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Background: Analysis of electrocardiogram (ECG) provides a straightforward

and non-invasive approach for cardiologists to diagnose and classify the nature

and severity of variant cardiac diseases including cardiac arrhythmia. However,

the interpretation and analysis of ECG are highly working-load demanding, and

the subjective may lead to false diagnoses and heartbeats classification. In

recent years, many deep learning works showed an excellent role in accurate

heartbeats classification. However, the imbalance of heartbeat classes is

universal in most of the available ECG databases since abnormal heartbeats

are always relatively rare in real life scenarios. In addition, many existing

approaches achieved prominent results by removing noise and extracting

features in data preprocessing, which relies heavily on powerful computers.

It is a pressing need to develop efficient and automatic light weighted

algorithms for accurate heartbeats classification that can be used in portable

ECG sensors.

Objective: This study aims at developing a robust and efficient deep learning

method, which can be embedded into wearable or portable ECG monitors for

classifying heartbeats.

Methods: We proposed a novel and light weighted deep learning architecture

with weight-based loss based on a convolutional neural network (CNN) and

bidirectional long short-termmemory (Bi-LSTM) that can automatically identify

five types of ECG heartbeats according to the AAMI EC57 standard. It was also

true that the raw ECG signals were simply segmented without noise removal

and other feature extraction processing. Moreover, to tackle the challenge of

classification bias due to imbalanced ECG datasets for different types of

arrhythmias, we introduced a weight-based loss function to reduce the

influence of over-weighted categories in the ECG dataset. For avoiding the

influence of the division of validation dataset, k-fold method was adopted to

improve the reliability of the model.
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Results: The proposed algorithm is trained and tested on MIT-BIH Arrhythmia

Database, and achieves an average of 99.33% accuracy, 93.67% sensitivity,

99.18% specificity, 89.85% positive prediction, and 91.65% F1 score.

KEYWORDS

electrocardiogram (ECG), deep learning, cardiac arrhythmia, convolutional neural
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Introduction

Cardiovascular diseases (CVD) are the leading cause of death

worldwide. According to the 2019 statistics from the American

Heart Association, there are an estimated 23.6 million cardiac

deaths in 2030 (Benjamin et al., 2019). Due to its high current

incidence and predicted increasing trend in soon future, it is

pressing to develop novel methods for early and accurate

diagnosis/classification of cardiac diseases. Arrhythmia is a

common form of cardiac diseases and sometimes life-

threatening, it always leads to or occurs with others CVD.

Due to the non-invasive nature of electrocardiogram (ECG),

the body surface ECG serves as a convenient diagnostic method

for diagnosing arrhythmia, which is almost impossible to be

replaced with other methods. ECG reflects features of excitation

and propagation of cardiac excitation sequences during a cardiac

cycle, which is obtained by measuring the potential change of

electrodes placed in different parts of the human torso, providing

an effective indicator of CVD (Malmivuo, 1995). Detecting

abnormal heart rhythms as early as possible not only helps

save a patient’s life but also alleviates sequelae in patients,

reducing the burden of healthcare. Therefore, an efficient and

accurate diagnosis of ECG rhythm is important for the treatment

and medical care of cardiac patients. However, it is time-

consuming and laborious to identify abnormal ECG signals

due to its feature of high complexity and high noise in the clinic.

Over the years, with the emergence of the Medical Internet of

Things and intelligent devices, more and more wearable devices

have been developed to achieve continuous and remote

monitoring of ECG. In addition, improved computer

hardware and more standardized data lead to the

development of automatic heartbeat classification based on

machine learning (ML)/artificial intelligence (AI), which has

attracted increasing attention in recent years. These popular

ML/AI methods include support vector machines (SVM)

(Ebrahimzadeh et al., 2018; Hammad et al., 2021a; Sharma et

al., 2019), deep learning (Acharya et al., 2017; Liu et al., 2021;

Somani et al., 2021; Beetz et al., 2022), and so on. It is believed

intelligent diagnostic system based on AI for heartbeats

classification can effectively reduce the burden and possibility

of subjective uncertainty of experts, which may lead to

misdiagnosis. The traditional computer-aided AI arrhythmia

diagnosis algorithm includes three main steps: data

preprocessing, feature extraction, and ECG classification

(Hammad et al., 2021a). However, the high ability of fully

automatic feature extraction in deep learning makes it much

easier to diagnose ECG heartbeat, which was the critical step in

conventional ML. The data preprocessing involving noise

removal and feature extraction are heavily relying on

computer resources and limiting its use in wearable devices.

