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Background: Accurate localization and classification of intracerebral

hemorrhage (ICH) lesions are of great significance for the treatment and

prognosis of patients with ICH. The purpose of this study is to develop a

symmetric prior knowledge based deep learning model to segment ICH

lesions in computed tomography (CT).

Methods: A novel symmetric Transformer network (Sym-TransNet) is designed

to segment ICH lesions in CT images. A cohort of 1,157 patients diagnosed with

ICH is established to train (n = 857), validate (n = 100), and test (n = 200) the

Sym-TransNet. A healthy cohort of 200 subjects is added, establishing a test set

with balanced positive and negative cases (n = 400), to further evaluate the

accuracy, sensitivity, and specificity of the diagnosis of ICH. The segmentation

results are obtained after data pre-processing and Sym-TransNet. The DICE

coefficient is used to evaluate the similarity between the segmentation results

and the segmentation gold standard. Furthermore, some recent deep learning

methods are reproduced to compare with Sym-TransNet, and statistical

analysis is performed to prove the statistical significance of the proposed

method. Ablation experiments are conducted to prove that each component

in Sym-TransNet could effectively improve the DICE coefficient of ICH lesions.

Results: For the segmentation of ICH lesions, the DICE coefficient of Sym-

TransNet is 0.716 ± 0.031 in the test set which contains 200 CT images of ICH.

The DICE coefficients of five subtypes of ICH, including intraparenchymal

hemorrhage (IPH), intraventricular hemorrhage (IVH), extradural hemorrhage

(EDH), subdural hemorrhage (SDH), and subarachnoid hemorrhage (SAH), are

0.784 ± 0.039, 0.680 ± 0.049, 0.359 ± 0.186, 0.534 ± 0.455, and 0.337 ± 0.044,

respectively. Statistical results show that the proposed Sym-TransNet can

significantly improve the DICE coefficient of ICH lesions in most cases. In

addition, the accuracy, sensitivity, and specificity of Sym-TransNet in the

diagnosis of ICH in 400 CT images are 91.25%, 98.50%, and 84.00%,

respectively.
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Conclusion: Compared with recent mainstream deep learning methods, the

proposed Sym-TransNet can segment and identify different types of lesions

from CT images of ICH patients more effectively. Moreover, the Sym-TransNet

can diagnose ICH more stably and efficiently, which has clinical application

prospects.

KEYWORDS

intracerebral hemorrhage, lesion segmentation, deep learning, symmetric knowledge,
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Introduction

Intracerebral hemorrhage (ICH) is one of the most

devastating subtypes of stroke, accounting for 10%–20% of all

stroke cases (Zhao et al., 2020). ICH is commonly caused by

trauma, hypertension, and vascular malformation, and more

than half of the ICH patients have a long-term disabilities

(Rindler et al., 2020). According to symptom onset time, the

patients are divided into hyperacute stage (≤6 h), acute stage

(7–72 h), subacute stage (3 days–2 weeks), and chronic stage

(after 2 weeks) (Vijayan and Reddy, 2016). Depending on the

hemorrhage site, ICH can be divided into five types, which

include intraparenchymal hemorrhage (IPH), intraventricular

hemorrhage (IVH), extradural hemorrhage (EDH), subdural

hemorrhage (SDH), and subarachnoid hemorrhage (SAH)

(Chilamkurthy et al., 2018). Different bleeding types

determine the treatment plan and prognosis of patients.

Therefore, accurate detection and classification of ICH are of

great significance for saving the life and neurological function of

patients (Li et al., 2021).

Neuroimaging is an important tool for the detection,

characterization, and prediction of acute stroke, including

ischemic and hemorrhagic subtypes (Lee et al., 2019).

Computed tomography (CT) is the first choice for

emergency diagnosis of ICH due to its high imaging speed

(Chan, 2007). However, reading and analyzing a large amount

of CT images is time-consuming and tricky work for clinic

doctors, which increases the possibility of missed diagnosis and

misdiagnosis (Cho et al., 2019). At present, emergency

craniocerebral CT diagnosis, especially on the night shift, is

mostly provided by the junior radiologist, and then reviewed by

the senior radiologist (Lal et al., 2000; Erly et al., 2002). Several

studies have shown that initial diagnosis provided by junior

radiologists has different degrees of missed diagnosis and

misdiagnosis (Erly et al., 2002). However, due to the high

variability of the location, contrast, and shape of bleeds,

accurate localization of them can be challenging and time-

consuming even for experienced radiologists. In addition, due

to limited medical conditions and resources in some

underdeveloped areas, patients with ICH cannot receive an

accurate diagnosis and timely treatment the first time, resulting

in a threat to patients life. Therefore, it is very important to

diagnose and classify ICH timely and accurate (Li et al., 2021).

