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Background: The autonomic nervous system (ANS) is known as a potent

modulator of the initiation and perpetuation of atrial fibrillation (AF), hence

information about ANS activity during AF may improve treatment strategy.

Respiratory induced ANS variation in the f-waves of the ECG may provide

such information.

Objective: This paper proposes a novel approach for improved estimation of

such respiratory induced variations and investigates the impact of deep

breathing on the f-wave frequency in AF patients.

Methods: A harmonic model is fitted to the f-wave signal to estimate a high-

resolution f-wave frequency trend, and an orthogonal subspace projection

approach is employed to quantify variations in the frequency trend that are

linearly related to respiration using an ECG-derived respiration signal. The

performance of the proposed approach is evaluated and compared to that

of a previously proposed bandpass filtering approach using simulated f-wave

signals. Further, the proposed approach is applied to analyze ECGdata recorded

for 5 min during baseline and 1 min deep breathing from 28 AF patients from the

Swedish cardiopulmonary bioimage study (SCAPIS).

Results: The simulation results show that the estimates of respiratory variations

obtained using the proposed approach are more accurate than estimates

obtained using the previous approach. Results from the analysis of SCAPIS

data show no significant differences between baseline and deep breathing in

heart rate (75.5 ± 22.9 vs. 74 ± 22.3) bpm, atrial fibrillation rate (6.93 ± 1.18 vs.

6.94 ± 0.66) Hz and respiratory f-wave frequency variations (0.130 ± 0.042 vs.

0.130 ± 0.034) Hz. However, individual variations are largewith changes in heart

rate and atrial fibrillatory rate in response to deep breathing ranging from −9% to

+5% and −8% to +6%, respectively and there is a weak correlation between

changes in heart rate and changes in atrial fibrillatory rate (r = 0.38, p < 0.03).

Conclusion: Respiratory induced f-wave frequency variations were observed at

baseline and during deep breathing. No significant changes in themagnitude of

these variations in response to deep breathing was observed in the present

study population.
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1 Introduction

Atrial fibrillation is known as the most common heart

arrhythmia and is a growing public health concern worldwide.

Atrial fibrillation has been estimated to affect 10 million people in

theUnited States by 2050 (Miyasaka et al., 2006) and 17.9million in

Europe by 2060, with more than half of these patients aged 80 years

or older (Krijthe et al., 2013). Atrial fibrillation is associated with

increased mortality and morbidity resulting from stroke and

congestive heart failure, and increased hospitalization costs

(Patel et al., 2014). Despite progression in AF treatment,

including medications aimed at controlling heart rate, rhythm,

or both, and ablative therapy, finding the most accurate therapy for

an individual patient is still problematic (Crandall et al., 2009).

Historically, research has shown that multiple etiological

mechanisms, such as atrial fibrosis, ion-channel dysfunction,

autonomic imbalance, and genetic background, likely drive the

factors associated with the maintenance and progression of AF (Lip

et al., 2010; Fabritz et al., 2016).

This study focuses on respiratory modulation in the atrial

activity during AF. It is well established from a variety of studies

that the refractory period of the atria during atrial fibrillation can be

influenced by various underlying mechanisms, including

pathological changes, electrophysiological dynamics, and an

imbalanced autonomic tone (Waldo, 2003; Nitta et al., 2004;

Saksena et al., 2005). The refractory period of the atria has been

found to have linear correlation with f-waves frequency (Capucci

et al., 1995). The frequency of the f-waves in the ECG, also referred

to as the atrial fibrillatory rate (AFR) (Platonov et al., 2014), has

previously been analyzed with respect to ANS induded changes

during AF. For instance (Stridh et al., 2003; Holmqvist et al., 2005),

have shown that variation in the f-wave frequency during

controlled respiration can be linked to the parasympathetic

activity. Östenson et al. studied changes in the f-wave frequency

in response to changes in ANS tone induced by tilt-test in

40 patients with persistent AF, results showed f-wave frequency

decreased during head-down tilt (HDT) compared to baseline and

increased during head-up tilt (HUT) (Östenson et al., 2017). In a

previous study, we investigated changes in f-wave frequency

variations in response to controlled respiration (Abdollahpur

et al., 2021). In a study population of eight pacemaker patients

with permanent AF recorded at baseline, during controlled

respiration, and during controlled respiration after injection of

atropine. Briefly, a high-resolution f-wave frequency trend

obtained using model-based approach was filtered using a

narrow bandpass filter with center frequency corresponding to

respiration rate and fixed bandwidth. The envelope of the filtered

frequency trend served as an estimate of the magnitude of the

respiratory variation; the results indicated that this magnitude was

affected by parasympathetic regulation (Abdollahpur et al., 2021).