Deep learning is a series of representation layers with an

automatic search process for better data representation, and these

layers are learned through training processes of an artificial

neural network (Chollet, 2021), which contribute to

automatically extracting features and learning data

representation. A recent study has shown that arrhythmia

diagnosis based on deep learning can achieve higher accuracy

and efficiency than expert’s manual classification (Murat et al.,

2020). Over the years, many ML/AI-based algorithms with

different datasets to focus on the ECG arrhythmia

classification for automatic detection have been developed. A

general overview of ECG arrhythmia classification using machine

learning and deep learning methods is presented in (Luz et al.,

2016; Kooman et al., 2020; Xie et al., 2020; Hong et al., 2021;

NehaSardana et al., 2021; Merdjanovska and Rashkovska, 2022).

There are many different databases available for arrhythmia

research, such as PTB-XL (Wagner et al., 2020; Prabhakararao

and Dandapat, 2021; Smigiel et al., 2021; Karthik et al., 2022;

Palczynski et al., 2022), and MIT-BIH (Acharya et al., 2017;

Goldberger et al., 2000; Sayantan et al., 2018; Nurmaini et al.,

2020; Yildirim et al., 2018; Huang et al., 2019; Wang et al., 2019).

In general, many well-designed methods were proposed in the

past few years. Among them, Wang et al. (Wang et al., 2021)

developed a novel method based on Continuous Wavelet

Transform and CNN for ECG arrhythmia classification, which

tested on MIT-BIH arrhythmia database and achieved an overall

performance of 68.76% F1 score and 98.74% accuracy. Oh et al.

(Oh et al., 2019) proposed a modified U-net to diagnose cardiac

conditions and attained a high classification accuracy of 97.32%,

and 99.3% for R peak detection using a ten-fold cross-validation

strategy. Yildirim et al. (Yildirim et al., 2018) adopted the 1-D

CNN model and focused on 17 arrhythmia classifications,

resulting in an average accuracy of 91.33%. Prabhakararao

et al. (Prabhakararao and Dandapat, 2021) designed a

classifier based multiple scale-dependent deep convolutional

neural networks with different receptive fields for arrhythmia

classification, the model showed impressive performance

(averaged 84.5% F1 score on PTBXL-2020 dataset and 88.3%

F1 score on CinC-2017 dataset) and generalization ability, and

then made it suitable for arrhythmia monitoring applications.
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Zahid et al. (Zahid et al., 2022) usedMIT-BIH arrhythmia dataset

and proposed a novel model combined temporal feature based on

RR interval and learned features to classify arrhythmia, the F1
score is 99.15% for super-ventricular ectopic beats and 95.2% for

ventricular-ectopic beats. Khatibi et al. (Khatibi and

Rabinezhadsadatmahaleh, 2019) proposed a novel feature

engineering method based on deep learning and K-NNs

showing a good performance to classify heartbeat. With the

use of five k-fold cross-validation strategy, they achieved

99.99% average AUC, 99.30% recall. In their study, Hanbay

(Hanbay, 2019) calculated six statistical features of ECG beat

intervals and proposed a classification method based on

eigenvalues and deep learning to evaluate ECG beats classes,

which obtained an overall accuracy for N, S, V, and F (definition

according to AAMI EC57 standard, as shown in Table 1) as

99.51% in classification. Wang et al. (Wang et al., 2020)

attempted the use of four-channel of ECG as vector

representation of learning input in their models, achieving the

F1 score of 92.38%. Smigiel et al. (Smigiel et al., 2021) carried out

three neural network architectures on PTB-XL Database

(Kooman et al., 2020; Wagner et al., 2020; Hong et al., 2021;

Merdjanovska and Rashkovska, 2022), and the proposed

convolutional network with entropy features achieved the

highest accuracy in every classification task, scoring 89.2%,

76.5%, and 69.8% accuracy for 2, 5, and 20 classes,

respectively. Huang et al. (Huang et al., 2019) proposed a 2-D

CNN to classify ECG arrhythmia. They used time-frequency

spectrograms of five heartbeat types as input to the CNN

network. Their model obtained 99% averaged accuracy,

showing a high accuracy without manual preprocessing of

ECG signals. Wang et al. (Wang et al., 2019) established the

Global Recurrent Neural Network (GRNN) classification model,

which was combined with automatic feature learning and

optimization mechanism, obtaining 99.8% accuracy on MIT-

BIH database.