Artificial intelligence (AI) technology is a rapidly developing

field, which is regarded as a promising approach for fast and

efficient image analysis (He et al., 2016; Li Y. et al., 2022). In

recent years, AI has been applied in the medical imaging field of

acute cerebrovascular diseases, including as a tool for

classification, quantification, monitoring, and prediction

(Ironside et al., 2019; Sun et al., 2020; Zhu et al., 2020). The

convolutional neural network (CNN) is one of the representative

deep learning algorithms that utilize image high-dimensional

digital information by extracting image features (Badrinarayanan

et al., 2017; Roy et al., 2019). In the field of medical image

segmentation, the U-shaped network (U-Net) is one of the most

representative convolutional neural networks (Ronneberger

et al., 2015). In several years, many deep learning methods

based on convolutional neural networks have been

successfully applied to ICH lesion segmentation and achieved

relatively ideal results. Inkeaw et al. proposed a 3D convolutional

neural network, which processes CT images with different

resolutions through four parallel paths, and segments different

types of bleeding lesions through the region-growing method.

The median DICE coefficient of segmentation for each bleeding

subtype was higher than 0.37 (Inkeaw et al., 2022). Xu et al.

(2021) adopted the densely connected U-Net architecture to test

on nearly 300 ICH images and achieved a DICE coefficient of

0.89. Nevertheless, IVH and SAHwere not included in this study.

A supervised multi-task aiding representation transfer learning

network (SMART-Net) was proposed to overcome the complex

training process of the current deep learning model and the

inefficient prediction accuracy on the patient’s level (Kyung et al.,

2022). Kwon et al. (2019) utilized a healthy brain template as

auxiliary information for segmentation and employed U-Net to

capture the difference between the input CT image and healthy

template to segment ICH lesions more efficiently. The generative

adversarial network (GAN) is also a common approach used in

medical image segmentation tasks. A residual segmentation

method with GAN (ReSGAN) was designed to learn a

distribution of pseudo-normal brain CT scans and delineate

the hemorrhaging areas (Toikkanen et al., 2021). To capture

the interaction information between adjacent hematoma slices in

CT images, Li et al. designed a slice expansion module and

proposed two information transmission paths to expand the

forward/backward slice respectively (Li X. Y. et al., 2022). The

complicated annotation process of ICH lesions in CT images is
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one of the important factors which restricts the segmentation

performance of the deep learning model. In order to make

efficient utilization of unlabeled data, the semi-supervised

learning approach such as the mean-teacher framework has

also been transplanted by researchers for lesion segmentation

(Cui et al., 2019).

However, the lesions of some hemorrhage types, such as

SAH, are extremely extensive in the brain. The CNN-based

methods which utilize local convolution kernel to obtain

image features are difficult to effectively capture the long-

distance dependencies in CT (Guo and Terzopoulos, 2021;

Huang et al., 2022). Currently, the combination of the

Transformer structure and CNN has been proven to be

beneficial for capturing long-distance dependencies in images,

which inspired us to use the Transformer structure for the

segmentation of ICH lesions in this paper (Liu et al., 2020).

In addition, the structure of the brain is roughly symmetrical

(Liang et al., 2021). In a hemorrhagic stroke, this symmetry is

commonly broken. Therefore, the symmetry change of brain

structure can also be utilized for the segmentation of ICH lesions

in CT images.

To solve the problem that the traditional CNN-basedmethods

are difficult to capture the long-distance dependencies of CT

images and the insufficient utilization of the symmetric

structure of the brain, we proposed a novel deep learning

method called symmetric Transformer network (Sym-

TransNet) in this paper. The Sym-TransNet combines the

Transformer structure with the traditional U-Net and adopts

the symmetry prior knowledge in the network, which effectively

improves the accuracy of segmentation and classification of ICH,

reducing the workload of clinicians and providing a certain clinical

basis for timely and accurate treatment of patients with ICH.