The present study addresses main weaknesses of our previous

study. In contrast to the previous study, where the AF patients

had pacemakers set at a fixed heart rate, the present study is based

on AF patients without pacemaker whose heart rate varies over

time. Such variations in heart rate may affect the ANS and hence

the ANS induced variations in atrial electrical activity. Second,

the previous approach to quantify respiratory variation in the

f-wave frequency is sensitive to noise and cannot handle time-

varying respiration rates. Hence, the objectives of the present

study were twofold: 1) To propose a novel subspace projection

approach to quantify respiratory variation in the f-wave

frequency trend that is robust to noise and can handle time-

varying respiration, and 2) to investigate the impacts of deep

breathing on the f-wave frequency in a population of AF patients

without a pacemaker.

2 Materials and methods

A schematic overview of themethodology is shown in Figure 1.

The clinical data is described in Section 2.1, the ECG processing

aiming to obtain an f-wave signal x(n) is explained in Section 2.2.

As follow, a model-based approach is applied to the extracted

signal x(n) to estimate an f-wave frequency trend f(n) (Section 2.3).

An ECG-derived respiration signal r(n) is estimated using the slope

range approach (Section 2.4). Respiratory variation in f(n) is

estimated using orthogonal subspace projection method (Section

2.5). Simulated f-wave signals are used to evaluate the performance

of the proposed methodology (Section 2.6). Finally, statistical tests

are applied to the results from analysis of clinical data to determine

if there is a significant differences in heart rate, f-wave frequency,

and respiratory variation in f-wave frequency trend between deep

breathing phase and baseline (Section 2.7).

2.1 ECG data

The study population consists of a subset of 28 participants

from the Swedish cardiopulmonary bioimage study (SCAPIS)

(Bergström et al., 2015) that were diagnosed with AF. The clinical

characteristics of the study population are summarized in

Table 1. The subjects performed a deep breathing task. The

task was 5-s inhalation and 5-s exhalation as deep-breathing (D)

phase for 1 min, and as follows 5 min during baseline (B); the

patients were in AF during the recordings. For further details on

the study protocol, the reader is referred to (Engström et al.,
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2022). A standard 12-lead ECG at 500 Hz sampling rate was

recorded throughout the protocol.

2.2 ECG processing

TheCardioLund ECGparser (CardioLundResearchAB, Lund,

Sweden) is used for preprocessing, beat-detection, and beat

classification and QRST cancellation. Briefly, in this software, a

linear-phase high-pass filter is applied to the ECG to eliminate

baseline wander, and fiducial points in the QRS complexes are

detected; also, the QRS complexes are classified based on their

morphology. The ectopic beats were identified based on correlation

to template beats and were clustered and treated as a separate class

for the QRST-cancellation. The QRS interval yil(n) is set to

140 ms, starting 110 ms before the end of the S wave and

finishing 30ms after the end of the S wave, where i and l

denotes beat-number and lead, respectively. A spatiotemporal

QRST cancellation approach (Stridh and Sörnmo, 2001) is

employed to extract f-wave signals from the ECG. This average

beat subtraction method compensates for minor morphological

variations in the QRST complex by combining beat averages from

different leads. For each beat class, one beat average is calculated

and used for QRST cancellation in the corresponded beats in the

ECG leads. The extracted f-wave signal is downsampled from

1 kHz to 50 Hz using appropriate low-pass filtering and

decimation since such signals have negligible frequency content

above 25 Hz. In the present study, the extracted f-wave signal from

lead V1 denoted x(n), is subjected to analysis. For further analysis,

the ECG data was divided into 1-min segments, resulting in five

segments at baseline and one segment during deep breathing. The

AFR and respiratory f-wave modulation was estimated from each

1-min segment of x(n) as described in Section 2.3 and Section 2.5,

respectively. A respiration signal, which is required for estimation

of respiratory f-wave modulation, was obtained from the

corresponding QRS intervals yil(n) as described in Section 2.4;

ectopic beats were removed for this analysis. For each patient,

results from the 1-min segments recorded at baseline were

averaged to obtain the heart rate (HRB), atrial fibrillatory rate

FIGURE 1
Schematic representation of the methodology.

