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The treatment of atrial fibrillation (AF) continues to be a significant clinical

challenge. While genome-wide association studies (GWAS) are beginning to

identify AF susceptibility genes (Gudbjartsson et al., Nature, 2007, 448,

353–357; Choi et al., Circ. Res., 2020, 126, 200–209; van Ouwerkerk et al.,

Circ. Res., 2022, 127, 229–243), non-genetic risk factors including physical,

chemical, and biological environments remain the major contributors to the

development of AF. However, little is known regarding how non-genetic risk

factors promote the pathogenesis of AF (Weiss et al., Heart Rhythm, 2016, 13,

1868–1877; Chakraborty et al., Heart Rhythm, 2020, 17, 1,398–1,404; Nattel

et al., Circ. Res., 2020, 127, 51–72). This is, in part, due to the lack of a robust and

reliable animal model induced by non-genetic factors. The currently available

models using rapid pacing protocols fail to generate a stable AF phenotype in

rodent models, often requiring additional genetic modifications that introduce

potential sources of bias (Schüttler et al., Circ. Res., 2020, 127, 91–110). Here, we

report a novel murine model of AF using an inducible and tissue-specific

activation of diphtheria toxin (DT)-mediated cellular injury system. By the

tissue-specific and inducible expression of human HB-EGF in atrial

myocytes, we developed a reliable, robust and scalable murine model of AF

that is triggered by a non-genetic inducer without the need for AF susceptibility

gene mutations.
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Introduction

Atrial fibrillation (AF) is the most common arrhythmia that leads

to congestive heart failure, thromboembolism, and bleeding related to

the anticoagulant therapy, and contributes significantly to the

morbidity and mortality (Lip et al., 2012; Wilke et al., 2013;

Andrade et al., 2014). AF-related hospitalizations (primary or

secondary diagnosis) show an upward trend since 1996 (Coyne

et al., 2006; Ball et al., 2013; Patel et al., 2014). Despite the

numerous therapeutic modalities currently available, treatment of

AF continues to be a significant clinical challenge (Kirchhof et al.,

2009; January et al., 2014a; January et al., 2014b). This is largely due to

the incomplete understanding of the disease mechanism of AF.

Multiple pathomechanisms are proposed to explain the initiation

and progression of AF including ectopic automaticity, reentrant

electric circuits and atrial remodeling. Many of these insights into

the mechanism of AF are developed from studies in both large and

small animal models (Nishida et al., 2010). Large animals are

physiologically closer to humans and have provided

electrophysiological insights. However, the limitations of large

animal models are that the genetic analyses are hard to perform

and relatively small number of animals can be examined at once. Small

animals includingmutantmousemodels have provided insight into the

genetic mechanism of AF. However, each genetic mutation elucidates

at best a very small and specific component of the broad spectrum of

AF, and the induction of AF is currently inefficient, time-consuming

and uncontrollable. Therefore, animal models have not been able to

fully contribute to identifying the molecular mechanism of AF to date.

Using highly specific and sensitive atrial Cre (causes

recombination) knockin line (Sln-Cre) and diphtheria toxin (DT)-

induced cell damage, we propose to establish a new genetically

unbiased mouse model of AF. Our preliminary data suggest that

more than 60%of themice developedAFwithin 2monthswith simple

intraperitoneal (i.p.) injection of DT. Unlike previously published

mouse lines and methods, this model induces genetically unbiased

atrial damage, does not require transesophageal rapid pacing, and

demonstrates high frequency of AF induction in a relatively short

period of time. Furthermore, we can control the severity of atrial

damage bymodulating the dosage and timing ofDT injection.OurAF

model is 1) easy, 2) quick, 3) efficient, 4) controllable, 5) scalable and 6)

genetically unbiased. With these six advantages, we hope that this

model will change the approach to studying AF.

Methods

Mouse lines

AF mouse model was generated by crossing the atrial-specific

Sarcolipin (Sln)-Cre knock-in mouse (Sln+/Cre) with the inducible

diphtheria toxin (iDTR) mouse (R26+/DTR) (Buch et al., 2005;

Nakano et al., 2011) (Figure 1A). The investigation conformed to

the Guide for the Care and Use of Laboratory Animals published by

the US National Institute of Health (NIH Publication No. 85-23,

revised 1996). All animal protocols, experiments, and housing were

approved by the University of California Los Angeles institutional

review committee. The study is reported in accordance with ARRIVE

guidelines.