All of studies mentioned above showed outstanding ECG

arrhythmia classification performance, but none of them focused

the issues introduced by imbalanced datasets. Furthermore, these

excellent algorithms do not fully addressed issues of both robust

real-time and effectiveness. It is common that ECG data in these

datasets are imbalanced, with some common cardiac

arrhythmias having overwhelming data samples as compared

to those of rare cardiac arrhythmic types. Such imbalanced data

samples affect the training of the AI/ML models, affecting the

overall performance of the developed models for multiple

categorical arrhythmia classifications. However, the

performance of minority classes is poor due to lack of data on

certain abnormal heart rhythms being less common in real life. It

is still difficult to deal with an imbalanced dataset using deep

learning for multiple type classification of cardiac arrhythmias,

which is highly dependent on data quantity and quality.

Moreover, high noise and complexity of ECG make large

amounts of demand for computing resources, and the fewer

parameters and more robust models are highly desired for.

One of the objectives of this study was to tackle the issue(s)

arising from imbalanced datasets, which affecting model

performances. To solve the limitation of an imbalanced ECG

dataset, in this study we pay more attention to minor categories

and suggest a weight-based loss function to reduce the influence of

over-weighted categories in the ECG arrhythmia dataset. In addition,

the presented deep learning model takes advantages of CNN and

RNN,which consists of fewer parameters allowing for less computing

demand. Possible effect of hyperparameters, optimization function

and activation function on model performance were also analyzed.

The proposed algorithm in this paper presents fewer parameters of

architecture and relative high performance as compared to

contemporary algorithms (Guo et al., 2019).

The contributions of this paper are listed as follows.

• Develop a new model architecture. A model consisting of

three depth-wise separable convolutional neural networks

(CNN) is constructed first, followed by bidirectional long

short-term memory (Bi-LSTM), which effectively

combines the speed of CNN and sequential sensitivity of

recurrent neural network (RNN).

• Weight factor is embedded in the loss function of the

training and validation dataset to eliminate the deviation of

arrhythmia classification caused by the unbalanced types of

the ECG heartbeat.

• Analyze the influence of weight-based loss and different

hyperparameters on the model, including the activation

function and optimization function on the performance of

the algorithm.

The remainder of the paper is organized as follows.

Introduction presents the motivation and literature review.

TABLE 1 ECG heartbeat classes according to ANSI/AAMI EC57.

MIT-BIH Heartbeat types

N •Normal

•Left/Right bundle branch block

•Atrial escape

•Nodal escape

S •Atrial premature

•Aberrant atrial premature

•Nodal premature

•Supraventricular premature

V •Premature ventricular contraction

•Ventricular escape

F •Fusion of normal and ventricular

Q •Paced
•Fusion of normal and paced

•Unclassifiable
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The experimental setup includes dataset, preprocessing steps,

hardware, software resources and methods are described in

Materials and methods. Results part describes performance

evaluation indicators, and experimental results of the

proposed deep learning architecture. Discussion section

discusses the compared performance with/without weigh-

based loss, different activation functions, optimizer, and

results proposed by other algorithms. Limitations part

summarizes limitations of this work and possibilities for

future research. Finally, a brief conclusion is shown in

Conclusion section.

Materials and methods

Hardware and software

The deep learning framework adopts Keras (Chollet, 2018)

with Tensorflow (Abadi et al., 2016) as the backend deep learning

library. The constructed deep learning models are trained on the

computer with one CPU running at 3.89GHz, an NVIDIA

GeForce GTX 1660 GPU, and 8 Gb of memory.

Dataset

In this study, MIT-BIH Arrhythmia Database (Goldberger

et al., 2000) is used to develop ECG classification model. It is the

most commonly used database, allowing cross comparison of

experiment results. For MIT-BIH Arrhythmia Database, each

record collects about 48 (Male 25: Female 22, Ages: 23–89 years)

fully 30-min 2-lead ECG (electrodes positioned on the chest to

obtain modified lead II and lead V1) with 360 Hz sampling rate

and an expert annotated file.

Arrhythmia Database contains a variety of heartbeat types. In

this study, according to ANSI/AAMI EC57 standard (I.A.

American National Standards Institute, 1998), we classify ECG

heartbeat into five groups based on annotation files. Table 1

provides a list of definition and specification of the five types of

cardiac rhythms, and their corresponding labeling.

The dataset sample was preprocessed with the same steps as

proposed by Kachuee et al. (Kachuee et al., 2018) before inputting

them into the deep learning model. The specific steps are listed

below:

(1) Resample the ECG signals as 125 Hz sampling frequency.

(2) Divide continuous ECG signals into 10 s window and

normalize them in amplitude.

(3) Find the set of all local maximums based on the first

derivative, and take 0.9 of normalized maximums as

threshold for R peak candidates.

(4) The median of all R-R time intervals is taken as the nominal

heartbeat period of this time window (T), and the length of

each segment is determined as 1.2T for each R-peak, the rest

is padded zeros to achieve the same length.