Materials and methods

In this retrospective study, a large number of CT images were

collected clinically for training and testing of the proposed Sym-

TransNet. Then we calculate the performance indicators of the

proposed Sym-TransNet in the segmentation and diagnosis task

of ICH, and visualize the results. The specific process is shown in

Figure 1. Ethical approval for this study was waived by The

Medical Ethics Committee of The First People’s Hospital of

Kashi Prefecture because this study used anonymous data

which was collected as part of routine diagnosis and treatment.

Patients

A consecutive non-contrast head CT dataset, which

retrospectively enrolled 1,157 patients who were diagnosed

with ICH from January 2019 to April 2022 at the First

People’s Hospital of Kashi Prefecture, was established in this

study for the training, validation, and test of our proposed deep

learning model. We developed three patient inclusion criteria as

follows: 1) patients (age≥18 years) who were diagnosed with

ICH; 2) the diagnoses coincided with non-contrast head CT

scans and radiology reports; 3) the CT scans were performed

within 3 days after onset of symptoms. In addition, we also

integrated three exclusion criteria: 1) patients who refused to

sign informed consent; 2) CT Scans with excessive motion/

artifacts (image quality not suitable for ICH diagnosis); 3)

patients with both hemorrhagic and ischemic strokes. In

addition, CT scans of 200 healthy subjects were collected to

evaluate the diagnostic specificity of our deep learning model.

These CT scans were obtained during the physical examination

FIGURE 1
The workflow of the study.
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in the First People’s Hospital of Kashi Prefecture from September

2019 to April 2022.

Data collection and annotation

All CT scans diagnosed with ICH utilized in this research were

obtained by CT scanners produced by Siemens, Philips, United

Imaging, and General Medical System. The slice thickness of the

CT scans is mainly 5 mm. Specifically, the numerical distribution

of themanufacturermodel name in our ICH dataset is displayed in

Figure 2. The dataset contained 678 male and 478 female patients

with intracerebral hemorrhage, and the gender of one scan was

unknown. In our ICH dataset, CT slices of 857 patients are

adopted to train the deep learning model, CT slices of

100 patients are used to adjust parameters during the training

stage, and CT slices of 200 patients are employed to evaluate the

overall segmentation performance. After anonymizing sensitive

information in original DICOM (Digital Imaging and

Communications in Medicine) data, lesions in five sub-types of

ICH, including IPH, IVH, EDH, SDH, and SAH, were annotated

by six experienced radiologists. Based on the above stages, two

senior neurologists with more than 5 years of experience corrected

the mislabeling of preliminary lesion annotations and further

refined the outline, location, and categories of hemorrhage

lesions. The final segmentation gold standard was determined

by senior neurologists after reaching a consensus.

Data pre-processing

To better adapt to the training stage of the deep learning

network, we pre-process the CT images in our dataset. Specifically,

the window level (WL)/window width (WW) of each CT image is

set as 50/100 and normalized to have zero mean and unit variance

(Yu et al., 2022). To reduce the consumption of computing

resources, the size of each CT slice is resized to 512 × 512. In

the test stage, all segmentation results obtained by the proposed

model are upsampled to the original size for performance index

calculation. Furthermore, some CT slices in the dataset are

randomly flipped horizontally to increase the diversity of the

training data. Due to the head position of the patient during

the CT scan is not uniquely deterministic, the reconstructed brain

structure in the CT slice is usually not horizontally symmetrical.

To effectively utilize the medical prior knowledge that the brain

structure is symmetrical, the symmetry-based alignment network

(Wang et al., 2020) is utilized in this study to horizontally align the

brain in all CT slices. As shown in Figure 3, the brain structure in

the CT slice is transformed from asymmetric to horizontal

symmetry after being processed by the alignment network.

FIGURE 2
Distribution of CT information in the dataset. (a) Distribution of patient sex. O: unknown; F: female; M:male. (b) Distribution of themanufacturer
model name.
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Symmetric prior knowledge-based deep
learning model

The convolutional neural network, which obtains high-level

features in images through the convolution kernels and the

down-sampling operation, is an efficient deep learning model

utilized in various research fields. In the field of medical image

segmentation, the U-Net is one of the most representative

convolutional neural networks. The U-Net extracts and

restores image features through interconnected codec paths,

and has satisfactory performance in different segmentation

tasks (Ibtehaz and Rahman, 2020). As shown in Figure 4, the

proposed deep learning model is based on the U-Net framework,

containing an image encoding path and an image decoding path.

FIGURE 3
The diagram of the CT slice alignment through symmetric based alignment network.