Surface electrocardiogram and telemetry

Electrocardiograms (ECGs) were obtained under nasal isoflurane

anesthesia by inserting two platinum (Pt) needle electrodes (Grass

Technologies, West Warwick, RI) under the skin in the lead II

configuration. The ECG data were amplified (Grass Technologies)

and then digitized for analysis with HEM V4.2 software (Notocord

Systems, Croissy sur Seine, France). In 6 out of 36 animals that did not

develop AF at base line, the ECG data were recorded after sequential

3–50 ng/g dose intraperitoneal injections of dobutamine. For

telemetry recording, an ECG telemetry sensor (ETA-

F20 transmitter from Data Science Instrument) was inserted in the

abdominal peritoneal cavity with leads anchored intramuscularly by a

suture 2 days before the induction of AF. ECG signals were recorded

at a duration and frequency of 1 min for every hour for 14 days in a

single caged mouse over a radio-receiving plate under normal light-

cycle and water/food accessibility.

Histology

The hearts were fixed in 4% paraformaldehyde overnight.

Fixed hearts were washed with phosphate-buffered saline (PBS),

dehydrated with ethanol, ethanol + xylene, and embedded in

paraffin. The sample blocks were sectioned at 4 μm thickness.

Masson’s trichrome staining was performed according to the

standard protocol. Fibrotic area was quantified using ImageJ

software on every 12 section throughout the atria. Percent

fibrotic area was calculated as the total area of fibrosis divided

by the total area of atrial tissue.

Amiodarone treatment

Elevenmice that showedAFwere intraperitoneally injectedwith

amiodarone at the dose of 100 mg/kg body weight under ECG

monitoring. The treatment was deemed effective if the ECG reverted

to normal sinus rhythm in 10 min after amiodarone injection.

Results

DT binds to its receptor, human heparin-binding epidermal

growth factor (HB-EGF), and is internalized to the cytoplasm where

it releases its C domain, which, in turn, inhibits elongation factor-2

(EF2) and arrests peptide synthesis in target cells, causing non-
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specific cell damage (Figure 1A, created with BioRender). This

reaction is not an immune response to specific antigen. In fact,

injection of DT does not affect the wild type mice as the endogenous

murine HB-EGF does not bind DT.

To selectively sensitize atrial muscle to DT, we crossed the

atrial-specific Sarcolipin (Sln)-Cre knock-inmouse (Sln+/Cre) with

the iDTR mouse (R26+/DTR) (Buch et al., 2005; Nakano et al.,

2011). Sln-Cre mouse line targets Cre expression in working

FIGURE 1
Design of murine model of atrial fibrillation (A). Illustration of the generation of mouse model and experimental scheme of DT treatment. DT
consists of subunits A (blue) and B (red) linked by disulfide bridges. DT binds to hHB-EGF specifically expressed on the cell surface of atrial myocytes
of Sln+/Cre; R26+/DTR mice. Upon endocytosis of receptor-ligand complex, A subunit translocates into the cytosol, ribosylates host EF2, and
inactivates protein synthesis, resulting in mild damage in atrial muscle. Figure drawn using BioRender software. (B). Representative ECGs of two
control mice at Day 18 and 21 and three AF mice at Day 17, 21 and 21 post-DT, respectively. (C). Kaplan-Meyer curve of animals free from AF after DT
injection. DT was injected at Day 0 and 14. (n = 70)
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atrial muscle as well as the sinoatrial node (SAN) and

atrioventricular node (AVN) in a highly sensitive manner

(Nakashima et al., 2014). The iDTR line expresses human

HB-EGF in a Cre recombination dependent manner. Thus, in

the Sln+/Cre; R26+/DTR mice, atrial muscle becomes susceptible to

DT treatment (Figure 1A). The Sln+/Cre; R26+/DTR mice without

DT and wild-type mice with DT injection were both

phenotypically normal and fertile (hereafter, “controls”).