Figure 1 shows representative time traces of ECGs for five

types of heartbeat randomly sampled from the training

database after preprocessing. The training and test data

samples after preprocessing have 87,554 and 12,892 sets of

samples respectively. The population distributions of the five

types of heartbeat for the training and test datasets are shown

in Figure 2. The minor F heartbeat (641 in training dataset,

162 in test dataset) is less than one percent of the largest N

heartbeat (72,471 in training dataset, 18,118 in test dataset),

and the sum of all abnormal heartbeat classes is only about

one-fifth of N heartbeat class. It is obvious that the MIT-BIH

Arrhythmia dataset is unbalanced, with sample number for

abnormal heartbeat being much less for rare abnormal

heartbeats.

FIGURE 1
Time traces of representative ECGs for five types of
heartbeats after preprocessing in the MIT-BIH Arrhythmia
Database (Goldberger et al., 2000).
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Methods

The schematic illustration of the classification model of this

study is illustrated in Figure 3. Our proposed CNN +

bidirectional LSTM model is composed of three steps. Firstly,

five types of ECG heartbeat signals after preprocessing in the

training dataset are firstly input into the one-dimensional CNN

model consisting of three separable convolution layers. Secondly,

apart from CNN, bidirectional LSTM is used to analyze

sequential ECG, which is proven to be able to learn the

sequential features from ECG contexts forward and backward

(Andersen et al., 2019). Finally, the dense connection module

gives the results of ECG heartbeat classification according to the

learned features. This deep learning module is combined with the

speed of CNN and the sequential sensitivity of RNN (Chollet,

2018), and high-level features can be extracted and contribute to

achieve high classification accuracy.

To avoid the defect of data leakage in the process of model

validation and reduce the generalization performance of themodel,

the trainingandvalidationof themodelarecarriedoutonthedataset

as shown in Figure 2A, the trainedmodel is tested only once on the

test dataset as shown in Figure 2B. The popular 10 k-fold cross-

validation technique is adopted in this study to overcome the

overfitting issue and affirm the robustness (Chollet, 2021). The

training dataset is divided into 10 subsets each of size N/10, the

subset i is implemented as validation dataset, while the remaining

nine subsets are used for training. The final performance score is

computed as the average of 10 cross-validations.

FIGURE 2
Sample population’s distribution of five types of ECG heartbeat in the MIT-BIH Arrhythmia Database (Goldberger et al., 2000) used in the study
according to AAMI EC57. (A) Training dataset. (B) Test dataset. Imbalanced dataset for different types of cardiac rhythms is shown.

FIGURE 3
Overview architecture of proposed CNN+Bidirectional LSTMmodel for five types of heartbeat, N, S, V, F andQ (definition is provided in Table 1).
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As stated above, the sample number of ECG heartbeats of the

five types of the heartbeat in the MIT-BIH Arrhythmia Database

is extremely unbalanced (see Figure 2). This may cause the

training of the model being heavily inclined towards the

majority class through the back propagation of the loss

function, resulting in biased and poor performance of the

model for minority classes. To avoid the calculated loss

function being mainly dominated by the large sample category

of the unbalanced dataset, in this study we implemented a weight

factor to scale the loss function of the training and validation

datasets as shown in below equation, where n_samples represents

the total number of the dataset used for training, n_classes

represents five ECG heartbeat categories, and np. bincount(y)

represents the specific number for each ECG heartbeat. In this

way, the category weight factor of a small sample is high, while

that of a large sample is low.

Weight � n samples
n classes × np.bincount y( )

In implementation, we used an adaptive learning rate based

on the computed value of loss function, i.e., reducing the

learning rate to half of the previous value if the loss

function does not decrease for five consecutive training

epochs. The above strategy is employed to train the model

for 100 epochs, during which the optimal epoch with a

minimum loss function was identified. With the optimal

epoch, the model was re-initialized and trained on the total

training dataset, then this model was evaluated only once on

the test dataset. It aims for preventing information leaks into

the model due to multiple validation processes, which reduces

the reliability of the model, even though the model is not

directly trained on validation data.

The specific parameters of each layer are depicted in Table 2.