FIGURE 4
The framework of the proposed Sym-TransNet.
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The bottom of the two paths is connected by a symmetric

Transformer. We name this network the symmetric

Transformer network (Sym-TransNet). The image

preprocessed by the alignment network, which is regarded as

the input of our Sym-TransNet, is transformed into a tensor of

size B × C × H × W by the 3 × 3 convolution kernel, where B is

the batch size which is pre-set in the training stage, C is the

number of image channels, and H and W are the height and

width of the image. In this paper, parameters B, C,H, andW are

set to 64, 64, 512, and 512, respectively. The encoding path

captures the high-level semantic information in CT images by

using continuous 3 × 3 convolution and max-pooling and finally

generates image features with the size of B × 8C × H
8 × W

8 .

The structure of the brain is roughly symmetrical. When a

hemorrhagic stroke occurs, this symmetry is destroyed.

Therefore, we can segment the bleeding area by capturing

changes in symmetry in the brain CT image. However, the

CNN which employs local convolution kernels is difficult to

efficiently capture the long-distance symmetric relations in CT

images. In recent years, the Transformer structure becomes a

powerful approach for capturing long-distance dependencies in

images and has achieved great success in computer vision tasks.

Based on the medical prior knowledge that the brain structure is

symmetrical, we propose a new Transformer structure named

symmetrical Transformer to model long-distance symmetric

relations in brain CT images. The structure of the proposed

symmetrical Transformer is shown in Figure 5. We regard the

image featureX obtained from the coding path as the input of the

symmetric Transformer, and then flip it horizontally to get the

flipped feature ~X. The feature embedding and the layer

normalization are employed to map the above two features

into sequence features Z and ~Z, which are both adapted to

the Transformer structure. From Figure 5, the symmetrical

Transformer mainly consists of two parts: the multi-head self-

attention MHSA(·) and multi-layer perceptron MLP(·). The
input Q, V, and K of the MHSA can be calculated as follows:

Q � ZWQ (1)
V � ZWV (2)
K � Z̃WK (3)

where the WQ, WV, and WK are learnable parameters, called a

query transform matrix, a value transform matrix, and a key

transform matrix, respectively. Further, the output of the MHSA

XMHSA can be calculated as:

XMHSA � Softmax(QKT��
d

√ )V (4)

where d is a scaling factor that can solve the small gradient of the

Softmax function. Thus, the output of the symmetrical

Transformer Y can be represented as follows:

Y � Reshape(MLP(LN(~Y)) + ~Y) (5)
~Y � XMHSA + Feature Embedding(X) (6)

where Reshape(·), MLP(·), LN(·), and Feature Embedding(·)
denote image reshape operation, multi-layer perceptron, layer

normalization, and feature embedding operation.

The features processed by the symmetrical Transformer are

fed to the decoding path, and the image features are restored to

the original resolution through continuous convolution

operation and upsampling operation. Similar to the traditional

FIGURE 5
The diagram of the symmetrical Transformer.
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U-Net, we adopt a skip connection between the encoding path

and decoding path to obtain multi-scale features. Finally, 1 ×

1 convolution and softmax function are utilized to generate the

final segmentation result.

Model training and evaluation metrics

The proposed Sym-TransNet is implemented based on

PyTorch deep learning framework and is trained and

evaluated on 4 NVIDIA RTX graphic cards. In the training

stage, the Adam optimizer is adopted to optimize model

parameters. In addition, cross-entropy and DICE loss

functions are used to measure the distance between the

segmentation results of the deep learning model and the

golden standards during gradient backpropagation. We set

the initial learning rate as 1 × 10−5 and the parameter weight

decay as 1 × 10−3, then utilize the exponential decay strategy

to dynamically adjust the learning rate to avoid the local

minimum. We set the maximum training epoch as 100,

selecting the model with the best performance in the

validation set to conduct performance evaluation on the

test set.