TABLE 1 Clinical characteristics of patients.

Number

Age (mean ± SD, range) 60.1 ± 4.0 [50.1–64.9]

Men (%) 23 (82)

BMI (mean ± SD, range) 31.8 ± 7.2 [18.8–50.8]

Systolic BP 124 ± 23 [90–188]

Diastolic BP 79.9 ± 11 [61–104]

Hypertension*(%) 17 (61)

Diabetes (%) 2 (7)

Never smokers (%) 9 (32)

Heart failure (%) 2 (7)

Previous AMI or angina (%) 2 (7)

Treatment

Beta blocker (%) 15 (54)

Ca-antagonist (%) 6 (21)

Antiarrhythmic drug (%) 4 (14)

p ≥140/90 mmHg or treatment for hypertension.
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(AFRB), and respiratory f-wave frequency modulation (ΔfOSP
B),

respectively. The corresponding estimates during deep breathing

(HRD, AFRD, ΔfOSP
D) were based on one segment.

2.3 Estimation of f-wave frequency trend

For the estimation of a high-resolution f-wave frequency

trend, a harmonic f-wave model (Henriksson et al., 2018) is

employed. The model f-wave signal is defined as the sum of a

complex exponential signal with fundamental frequency f and its

second harmonic,

s n; θ( ) � ∑2
m�1

Ame
j m2π f

fs
n+ϕm( ), (1)

where Am and ϕm denote the amplitude and phase of m:th

harmonic, respectively, and fs is sampling frequency. The use of

two harmonics in the model is motivated by the observations in

(Henriksson et al., 2018), that additional harmonic results in more

noise due to the additional degrees of freedom of this model. The

parameters θ � [f A1 A2 ϕ1 ϕ2]T, are estimated by fitting

the harmonic model s (n; θ) to the analytic equivalent of x(n),

denoted xa(n), using maximum likelihood approach.

θ̂ � arg min
θ

‖xa n( ) − s n; θ( )‖2, (2)

The model is fitted to 20 ms overlapping 0.5-second segments of

xa(n). For this fitting, f is constrained to the interval [f0 ± 1.5] Hz,

where global frequency estimate (f0) is the maximum peak in the

interval [4,12] Hz of the Welch periodogram of the whole x(n).

The estimates of f result in an f-wave frequency trend f(n)

sampled at 50 Hz. Then, correspond to the sampling rate of

the respiration signal (cf. Section 2.4), f(n) is resampled to 5Hz.

To quantify accuracy of the fitted model, a signal quality index,

denoted S, is computed

S � 1 − σ ê
σxa

, (3)

where σ ê and σxa denote the standard deviation of the model

error (ê(n) � xa(n) − s(n; θ̂)) and xa(n), respectively. In this

study, S is computed for non-overlappning 5 s segments. S
ranges from 0 to 1, where a higher value corresponds to a

better fit. Only segments with S > 0.3 is considered for further

analysis, since previous studies has shown that S larger than

0.3 was sufficient for accurate estimation of f(n) (Henriksson

et al., 2018). The atrial fibrillatory rate (AFR) is estimated by the

median of f(n).

2.4 Estimation of ECG-derived respiration

The slope range method (Kontaxis et al., 2019) is applied to

each lead of the ECG separately to obtain a respiratory signal. The

method quantifies variations in the QRS morphology, which are

assumed to reflect respiratory activity, using the difference between

the maximum and minimum derivative in the QRS interval,

rl i( ) � max
n

yil
′ n( ){ } −min

n
yil
′ n( ){ }, (4)

where i and l denotes beat-number and lead, respectively, and

yil
′(n) � yil(n) − yil(n − 1). The resulting signal rl(i) is resampled

to 5Hz using cubic spline interpolation to obtain a uniformly

sampled signal rl(n). Principal component analysis (PCA) is

applied to the set of rl(n) to derive a joint respiratory signal

from all leads. The principal component that has the greatest

variance and a significant periodic component in the respiratory

interval ([ 0.1 0.5 ] Hz) is selected as the respiratory signal,

denoted as r(n). A principal component is considered to have

a significant periodic component if the magnitude of the largest

peak in the respiratory interval of its spectrum is at least 85% of

the largest peak in the whole spectrum. The spectra are estimated

by Welch periodograms based on 30 s sliding 25 s overlapping

segments of PCA components. If none of the principal

component accounting for more than 5% of the total variance

has a significant periodic component in the respiration interval,

no respiration signal is extracted.