The depthwise separable convolution includes depthwise

convolution and pointwise convolution. Depthwise convolution

performs separable convolution on each channel of input ECG

signals to blend temporal features and pointwise convolution

mixes the output channel by 1 × 1 convolution to blend

channel features. This leads to fewer parameters and less

computational cost, resulting in a smaller and faster neural

network. Each of three separable CNN layers with ReLu

activation function (Nair and Hinton, 2010) has 32, 64, and

128 kernels of size three respectively. The CNN can transform

the long input sequence into a shorter sequence composed ofmuch

higher and more abstractive features. After convolution networks,

a batch normalization layer is utilized to make the mean and

variance change with time in training, and standardize the data

adaptively. The batch normalization is helpful for model learning

and the generalization of new data samples (Ioffe and Szegedy,

2015). After the batch normalization layer, a max-pooling layer

with a parameter of 2 × 1 and strides two is applied to down-

sample these features. This help to reduce the number of processed

features and make a larger observation window of CNN, thus

achieving the hierarchical structure of spatial filters. Then, the

bidirectional LSTM layer with 128 units is utilized to solve the

gradient disappearance problem. Bidirectional LSTM is employed

to present the same information in different ways to model and

improve the accuracy of this algorithm. Finally, the predicted

model consists of a flattening layer, dropout layer, dense

connection, batch normalization layer, and Softmax layer to

predict the heartbeat class probability of the ECG. The first

dense layer has 512 neurons and also uses the ReLu activation

function. The 50% features are set to zero in the dropout layer to

prevent overfitting (Gal, 2016).

The model is compiled using the Adam optimizer (Kingma

and Ba, 2015) and categorical cross-entropy loss function. The

total parameters of the proposed model are 410,664, there are

409,384 trainable parameters and 1,280 non-trainable

parameters introduced by the batch-normalization layer.

Results

Performance evaluate

To measure the overall performance of the proposed

algorithm, the following performance metrics are suggested:

Accuracy (Acc), Sensitivity (Sen), Specificity (Spe), Positive

Prediction (PPV), and F1 score.

Acc � TP + TN
TP + FP + FN + TN

Sen � TP
TP + FN

Spe � TN
TN + FP

PPV � TP
TP + FP

F1 � 2 × PPV × Sen
PPV + Sen

Where TP is the number of true positives, TN is the number of

true negatives, and FP and FN are the numbers of false positives

and false negatives respectively.

From the above equation, accuracy indicates the percentage

of the correct number predicted in the total dataset and can be

used to judge the accuracy of the model. However, the MIH-BIH

Arrhythmia dataset is imbalanced, accuracy cannot be used as a

good indicator to measure the performance of the proposed

algorithm. Therefore, another two indicators: Sensitivity (Sen),

Specificity (Spe) and Positive Prediction (PPV) are used to

measure the performance of the algorithm. Sensitivity (Sen),

also known as recall rate, refers to the probability of being

predicted to be a positive sample in a sample that is positive.

Specificity (Spe) illustrates the proportion of negative cases

identified to all negative cases. Positive Prediction Value

Frontiers in Physiology frontiersin.org06

Yang et al. 10.3389/fphys.2022.982537

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.982537


(PPV) represents the probability of actually being positive out of

all samples predicted to be positive. To find the balance between

Sen and PPV, the F1 score is developed, both Sen and PPV are

considered to achieve the maximum at the same time.

The parameter configuration in this study is the ReLu

activation function (Nair and Hinton, 2010), and the Adam

optimization function (Kingma and Ba, 2015). Furthermore,

the 128 batch size yields better performance than other

schemes. The confusion matrix can be seen in Figure 4, the

training and validation loss is shown in Figure 5, and the

accuracy of the training and validation dataset in Figure 6.

Table 3 shows the Acc, Sen, Spe, PPV, and F1 score for each

heartbeat class, and the averaged results are shown in bold. It is

TABLE 2 The structure of the constructed CNN + Bi-LSTM model.

No. Layer name (Kernel, Stride) Output shape Parameters

1 SeparableConv1D (3,1) (185, 32) 67

2 SeparableConv1D (3,1) (185, 64) 2,208

3 SeparableConv1D (3,1) (181, 128) 8,512

4 BatchNormalization - (181, 128) 512

5 Maxpooling1D (2,2) (90, 128) 0

6 Bidirectional LSTM - (256) 263,168

7 Flatten - (256) 0

8 Dropout - (256) 0

9 Dense - (512) 131,584

10 BatchNormalization - (512) 2,048

11 Dense - (5) 2,565

FIGURE 4
Confusion matrix of ECG classification results on the test
dataset by performing CNN + Bi-LSTM model.

FIGURE 5
The training and validation loss.

FIGURE 6
The training and validation accuracy.
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clear that Sen, PPV, and F1 score should be given more attention

for imbalanced dataset.

Discussion

In this section, we ablated the influences of the uses of the

weight-based loss, k-fold, activation function and

optimization function in the model performance in detail.