In the test stage, the DICE coefficient is employed to evaluate

the accuracy of the segmentation of ICH lesions. Assuming P is

the prediction result of our proposed Sym-TransNet and G is the

segmentation gold standard, the DICE coefficient can be

calculated as:

DICE � 2 × |P ∩ G|
|P ∪ G| (7)

In addition to calculating the DICE coefficient of lesion

segmentation, we also evaluate the accuracy (Acc), sensitivity

(Sen), and specificity (Spe) of the proposed Sym-TransNet on the

ICH diagnosis task. The diagnosis results are divided into four

categories: true positive (TP), true negative (TN), false positive

(FP), and false negative (FN). Thus, the Acc, Sen, and Spe can be

calculated as follow:

Acc � TP + TN

TP + FP + TN + FN
(8)

Sen � TP

TP + FN
(9)

Spe � TN

TN + FP
(10)

Statistical analysis

To statistically analyze the segmentation results obtained by

the deep learning model, we utilized Wilcox rank-sum test to

conduct pair-wise statistical tests (on DICE coefficient) between

the proposed Sym-TransNet and several existing deep learning

methods which are widely used in medical imaging (Wu et al.,

2021). All of the statistical analysis in this paper was

implemented in Python. We defined that the two methods

were statistically different when the p-value <0.05.

Results

Satisfactory performance of Sym-
TransNet for ICH lesion segmentation

After the parameters of the proposed Sym-TransNet are

optimized on the training dataset, we evaluate the

performance on the test dataset. To demonstrate that the

proposed method has satisfactory segmentation performance

compared with existing deep learning models, we faithfully

reproduce several approaches commonly utilized in the field

of medical image processing in recent years for comparison,

including the U-Net, the U-Net with the dilated convolution

(DU-Net) (Yu et al., 2017), the U-Net with SE block (SEU-Net)

(Roy et al., 2019), the Dual-Attention Network (DA-Net) (Fu

et al., 2019), and the High-Resolution Network (HR-Net) (Sun

et al., 2019; Wang et al., 2021). The performance of the above

methods in the segmentation of ICH lesions and the

segmentation of five subtypes of ICH lesions is listed in

Table 1. As shown in Table 1, our Sym-TransNet achieves an

average DICE of 0.716, where the 95% confidence interval (95%

CI) is 0.685–0.747, on the test dataset containing 200 patients

with ICH, which is the best performance compared with the

current methods in Table 1. Furthermore, for the segmentation

of different subtypes of ICH lesions, the average DICE of IPH,

IVH, EDH, SDH, and SAH by the Sym-TransNet is 0.784 (95%

CI: 0.745–0.824), 0.680 (95% CI: 0.631–0.730), 0.359 (95% CI:

0.173–0.545), 0.534 (95% CI: 0.455–0.613), and 0.337 (95% CI:

0.293–0.382). In terms of IPH segmentation, the HR-Net is the

model with the highest DICE among the comparison methods in

Table 1, and our Sym-TransNet has improved by 0.26 on this

basis. In the IVH case, the Sym-TransNet reaches the highest

DICE score of all methods and 0.26 higher than the second-place

method HR-Net. In addition, compared with other methods, the

segmentation DICE coefficient of our method in EDH and SDH

has been significantly improved. The reason why the

performance of SDH and EDH is not as satisfactory as IPH

and IVH are that the two kinds of bleeding lesions are close to the

skull, resulting in the symmetry prior knowledge is not

significantly beneficial to distinguishing the two kinds of

lesions when they appear at the same time. As the lesions of

SAH are very irregular in shape and often diffuse into the sulci,

the traditional CNN methods based on local information

modeling have low segmentation performance for SAH. The

Sym-TransNet has improved the segmentation of SAH

compared with the method based on CNN alone because of

the combination of the Transformer structure that can capture
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the long-distance dependencies in the CT scan. The HR-Net is

the best method among the compared methods for SAH

segmentation because the multi-resolution method utilized in

HR-Net captures more global information in SAH than other

CNN-based methods. Compared with the HR-Net, the proposed

Sym-TransNet further improves the DICE coefficient of 0.2 on

SAH, indicating that the Transformer structure is effective in the

segmentation of SAH.

In addition to the DICE coefficient comparison, to more

intuitively demonstrate the effectiveness of our method, the

segmentation results of some ICH are also visualized in

Figure 6. As far as the segmentation of cerebral hemorrhage

lesions is concerned, the proposed Sym-TransNet can obtain the

edges of lesions more consistent with manual labeling and can

detect some small lesions missed by other methods. For IPH and

IVH segmentation, when parenchymal hemorrhage breaks into

TABLE 1 Segmentation performance of deep learning methods on ICH dataset.