2.5 Orthogonal subspace projection

To extract variations in the f-wave frequency trend that are

linearly related to the respiration, an orthogonal subspace

projection approach is employed (Chang, 2005). The demeaned

f(n) denoted as ~f(n) is projected onto a subspace defined by the

matrix V, constructed using the respiratory signal r(n),

V � r0, r1, . . . , rd, . . . , rm[ ], (5)
rd � r 1 + d( ), r 2 + d( ), . . . , r N −m + d( ){ }T, (6)

The model order m is determined by analysis of the simulated

data (cf. Section 3.1). After creating the matrix V, the signal ~f(n)
is projected onto the respiratory subspace using

f x � V VTV( )−1VTf � Pf , (7)

where f is a length N vector of ~f(n), P is the projection matrix of

size N − m × N − m, and fx is the component of f that is linearly
related to respiration. The power of the variations linearly related

to respiration (fux f x) is a fraction of the total power of the

variations (fuf). Assuming that the variations in fx are sinusoidal,
the peak-to-peak amplitude is given by

Δ�fOSP �
									
2 · fux f x( )

N

√
, (8)

In the present study, Δ�fOSP serves as an estimate of the

magnitude of the respiratory induced f-wave frequency

variations.
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2.6 Performance evaluation

Simulated f-wave signals were used in order to assess the

performance of the orthogonal subspace projection approach

and its dependence onmodel orderm (Section 2.5), signal quality

S (Section 2.3) and characteristics of the f-wave signals. The

f-wave signals were simulated by a modified version of the saw-

tooth model proposed by (Stridh and Sörnmo, 2001). The f-wave

signal is the sum of a sinusoid and its harmonic with time-

varying frequency

xsim n( ) � ∑2
k�1

Ak n( )sin 2πkF n( )n( ) + v n( ), (9)

F n( ) � F

Fs
+ ΔF
2πFrn

sin 2πn
Fr

Fs
( ) + Φ n( )

2πkn
, (10)

where F defines the average fundamental frequency, and

respiratory f-wave frequency variation is quantified by Fr and

ΔF, defining the variation frequency and the variation

magnitude, respectively. To incorporate other forms of

variation in the f-wave frequency, random phase variation,

Φ(n), is added; it is modeled as white Gaussian noise with

standard deviation σΦ. The amplitude of the k:th harmonic is

given by

Ak n( ) � 2
kπ

A + ΔA n( )( ), (11)

where A is the average f-wave amplitude, and ΔA(n)
quantifies random amplitude variation and is assumed to have

a Gaussian distribution with mean zero and standard deviation

A/5; the parameter A was chosen to obtain a signal standard

deviation of signal σx equal to 50. The following parameters were

used for simulating oneminute-long f-wave signals: F = {4, 5, 6, 7,

8, 9, 10} Hz, Fr = {0.1, 0.15, 0.20, 0.25, 0.30} Hz, ΔF = {0, 0.025,

0.05, . . . , 0.3} Hz, σΦ = {0.27, 0.40, 0.55, 0.67, 0.80}. White

Gaussian noise v(n) with σv = {0.1A, 0.2A, 0.3A, 0.4A, 0.5A} is

added to form realistic f-wave signals and the sampling frequency

was set to Fs = 50 Hz. Ten realizations of xsim(n) for each

parameter setting were considered, resulting in a total of

113,750 simulated signals.