Additionally, we also compared experimental results of the

proposed results with other studies, of which are shown in

Table 8, where the best performances for each index are

shown in boldface.

Performance evaluation under model with
weight-based loss

The impactofproposedweight-based losswasmeasured inour

approach as shown inTable 4, inwhich thebest resultswere shown

in boldface. It was clear that themethodwithoutweight-based loss

dropped off significantly in accuracy (99.33%–92.26%), specificity

(99.18%–98.75%), sensitivity (93.67%–93.51%), positive

prediction value (89.85%–74.24%) and F1 score (91.65%–

80.57%). Especially, the biggest boost in F class was resulted

from the adoptive weight-based loss in the imbalanced dataset.

Performance evaluation of the model with
10 k-fold

The popular 10 k-fold cross-validation was employed in our

study. As shown the compared results in Table 5, the 10 k-fold

measurements are slightly better than not using cross-validation

method. We know that different division of training and

validation dataset leads to a large fluctuation of validation

scores, which in turn causes variance and unreliability on

results. Therefore, the common 10 k-fold cross-validation was

applied. Figure 7 depicts the distribution of weight factors with

different folds and the mean weight-based loss factor (dashed

line) for each heartbeat showing, N class contributed least in the

total loss since the huge counts. Conversely, minor heartbeat

categories contributed more in the total weight factor of loss.

Different activation function

To evaluate the performance of different activation functions

on the proposed algorithm, we compared performance of the

designed model using ReLu (Nair and Hinton, 2010) and Elu

activation function (Clevert et al., 2016). The best performances

for each heartbeat type are shown in boldface in Table 6. Overall,

the ReLu has better experimental results in this study although

Elu is better than ReLu in theory (Clevert et al., 2016).

Different optimizer

In deep learning, the optimizer affects the speed and mode of

convergence of the algorithm. Adam optimizer is the

combination of SGDM (SDG with Momentum) and RMSProp

(Kingma and Ba, 2015). As shown in Table 7, the best

performances are shown in boldface, the F1 score

experimental results with Adam are better than RMSProp. It

turned out that the Adam optimizer resulted in a significant

enhancement in Sen (88.79%–93.67%), PPV (65.13%–89.85%)

TABLE 3 Performance results per heartbeat class, and averages are
given in bold.

MIT-BIH Acc (%) Spe (%) Sen (%) PPV (%) F1 (%)

N 98.55 97.09 98.86 99.39 99.12

S 99.04 99.36 86.69 77.99 82.11

V 99.51 99.71 96.75 95.89 96.32

F 99.71 99.81 87.04 77.05 81.74

Q 99.85 99.92 99.00 98.94 98.97

Average 99.33 99.18 93.67 89.85 91.65

TABLE 4 Classification performance results with and without weight-based loss. The best performances are given in bold.

Heartbeat
types

With Weight-based Loss Without Weight-based Loss

Acc (%) Spe (%) Sen (%) PPV (%) F1 (%) Acc (%) Spe (%) Sen (%) PPV (%) F1 (%)

N 98.55 97.09 98.86 99.39 99.12 95.91 97.85 95.50 99.53 97.48

S 99.04 99.36 86.69 77.99 82.11 98.31 98.59 87.59 61.80 72.47

V 99.51 99.71 96.75 95.89 96.32 99.33 99.47 97.31 92.88 95.04

F 99.71 99.81 87.04 77.05 81.74 98.02 98.09 87.65 25.54 39.55

Q 99.85 99.92 99.00 98.94 98.97 99.75 99.77 99.50 97.14 98.31

Average 99.33 99.18 93.67 89.85 91.65 98.26 98.75 93.51 74.24 80.57

Frontiers in Physiology frontiersin.org08

Yang et al. 10.3389/fphys.2022.982537

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.982537


and F1 score (81.88%–91.65). In particular, a 25% improvement

in PPV was observed by using Adam.

Comparison with other algorithms

Table 8 summarizes the comparison of experimental results from

the proposed algorithm on five heartbeat types and other published

researches on theMIT-BIH database. The best performances for each

evaluation index are shown in bold font. It is worth noting that the

algorithmproposed by Zahid et al. (Zahid et al., 2022) showed the best

specificity 99.83% for N heartbeat type, and Sellami et al. (Sellami and

Hwang, 2019) presented the higher accuracy 99.99% and specificity

89.54% for S heartbeat type. However, the specificity and accuracy are

not the reasonablemeasure indexes in imbalanced dataset as shown in

Table 8. The F1 score should be considered as the most noteworthy

TABLE 5 Comparison of experimental results with and without 10 k-fold. The best performances are given in bold.