Method Parameters
(1 × 106)

ICH lesions
(95% CI)

IPH
(95% CI)

IVH
(95% CI)

EDH
(95% CI)

SDH
(95% CI)

SAH
(95% CI)

U-Net 2.47 0.624 (0.587, 0.661) 0.688 (0.638,
0.738)

0.518 (0.457,
0.580)

0.222 (0.083,
0.361)

0.321 (0.239,
0.404)

0.245 (0.206,
0.284)

DU-Net 4.83 0.611 (0.573, 0.649) 0.674 (0.622,
0.725)

0.496 (0.432,
0.560)

0.119 (0.014,
0.224)

0.256 (0.171,
0.341)

0.226 (0.186,
0.265)

SEU-Net 2.47 0.629 (0.592, 0.666) 0.691 (0.642,
0.741)

0.538 (0.478,
0.598)

0.253 (0.101,
0.405)

0.381 (0.304,
0.459)

0.256 (0.216,
0.295)

DA-Net 26.97 0.669 (0.636, 0.702) 0.739 (0.695,
0.782)

0.605 (0.550,
0.660)

0.244 (0.112,
0.375)

0.434 (0.348,
0.520)

0.269 (0.227,
0.311)

HR-Net 17.12 0.686 (0.656, 0.717) 0.758 (0.715,
0.802)

0.654 (0.603,
0.706)

0.205 (0.046,
0.364)

0.531 (0.458,
0.606)

0.317 (0.306,
0.389)

Ours 43.06 0.716 (0.685, 0.747) 0.784 (0.745,
0.824)

0.680 (0.631,
0.730)

0.359 (0.173,
0.545)

0.534 (0.455,
0.613)

0.337
(0.293,0.382)

FIGURE 6
Visual comparison of segmentation results. The red, green, yellow, and blue pixels represent lesions of IPH, IVH, SDH, and SAH.
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the ventricle, the Sym-TransNet can more clearly define the

interface between the two types of hemorrhage at the ventricle.

For EDH and SDH, the Sym-TransNet reduces the risk of

misidentifying the skull as bleeding. In addition, compared

with other methods, our model can detect SAH diffusing in

sulci more sensitively.

We also conduct pairwise statistical tests (between the Sym-

TransNet and other methods) on the segmentation results of ICH

lesions and five hemorrhage subtypes, as shown in Table 2.

Except for EDH, the Sym-TransNet improves the

segmentation performance of the U-Net, DU-Net, and SEU-

Net with statistical significance (all p-values < 0.05). For DA-Net

and Sym-TransNet, p-values were all less than 0.05 in ICH lesion,

IPH, IVH, and SAH. For HR-Net, our Sym-TransNet improved

ICH lesion segmentation significantly, but there was no statistical

difference in the segmentation of the five bleeding subtypes.

Transformer and symmetric prior
knowledge improves the segmentation
accuracy

To prove the validity of the Transformer structure and

symmetric prior knowledge utilized in this paper, we conduct

ablation experiments for the Transformer structure and

symmetric prior knowledge. The results of the ablation

experiment are shown in Table 3. In the ablation experiment,

the original U-Net is regarded as the baseline method, and the

Transformer structure and symmetric prior knowledge are

combined to observe the changes in the segmentation

performance. As shown in Table 3, with the addition of the

Transformer structure, the DICE coefficient of ICH lesions is

significantly improved (from 0.624 to 0.691). In addition, the

DICE coefficient of five different subtypes of ICH lesions is also

increased (IPH: from 0.688 to 0.761, IVH: from 0.518 to 0.624,

EDH: from 0.222 to 0.233, SDH: from 0.321 to 0.451, SAH: from

0.245 to 0.284). The improved segmentation performance of

SAH lesions indicates that the combination of U-Net and

Transformer structure is beneficial to the network to capture

long-distance dependence in CT images and improve the

segmentation accuracy of irregular lesions. Furthermore, after

the fusion of symmetric prior knowledge, the segmentation

performance of ICH lesions is improved (from 0.691 to

0.716). The segmentation DICE of the five subtypes also

increase to different degrees (IPH increased by 0.023, IVH

increased by 0.056, EDH increased by 0.126, SDH increased

by 0.083, SAH increased by 0.053). The most obvious

improvement is in the segmentation of IPH lesions because

IPH contains abundant symmetric information (IPH lesions

usually only appear on one side of the brain tissue), which

TABLE 2 Statistical test results (p-value) between Sym-TransNet and other methods.