Through these simulated signals, the accuracy of Δ�fOSP as an

estimate ofΔF is compared to our previously proposed band-pass

filtering approach to quantify respiratory induced variations in

the f-wave frequency trend (Abdollahpur et al., 2021). In that

method, respiratory variation is estimated by applying a narrow

band-pass filter with a fixed bandwidth of 0.06 Hz and a center

frequency corresponding to the Fr. The f-wave frequency trend

f(n) obtained as described in Section 2.3. The average envelope of

the filtered f(n), denoted Δ�fBP, is used to quantify the magnitude

of the respiratory variation. The absolute difference between ΔF
and Δ�fBP, denoted as ϵBP, and the absolute difference between

ΔF and Δ�fOSP denoted as ϵOSP are used to assess the performance

of the methods.

2.7 Statistical analysis

Results are presented as mean ± std, and as median (range)

for Gaussian and non-gaussian variables, respectively; the

Lilliefors test is used to test for gaussianity. Student’s t-test

and Wilcoxon signed-rank test are applied to determine if

differences are significant for Gaussian and non-gaussian

variables, respectively. Hence, a paired t-test is applied to

evaluate the difference between ϵOSP and ϵBP, and a Wilcoxon

signed-rank test is applied to determine whether differences in

HR, AFR, and ΔfOSP between baseline and deep breathing are

significant. Further, Spearman rank correlation is used to

evaluate the relationship between changes in HR, AFR, and

ΔfOSP in response to deep breathing. The level of statistical

significance is considered p < 0.05.

3 Results

3.1 Simulations

Results from the analysis of simulated data are presented

in Figures 2–5. From Figure 2, it is apparent that the smallest

ϵOSP was achieved for m = 15, and hence, m was set to 15 for

the remaining analysis. The effect of the time-varying

respiration is illustrated in Figure 3 where Fr changes from

0.1 to 0.3 Hz during 1 minute. As shown in Figure 3, the

FIGURE 2
Mean estimation error ϵOSP from simulation plotted versus
model order m.
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respiratory variations can be accurately extracted using the

orthogonal subspace projection approach, while the

previously proposed bandpass filtering approach fails. The

ϵOSP was significantly smaller than ϵBP (0.017 ± 0.012 vs.

0.021 ± 0.015, p < 0.001). The improved accuracy obtained

with the orthogonal subspace projection approach is more
prominent for lower values of S, corresponding to higher

noise levels, cf. Figure 4. The accuracy of the estimates was

FIGURE 3
(A) Simulated signal xsim(n) and (B) corresponding estimated frequency trend f(n), respectively. (C,D) Modeled respiration signal (red) and
extracted respiratory component (blue) obtained using (C) orthogonal subspace projection and (D) bandpass filtering.

FIGURE 4
Box-plot of ϵBP (red) and ϵOSP (blue) from simulation as a
function of signal quality S. (p) denotes significant differences
(p <0.05).

FIGURE 5
Mean estimation error ϵOSP (red) and ϵBP (blue) from
simulations plotted versus the magnitude of respiratory
modulation ΔF.
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not affected by the f-wave frequency and the respiration rate

(results not shown). However, for both approaches the

estimates were less accurate for respiratory variations of

small magnitudes (Δf < 0.075 Hz), cf. Figure 5.

3.2 Heart rate and f-wave frequency

An example of a 30-second f-wave signal x(n) and the

corresponding model signal s (n; θ), signal quality index S,
and extracted f-wave frequency trend f(n) is displayed in

Figure 6. The signal quality was sufficient (S > 0.3) for

estimation of f(n) in 98% of the data. The AFRB was 6.93

(4.65–6.97) Hz and AFRD was 6.94 (4.56–6.99) Hz, a paired

t-test showed no significant difference between baseline and

deep breathing. The HRB was 75.5 (37–150) bpm and HRD

was 74 (37–146) bpm; there were no significant differences

between baseline and deep breathing. The changes in AFR

versus changes in HR are displayed in Figure 7. The changes

in AFR range between −8 and 6%, and the changes in HR

range between −9 and 5%. There was a weak correlation

between changes in HR and changes in AFR (r = 0.38, p <
0.03). The linear dependence between changes in HR and

changes in AFR appears to be more pronounced for patients

where the heart rate decreases in response to deep breathing,

cf. Figure 7.