Heartbeat
types

10 k-fold Without k-fold

Acc (%) Spe (%) Sen (%) PPV (%) F1 (%) Acc (%) Spe (%) Sen (%) PPV (%) F1 (%)

N 98.55 97.09 98.86 99.39 99.12 98.53 97.35 98.77 99.44 99.11

S 99.04 99.36 86.69 77.99 82.11 99.05 99.36 87.23 77.97 82.34

V 99.51 99.71 96.75 95.89 96.32 99.51 99.69 97.03 95.64 96.33

F 99.71 99.81 87.04 77.05 81.74 99.63 99.72 88.27 70.10 78.14

Q 99.85 99.92 99.00 98.94 98.97 99.88 99.95 98.94 99.38 99.16

Average 99.33 99.18 93.67 89.85 91.65 99.32 99.21 94.05 88.51 91.02

TABLE 6 Experimental results between ReLu and Elu activation function. The best performances are given in bold.

Heartbeat
types

Relu Elu

Acc (%) Spe (%) Sen (%) PPV (%) F1 (%) Acc (%) Spe (%) Sen (%) PPV (%) F1 (%)

N 98.55 97.09 98.86 99.39 99.12 98.47 97.14 98.75 99.40 99.08

S 99.04 99.36 86.69 77.99 82.11 99.08 99.42 85.97 79.40 82.56

V 99.51 99.71 96.75 95.89 96.32 99.42 99.63 96.48 94.84 95.65

F 99.71 99.81 87.04 77.05 81.74 99.66 99.72 90.74 71.01 79.67

Q 99.85 99.92 99.00 98.94 98.97 98.87 99.93 99.19 99.07 99.13

Average 99.33 99.18 93.67 89.85 91.65 99.10 99.17 94.23 88.74 91.22

TABLE 7 Experimental results between Adam and RMSProp activation function. The best performances are given in bold.

Heartbeat
types

Adam RMSProp

Acc (%) Spe (%) Sen (%) PPV (%) F1 (%) Acc (%) Spe (%) Sen (%) PPV (%) F1 (%)

N 98.55 97.09 98.86 99.39 99.12 90.37 96.16 89.17 99.11 93.88

S 99.04 99.36 86.69 77.99 82.11 95.07 95.43 80.94 31.60 45.45

V 99.51 99.71 96.75 95.89 96.32 96.09 96.00 97.38 63.29 76.71

F 99.71 99.81 87.04 77.05 81.74 98.62 98.74 82.10 32.76 46.82

Q 99.85 99.92 99.00 98.94 98.97 99.51 99.92 94.34 98.89 96.56

Average 99.33 99.18 93.67 89.85 91.65 95.93 97.25 88.79 65.13 81.88
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performance metric in the paper. Our proposed algorithm gave the

best performance in five heartbeat types for F1 score in Table 8.

Despite the results in our presentation so far were not the best

performance because of we aimed at the lightweight model

parameters such as including noise in raw signals, and tested them

only once on test dataset to avoid information leakage and thus

reduced the credibility of the model. However, it is a good attempt to

balance efficiency and robustness in ECG heartbeat classification.

Limitations

ECG is a reflection of potential change of cardiac tissue

during the propagation of cardiac excitations through

measuring body surface potential in different parts of the

body. Changes in morphology and characteristics of ECG can

be used to detect abnormal rhythm of the heartbeat (e.g.,

cardiac arrhythmia). The computer-aided ECG diagnosis

system may add a great value to interpret complicated ECG

signals. The application of artificial intelligence for ECG

interpretation is highly concerned, deep learning with the

advantage of gaining high-level features can contribute to high

ECG classification accuracy. The proposed deep learning

algorithm combined with separable CNN and bidirectional

LSTM offers an automatic classification of ECG heartbeat. The

limitations and opportunities of the present study for future

work as listed below:

(i) To reduce the computational burden and improve

efficiency, we implemented a simple segment splitting

FIGURE 7
Distribution of weight-based loss factor for five heartbeats per fold. The dashed line shows the averaged weight-based loss factor.

TABLE 8 Compared experimental results of our approach and other algorithms on MIT-BIH dataset. The best performance is shown in bold.