Methods types ICH lesions IPH IVH EDH SDH SAH

U-Net 2.95 × 10−5 1.09 × 10−5 4.63 × 10−5 2.6 0 × 10−1 8.20 × 10−4 3.89 × 10−3

DU-Net 7.06 × 10−6 2.84 × 10−7 9.73 × 10−6 1.19 × 10−1 9.25 × 10−5 5.19 × 10−4

SEU-Net 9.71 × 10−5 3.69 × 10−5 2.33 × 10−4 2.25 × 10−1 5.86 × 10−3 9.30 × 10−3

DA-Net 8.22 × 10−3 4.01 × 10−4 1.62 × 10−2 2.36 × 10−1 9.08 × 10−2 2.61 × 10−2

HR-Net 4.04 × 10−2 1.17 × 10−1 3.41 × 10−1 3.55 × 10−1 8.29 × 10−1 7.72 × 10−1

TABLE 3 Ablation results of Sym-TransNet.

Method ICH lesions
(95% CI)

IPH
(95%CI)

IVH
(95%CI)

EDH
(95%CI)

SDH
(95%CI)

SAH
(95%CI)

U-Net☑

Transformer☒ 0.624 (0.587, 0.661) 0.688 (0.638, 0.738) 0.518 (0.457, 0.580) 0.222 (0.083, 0.361) 0.321 (0.239, 0.404) 0.245 (0.206, 0.284)

Symmetric Prior☒

U-Net☑

Transformer☑ 0.691 (0.659, 0.723) 0.761 (0.719, 0.802) 0.624 (0.569, 0.678) 0.233 (0.086, 0.379) 0.451 (0.370, 0.533) 0.284 (0.242, 0.326)

Symmetric Prior☒

U-Net☑

Transformer☑ 0.716 (0.685, 0.747) 0.784 (0.745, 0.824) 0.680 (0.631, 0.730) 0.359 (0.173, 0.545) 0.534 (0.455, 0.613) 0.337 (0.293, 0.382)

Symmetric Prior☑
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indicates that the combination of symmetric information in the

network is conducive to the improvement of the segmentation

accuracy of ICH lesions. We visualize the results of the ablation

experiment in Figure 7. It can be seen from Figure 7 that the

combination of Transformer structure with U-Net results in

clearer edge details of lesions and reduced part of false

positive lesions. In particular, the Transformer structure

improves the segmentation result of the deep learning model

for SAH lesions which are widely distributed in the CT image,

and reduces false positives in U-Net segmentation results,

demonstrating that the Transformer structure can effectively

capture the long-distance dependencies in the CT image. In

addition, with the utilization of symmetric prior knowledge, the

segmentation results of IPH and IVH are closer to the gold

standard than the other two methods. As shown in Figure 7, the

use of symmetric prior knowledge also refines the interface

between IPH and IVH lesions, further improving the

segmentation performance of the model.

Sym-TransNet effectively diagnose
patients with ICH

Clinically, the accurate diagnosis of ICH is of great

significance for the follow-up treatment of patients. To

demonstrate that the proposed deep learning model can

sensitively detect patients with ICH while maintaining

considerable specificity, we analyze the accuracy, sensitivity,

and specificity of our model on 400 CT data (200 positive

cases and 200 negative cases). Specifically, after the model

obtains the segmentation results of the above 400 CT images,

we determine whether the model classifies the corresponding

data as ICH by calculating whether there are lesions in the

segmentation results. Assuming that the data is a positive case

and the segmentation result includes lesions, we record the

segmentation result of this case as true positive (TP), and vice

versa as false negative (FN). Assuming that the data is negative

cases and there is no segmented lesion in the output of ourmodel,

we record the segmentation result of this case as true negative

(TN), and otherwise as false positive (FP). As shown in Table 4,

for the 200 positive samples, 197 cases are correctly diagnosed

and only 3 cases are misdiagnosed as negative. Of the

200 negative samples, 168 are identified as negative and

32 were misdiagnosed as positive. Therefore, according to Eqs

8–10, we can calculate that the diagnostic accuracy, sensitivity,

and specificity of the proposed model are 91.25%, 98.5%, and

84%, respectively. We also evaluate the diagnostic performance

of the baseline method U-Net for ICH. The comparison of

performance indexes between the two methods is shown in

Table 5. Compared with the baseline method U-Net, the

proposed Sym-TransNet has improved accuracy, sensitivity,

and specificity (3%, 0.5%, and 5.5%, respectively), indicating

that our method can effectively improve the overall performance

of the ICH detection task based on the baseline model.