3.3 Respiration

Figure 8 gives an example of extracted respiratory signals

rl(n) and the corresponding principal components for one

patient during deep breathing. In this example, both rPC1(n)
and rPC2(n) have a significant periodic component according to

definition in Section 2.4. The rPC1(n) is selected as respiration

signal (r(n)) since it has the largest variance. Respiration signals

r(n) could be obtained from 118 out of 168 (70%) of the analyzed

1-min segments. The estimated respiration rate Fr was

FIGURE 6
(A) Extracted f-wave signal x(n), and (B) corresponding modeled signal s(n), (C) signal quality index S and (D) extracted f-wave frequency trend
f(n) obtained from a 30 s ECG segment from one of the patient at baseline.
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significantly higher at baseline (0.20 ± 0.06) Hz than during deep

breathing (0.10 ± 0.01) Hz; the Fr estimated during deep

breathing corresponded to the respiration frequency in

controlled of the study protocol.

3.4 Respiratory f-wave variation

The Δ�fOSP could be obtained from all 1-min segments with a

valid respiration signal, i.e., 118 out of 168.; these estimates are

displayed in Figure 9. The ΔfOSP
B was 0.130 (0.045–0.260) Hz

and ΔfOSP
D was 0.130 (0.056–0.230) Hz. A paired t-test showed

no significant differences between baseline and deep breathing.

The changes in Δ�fOSP from phase from baseline to deep

breathing plotted versus the corresponding changes in the

AFR in Figure 10. The changes ranged from −100 to 100% for

Δ�fOSP. The Spearman method showed no correlation between

changes in Δ�fOSP and changes in the AFR.

FIGURE 7
Relative changes between AFRD and AFRB plotted versus
relative between HRD and HRB

FIGURE 8
(A) Respiration signals rl(n) (blue line) and rl(i) (red dots) derived from 1-min ECG during deep breathing and (B) corresponding PCA components.
In this example r(n) is set to rPC1(n) since it has a significant periodic component and accounts for most of the total variance.
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4 Discussion

In the present study, we propose a novel methodology, based

on orthogonal subspace projection, for quantifying respiratory

variations in the f-wave frequency trend. Results from analysis of

simulated data show that the estimation accuracy of the proposed

approach is comparable to that of our previously proposed

bandpass filtering approach (Abdollahpur et al., 2021).

However, the proposed approach is better suited for analysis

of standard ECG recordings since it can handle time-varying

respiration (Figure 3) and provides more accurate estimates of

respiratory variations at low SNR (Figure 4).

Orthogonal subspace projection has previously been

proposed for removing respiratory influences in heart rate

variability signal for improved estimation of sympathovagal

balance (Varon et al., 2018). In contrast, in this study we

aimed to keep variations in f-wave frequency trend that were

linearly related to respiration and remove other variations. Such

respiratory–induced f-wave frequency variations have previously

been shown to be affected by parasympatetic regulation in a

cohort of AF patients with complete AV block and pacemaker set

at a fixed pacing rate (Abdollahpur et al., 2021).

The orthogonal subspace projection relies on an ECG-derived

respiration (EDR) signal. It should be noted that standard RR

interval-based algorithms for ECG-derived respiration (Widjaja

et al., 2014) are not applicable during AF since variations in

heart rate during AF do not originate from the sinus node.

Hence, the slope range method was selected for this since

previous studies (Kontaxis et al., 2019) has shown that this

method is robust during AF and provides more accurate

estimates compared to QRS loop rotation angle (Bailón et al.,

2006) and the R-wave angle (Lázaro et al., 2014). In the slope range

method f-wave suppression is not needed and its performance is

less affected by the presence of f-waves (Kontaxis et al., 2019). An

EDR signal is derived from each lead separately, and PCA is

employed to merge respiratory information from EDR signals

from different leads. It is assumed that the PCA component that

has a significant periodicity in the 0.1–0.4 Hz interval and accounts

for the largest part of the variations in the EDR signals contains the

respiratory information. Respiration signals couldn’t be obtained

from 30% of the analyzed 1-min segments due to criteria defined in

Section 2.4. Since this methodology aimed for the effect of time-

varying respiration on the f-wave frequency, we used PCA to find

respiration signal. The PCA uses a maximum-variance criteria to

separate respiration signal and noise into orthogonal subspaces. Its

components are sensitive to the high variance noise, whichmay not

be the best way to find respiration signals. An alternative solution

would be to use periodic component analysis (Saul and Allen,

2000), which has previously been proposed for decomposition of

multilead ECG (Sameni et al., 2008) and applied for analysis of, e.g.,

t-wave alternans (Monasterio et al., 2010; Palmieri et al., 2021).