Algorithm N S V F Q

Acc
(%)

Spe
(%)

F1
(%)

Acc
(%)

Spe
(%)

F1
(%)

Acc
(%)

Spe
(%)

F1
(%)

Acc
(%)

Spe
(%)

F1
(%)

Acc
(%)

Spe
(%)

F1
(%)

Proposed 98.55 97.09 99.12 99.04 99.36 82.11 99.51 99.71 96.32 99.71 99.81 81.74 99.85 99.92 98.97

Mathews et al.
(2018)

--- --- --- 93.78 93.32 48.72 96.63 97.83 73.22 --- --- --- --- --- ---

Kiranyaz et al.
(2016)

--- --- --- 97.6 99.2 61.86 99.0 98.9 92.22 --- --- --- --- --- ---

Niu et al. (2020) --- --- 98.10 --- --- 76.60 --- --- 89.70 --- --- --- --- --- ---

Guo et al. (2019)) --- --- --- 93.61 96.40 61.94 93.71 94.77 89.75 --- --- --- --- --- ---

Zahid et al. (2022) --- 99.83 99.07 --- 99.36 83.44 --- 89.76 94.29 --- --- --- --- --- ---

Wang et al. (2021) --- --- 98.79 98.74 --- 81.37 99.27 --- 94.43 --- --- 0.46 --- --- ---

Li et al. (2022) --- 80.8 93.93 --- 98.83 45.90 --- 94.92 83.89 --- --- --- --- --- ---

Sellami and
Hwang, (2019)

88.82 91.30 93.37 92.41 92.80 44.40 97.18 97.54 80.88 92.28 98.52 38.27 99.99 100 22.23
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operation of ECG signals without denoising in our

preprocessing stage. However, ECG signals contain

various noises in reality, such as baseline wander and

power line interference (Sharma and Pachori, 2018; Liu

et al., 2021). Deep learning relies heavily on data quality,

high noises and complexity of ECG signals reduce the

performance of the proposed deep learning model due to

irrelevant noise information being learned by deep learning.

Having much cleaner and denoised input signals can

improve deep learning by discovering more abstractive

features. Subsequent research should consider applying

denoised methods including Fourier transform, cut-off

frequency, and so on.

(ii) Another problem is the data imbalance. Unbalanced signal

types are common in all ECG datasets due to abnormal

heartbeats that are hard to be collected in practice. Less

abnormal samples indicate worse sensitivity and positive

predication than the large number ECG heartbeats. In this

study, a weight factor was used to scale the loss function to

reduce the effect of the unbalanced dataset. Some previous

studies come up with innovative ideas, including a special

focus on minor classes (Sayantan et al., 2018; Rahhal et al.,

2016; Tan et al., 2018) and the special architecture of the

model (Sayantan et al., 2018; Hammad et al., 2021b; Jiang

et al., 2019). In addition, Generative Adversarial Networks

(GAN) (Goodfellow et al., 2014) were developed to augment

minor ECG types, and also help to denoise ECG signals.

Hence, thesemethods can be considered as possible attempts

to solve this issue in the future.

(iii) In this work,MIT-BITArrhythmia Database is used to study

classification. However, it was collected more than 40 years

ago, the amount of abnormal heart rhythms is insufficient,

and the different durations and leads make it unfair to

compare with research on other databases. This limits a

certain the generalization and robustness of the

architectural model. Testing the constructed algorithm on

other ECG databases can serve as an opportunity for future

research.

(iv) The 10 k-fold method is adopted to eliminate bias and

improve the robust in our approach, but it leads to

expensive computation and further research is needed. In

addition, due to the fewer parameters (410,664 parameters

of the proposed model) and simple preprocessing steps in

our method, the proposed algorithm may have certain

advantages in clinical applications. However, the robust

and efficiency of our research have not tested it clinically,

which is what we need to continue to study in the future.

Although the proposed model does not perform the best

among all AI methods, it is a new attempt to explore the high

efficiency and robustness of algorithms in ECG heartbeat

classification.

Conclusion

In this paper, CNN-bidirectional LSTM model has been

developed for the automated heartbeat classification of ECG

signals. In addition, the ReLu activation function and Adam

optimization function are implemented in this model. We pay

more attention to minorities in the dataset by using a weight

factor to scale the loss function to overcome data imbalance

issue. Moreover, to prevent information leakage of data that

leads to mistaken high performance, 10 k-fold cross-validations

on the training dataset were conducted for training and

validation, and the test dataset was used only once on the

optimized model to prevent information leakage. The designed

algorithm is shown to be useful in improving the F1 score of

minor types of ECG heartbeat, resulting in an average of 99.33%

accuracy, 99.18% specificity, 93.67% sensitivity, 89.85% positive

prediction, and 91.65% F1 score. The proposed model shows

more sensitivity than some other studies in ECG classification.

In conclusion, we have developed a deep learning algorithm by

a new attempt to overcome the dataset imbalance of ECG,

resulting in a model with high efficiency and fewer parameters.

It may serve as a potential tool for aiding ECG detection and

classification.
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