Discussion

In this study, we verify that the proposed Sym-TransNet has

better segmentation performance than the existing mainstream

deep learning methods in the segmentation of ICH lesions and

the segmentation of five ICH subtypes. Compared with the

FIGURE 7
Visualization results of ablation experiments. The red, green, yellow, and blue pixels represent lesions of IPH, IVH, SDH, and SAH.
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baseline model U-Net, the proposed deep learning model

improves accuracy, sensitivity, and specificity in diagnosing

ICH. Specifically, aiming at the five subtypes of ICH, the

proposed Sym-TransNet achieves the highest DICE coefficient

in intracerebral hemorrhage (comparison of DICE coefficients of

five subtypes: IPH>IVH>SDH>EDH>SAH). Subdural

hemorrhage and subarachnoid hemorrhage are the most easily

missed or misdiagnosed subtypes of ICH due to irregular shape,

unclear edge, and certain particularity of the site of hemorrhage.

Subarachnoid hemorrhage is an example in which the lesions are

filled with sulci, fissures, and cistern in casting shape, and the

distribution is extensive and irregular. In addition, in the

annotation process of segmentation gold standard, due to the

existence of the CT volume effect, radiologists are difficult to

accurately locate lesions of the subject who was diagnosed with

EDH or SAH with less bleeding. The imprecise segmentation

gold standard makes it difficult to train the deep learning model

and directly affects its segmentation performance on the test set

(the segmentation DICE coefficients of the model on EDH and

SAH are 0.359 and 0.337, respectively). In order to alleviate the

problems that exist in the process of annotation, many semi-

supervised methods were proposed and have achieved better

segmentation performance than fully supervised methods with a

limited amount of labeled data. Therefore, the combination of the

semi-supervised learning strategy may be an effective means to

solve this problem, which is also our future research direction. In

addition, researchers can also use the average value of multiple

professional physicians as the final gold standard to alleviate the

impact of inaccurate labeling on segmentation performance.

The segmentation performance of Sym-TransNet on IPH

and IVH is significantly improved compared with existing

methods. For the above two types of ICH, Sym-TransNet

improved the DICE coefficient by 0.26 on the basis of the

HR-Net. In terms of visualization of segmentation results, the

segmentation results obtained by Sym-TransNet are more

consistent with manual annotation, and some microscopic

lesions missed by the other methods are detected. When IPH

invades the ventricle, Sym-TransNet can more clearly distinguish

the interface between the two types of hemorrhage. For EDH and

SDH, Sym-TransNet reduced the risk of misidentifying the skull

as a bleeding point. Moreover, compared with other deep

learning methods, our model is more sensitive to detecting the

SAH lesions in the sulci. Therefore, the proposed Sym-TransNet

can more effectively segment different types of ICH lesions from

CT images of ICH patients, which has potential clinical

application prospects.

However, this study also has some limitations. From the

perspective of data collection, as a retrospective study, selection

bias may exist in this paper. Although a large number of CT data

were included as the training set in this study, the sample size of

the test set was insufficient, which probably results in accidental

segmentation performance. Therefore, it is necessary to

increase the test sample size to verify the model

performance. Additionally, all of our CT scans came from a

single center, and the diversity of samples can be further

improved. From the perspective of the number of trainable

parameters for deep learning models, the proposed Sym-

TransNet is not optimal. We list the number of parameters

for several mainstream models used for performance

comparisons in this paper in Table 1. As shown in Table 1,

Sym-TransNet has the highest number of model parameters.

This is because the self-attention mechanism in the

Transformer model requires a large amount of computation

to obtain the long-distance dependence information. In the

future, we will explore a more lightweight Transformer model

for ICH lesion segmentation, which will be better applied in

clinical practice.

In summary, Sym-TransNet proposed in this paper can

accurately segment the ICH lesions and the five hemorrhage

subtypes, improving the performance on the basis of the U-Net

for the diagnosis of ICH. Sym-TransNet is expected to help

relieve the workload of radiologists and reduce the rate of

misdiagnosis of ICH in clinical practice, providing a basis for

assisting clinical decision-making.
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TABLE 4 Diagnostic results on CT data of 400 cases.

Total cases: 400
(positive: 200 negative: 200)

Positive (predict) Negative (predict)

Positive (Actual) 197 (TP) 3 (FP)

Negative (Actual) 32 (FN) 168 (TN)

TABLE 5 Comparison of diagnostic performance of ICH.

Methods Acc (%) Sen (%) Spe (%)

U-Net 88.25 98.00 78.50

Our Method 91.25 98.50 84.00
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