Control animals underwent a similar vehicle injection and a

similar monitoring as in the animals that have developed AF, but

no AF were identified in controls throughout this study. Upon

intraperitoneal (i.p.) injection of low-dose DT, the Sln+/Cre;

R26+/DTR mice showed irregularly irregular QRS patterns and

disappearance of P waves on ECG (Figure 1B). Prolonged PR

intervals and bundle branch blocks were also occasionally

observed. In the C57BL6 mouse strain, the dose of DT was

optimal at 0.15 ng/g i.p. at Day 0 followed by additional 0.1 ng/g

i.p. at Day 14. Time course studies revealed that Sln+/Cre; R26+/DTR

mice began developing AF 1 week after DT i.p. injection, and

51.4% (36/70) of mice developed AF in 1 month (Figure 1C).

To characterize this novel murine model of AF, telemetry

analysis was performed. A telemetry chip was implanted 2 days

FIGURE 2
Progression of atrial fibrillation after induction (A). Representative telemetry ECG indicating time in AF versus normal sinus rhythm (n = 4). DT
was injected at Day 0. This mouse started to show paroxysmal AF at Day 8. The duration of AF gradually prolonged over time. NSR, normal sinus
rhythm. (B). Masson’s trichrome staining of the atrial tissue of control (left) and AFmouse (right) at Day 0 (pre-DT) to Day 540 post-DT injection. Note
severe fibrosis in AF mouse at Day 540. Scale bar = 500 μm. Right panel shows the quantification of fibrotic area (n = 3, each; *p < 0.05).
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before the induction of AF and the ECG was recorded for 1 min

every hour for 14 days or until the battery ran out. A gradual shift

from normal sinus rhythm to paroxysmal and persistent AF was

observed over a fewweeks (Figure 2A). Histological analysis revealed

severe fibrosis in the atrial myocardium at the chronic phase (Day

540 post-DT injection; Figure 2B). However, the level of fibrosis was

not drastically increased during the acute/subacute phases (between

Day 0 and 70 post-DT injection) compared to the controls,

suggesting that the severe fibrosis at day 540 post-DT was not

due to the acute cardiomyocyte injury by DT but rather the

consequence of long-term AF in this model. This result suggests

that AF can be the cause, not only the consequence, of atrial fibrosis.

Finally, to validate this mouse model as a potential tool for

evaluating the efficacy of therapies, an established anti-

arrhythmic drug was tested. Amiodarone (Vaughan-Williams

classification class III) is the most commonly used anti-

arrhythmic drug for AF. Bolus injection of Amiodarone is

often used for pharmacological cardioversion of recent-onset

AF with 40%–70% efficacy. Upon induction of AF following DT

treatment, bolus i. p. injection of 100 mg/kg body weight

amiodarone reverted the irregularly irregular rhythm to sinus

rhythm within 10 min in 9 out of 11 mice tested (Figure 3). The

efficacy of an established drug further suggests that this new

animal model closely mimics clinical features of AF.

Discussion

Likemany other human diseases, it is evident that AF is caused by

the interactions of complex genetic and non-genetic factors. Our

results indicate that injury to atrial myocytes without susceptibility

gene mutations is sufficient to induce sustained AF. Currently

available mouse AF models include loss-/gain-of-function of

signaling molecules (Verheule, 2004; Xiao et al., 2004; Davies et al.,

2014; Li, 2018), metabolic (Kondo, 2018; Jin et al., 2019; Polina et al.,

2020) and mechanical (Wang, 2018; Matsushita et al., 2019) insults,

andmutations in susceptibility genes and ion channels (Temple et al.,

2005; Zhang et al., 2019). Most mouse models of AF available to date

require programmed electrical stimulation for AF induction.With the

advantage of temporal specificity, no required pacing, and robustness

in its phenotypic manifestation, this new mouse model can serve as a

valuable tool for investigating the underlying mechanisms in high

resolution along the time course of AF disease progression. In

conjunction with the plethora of genetically-modified mouse lines

with susceptibility genemutations, this mouse line can also be utilized

for the analysis of the interaction between genetic and non-genetic

factors in the pathogenesis of AF. For example, it would be interesting

to investigate if atrialmuscle pathway injurywould have been revealed

via proteomics. Finally, the scalability and robustness of this mouse

model will also be advantageous for testing new drugs and new

ablation procedures for AF including antifibrotic drugs and

autonomic nervous modulation therapies. Thus, this new mouse

model can serve as a valuable platform for understanding disease

mechanisms and developing new therapeutics for AF.
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