lipid

accumulation and oxidative stress in NAFLD by activating the

Nrf2/HO-1 signal axis, thereby preventing the occurrence and

development of NAFLD. However, there is nomore precise study

which has confirmed how the AMPK and Nrf2/HO-1 signaling

pathways communicate in FLD, it requires more detailed

mechanistic exploration to elucidate.

However, it is noteworthy that in different FLD models, a

large number of drugs have been found to exert certain efficacy

through the targeted AMPK pathway. For example, endogenous

synthetic antioxidant coenzyme Q10 (CoQ10) can be used as

AMPK agonist which can inhibit lipogenesis and activate fatty

acid oxidation, thereby inhibiting abnormal accumulation of

liver lipids and preventing the occurrence and development of

NAFLD (Chen et al., 2019a; Gutierrez-Mariscal et al., 2020).

CoQ10 can also modulate inflammatory responses through NF-

κB-dependent gene expression, as the absence of CoQ10 may
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result in an increase in proinflammatory factors. Metformin, as

an agonist of AMPK pathway, can effectively alleviate IR and

liver damage. Besides, it can inhibit the secretion of

gluconeogenesis-related enzymes and glucagon-like peptide 1

(GLP-1) as well as glucagon signaling by delaying the absorption

of glucose in the gastrointestinal tract (Sunny et al., 2017). In an

in vivo and in vitro experiment, Li et al. (2022) found, by

combining computer-aided design analysis, that

Atractylenolide III could reduce lipid accumulation by

upregulating liver adiponectin receptor 1, activating AMPK

pathway, improving the phosphorylation of LKB1 and AMPK,

and promoting the expression of fatty acid oxidation proteins

CPT1A and PGC1α; At the same time, it could upregulate the

activities of antioxidant proteins Sirt3 and Nrf2, inhibit oxidative

stress response, and ultimately improve NAFLD (Li et al., 2022).

In the in vitro experiment of hepatocytes exposed to ethanol,

dihydroquercetin was found to significantly increase the activity

and phosphorylation of LKB1 and AMPK to inhibit the

expression of ACC and SREBP-1c, thereby inhibiting lipid

production, promoting fatty acid oxidation and finally

reducing fat accumulation (Zhang et al., 2018). In the in vivo

experiment of mice exposed to ethanol, Kim et al. (2017) found

that saponin, an active compound in barley malt extract, could

significantly enhance AMPK activity in mice, which in turn

regulated target proteins related to lipid metabolism through

phosphorylation, and directly inhibit fatty acid synthesis and

promote fatty acid oxidation (Kim et al., 2017). It could also

degrade the lipid droplets accumulated in hepatocytes by

enhancing autophagy, and finally reduce hepatic qualitative

change and improve ALFD. Furthermore, many natural

AMPK activators and AMPK agonists such as quercetin,

triptolide, limonene, and demethyleneberberine can regulate

related genes on the AMPK signaling pathway, for example,

the expression levels of fatty acid β-oxidation genes (CPT1 and

PGC1α) and adipogenesis genes (SREBP, ACC, SCD, and FAS),

which regulate lipid metabolism in hepatocytes, inhibit fatty acid

production and promote fatty acid β-oxidation to alleviate

NAFLD (Qiang et al., 2016; Huang et al., 2021; Wang et al.,

2022a; Gnoni et al., 2022). As well as some PPAR agonists

currently undergoing II and III clinical trials, such as

Elafibrinor and saroglitazar, the former can increase

mitochondrial fatty acid oxidation and oxidative

phosphorylation, and reduce the activation of Kupffer cells in

the liver; the latter can improve the insulin sensitivity of adipose

tissues and reduce the flow of fatty acids from adipose tissues to

the liver (Konerman et al., 2018). Of course, although the above

drugs have a certain effect on the treatment of FLD, they still have

defects such as unclear toxic and side effects, optimal dose,

unclear mechanism, and lack of a large number of clinical

trials. These drugs still need to be further verified by multi-

center, large-sample randomized controlled clinical studies

before they are officially promoted. In conclusion, improving

lipid metabolism, anti-inflammatory and anti-oxidative stress is

of great significance for the prevention of FLD, and AMPK may

be a potential effective target for the treatment of FLD.

Outlook

Lipid accumulation is the main manifestation of FLD and

plays an important role in the occurrence and development of

various liver diseases. AMPK signaling pathway is the key

pathway for biological resistance to lipid metabolism

disorders. Its mediated expression of adipogenesis gene and

fatty acid oxidation gene can effectively maintain the normal

lipid metabolism of the body, slow the development of liver

diseases, and prevent the occurrence and progression of FLD.

Although, up to now, based on a large number of previous

studies, we have obtained a certain understanding of the role of

related molecules in the AMPK signaling pathway in FLD.

Animal models with AMPK gene knockout can be more

applied to disease research and help clarify the role of AMPK

in the occurrence and development of liver diseases. At the same

time, many AMPK agonists, drugs that specifically activate

AMPK, and the discovery of small molecule agonists provide

tools for further exploration of possible treatments for liver

disease. However, most of the studies concerning the

treatment of liver diseases with agonists are at the initial

stage. Further studies are still needed on the downstream

pathways and effector molecules after the activation of AMPK

by these agonists, and more high-quality in vivo and in vitro

studies are carried out to clarify the effectiveness of agonists and

security. And the effects of AMPK agonists on different liver

diseases are reflected more accurately, so as to provide a basis for

clinical drug combination in the future. In addition, due to the

complex and variable pathogenesis of FLD (AFLD or NAFLD),

there is still a lack of recognized targeted drugs for the treatment

of the disease in clinic. It is worth noting that recent studies have

shown that AMPK activation can promote cholestasis by directly

phosphorylating the farnesoid X receptor and inhibiting its

activity. For example, the AMPK agonist metformin can

induce cholestasis by modulating the farnesoid X receptor

(Thomes et al., 2015; Li et al., 2017). Farnesoid X receptor is

the earliest bile acid receptor discovered, which can be activated

by bile acid, inhibit bile acid synthesis, and promote bile acid

transport. Therefore, with the development of molecular biology,

in future studies, more use of transgenic technology or

specific agonist and inhibitor intervention will help to further

reveal the link between the AMPK pathway and the pathogenesis

of FLD.
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