Whereas PCA uses a maximum-variance criteria to decompose

signals, periodic component analysis maximizes the periodic

structure. Periodic component analysis has the advantage of

being less sensitive to large amplitude noise, however, it is

requires prior knowledge on the periodicity of the desired signal.

Respiratory induced f-wave frequency variations has previously

been shown to be affected by parasympathetic regulation. In our

previous study, (Abdollahpur et al., 2021), 5-min ECGs recorded

from eight patients during controlled respiration before and after full

vagal blockade were analyzed; in 50% of the patients, respiratory

variation was significantly reduced after the vagal blockade.

Moreover, results from computational simulations of human

FIGURE 9
Estimates of respiratory f-wave frequency variations ΔfOSP

B

(black circle) and ΔfOSP
D (red p) from all 1-min segments for each

patient.

FIGURE 10
Relative change between ΔfOSP

B and ΔfOSP
D plotted versus

relative change between AFRB and AFRD.

Frontiers in Physiology frontiersin.org09

Abdollahpur et al. 10.3389/fphys.2022.976925

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.976925


atrial tissues confirmed that the pattern of the parasympathetic

neurotransmitter acetylcholine release could be an important factor

involved in f-wave frequency variation (Celotto et al., 2020). These

results suggest that respiratory f-wave frequency variations can

potentially be used to quantify ANS activity, which is of clinical

interest since ANS activity is an important factor on the

maintenance and progression of AF (Linz et al., 2019). For

example, vagus nerve stimulation has been shown to shorten the

atrial effective refractory period and suppress autonomic remodeling

in dogs with obstructive apnea induced AF (Yu et al., 2017). Further,

it has been shown that AF progression through cellular remodeling

could be reduced by minimizing sympathetic or increasing

parasympathetic tone (Bashir et al., 2019). In a recent study

(Sohinki et al., 2021), investigated the impact of low-level

electromagnetic fields (LL-EMF) which is specifically targeted for

vagal stimulation, on AF inducibility in humans.

In present study no significant differences were found between

f-wave frequency variations at baseline and during deep breathing.

Several factors could contribute to this observation. Firstly, the

duration of the deep breathing task was just 1 min which may

not be sufficient time to observe the effect of changes in autonomic

tone on the f-wave frequency trend. Further, considering the large

variation ofΔ�fOSP from the 1-min segments at baseline (cf Figure 9),

recordings of longer duration during deep breathing are desired for

robust estimation. Secondly, the heterogeneous behavior of changes

in Δ�fOSP in response to deep breathing may be due to individual

differences in AF progression which may effect the ANS regulation

(Linz et al., 2019). The patients in the present study have paroxysmal

and persistentAFwith unknownduration.However, due to the small

study population subgroup analysis is not possible. Thirdly, the

fluctuations in intrathoracic pressure as a result of respiration

have an important effect on the heart rate during normal sinus

rhythm. The effect of these fluctuations on the heart rate during AF

are largely unknown. It is possible that variations in heart rate

counteract the impact of respiration on the fluctuations in

acetylcholine level in the atrial tissues and, as a result, the f-wave

frequency variation. In the previous study, the effect of the

parasympathetic activity was investigated in a cohort of AF

patients with complete AV block and fixed-rate (60 beat/min)

pacemaker (Abdollahpur et al., 2021) and hence the effect of

changes in ANS activity induced by variations in heart rate was

eliminated. In contrast, the present dataset consists of patients

without a pacemaker. Finally, it should be noted that the

estimation accuracy of the proposed methodology sets a lower

bound for changes that can be detected (cf. Section 3.1), and we

cannot exclude the possibility that there are changes below this limit

that remain undetected.

5 Conclusion

We propose a novel orthogonal subspace projection

approach to quantify respiratory variations in the f-wave

frequency trend obtained from the ECG during AF. Results

from simulated f-wave signals show that the proposed

approach offers more robust performance in respiratory

variation estimation compared to the previously proposed

bandpass filtering approach. Results from analysis of clinical

data were heterogeneous and no significant differences in HR,

AFR and respiratory f-wave frequency variations Δ�fOSP between

baseline and deep breathing were found in SCAPIS dataset.
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