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The transport of platelets in blood is commonly assumed to obey an advection-

diffusion equation with a diffusion constant given by the so-called Zydney-

Colton theory. Here we reconsider this hypothesis based on experimental

observations and numerical simulations including a fully resolved suspension

of red blood cells and platelets subject to a shear. We observe that the transport

of platelets perpendicular to the flow can be characterized by a non-trivial

distribution of velocities with and exponential decreasing bulk, followed by a

power law tail. We conclude that such distribution of velocities leads to diffusion

of platelets about two orders of magnitude higher than predicted by Zydney-

Colton theory. We tested this distribution with a minimal stochastic model of

platelets deposition to cover space and time scales similar to our experimental

results, and confirm that the exponential-powerlaw distribution of velocities

results in a coefficient of diffusion significantly larger than predicted by the

Zydney-Colton theory.
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1 Introduction

Platelets, or thrombocytes, are an essential blood constituent, from a physiological

and heamodynamical point of view. Their motion is mainly a consequence of mechanical

and hydrodynamic interactions with deformable red blood cells and the plasma, which

makes an accurate description of their transport challenging.

Among the blood constituents, platelets are the second most numerous cells in blood,

after red blood cells, with a concentration of 150–450 × 109/L. They are involved in

multiple physiological and pathophysiological processes such as haemostasis, thrombosis,

clot retraction, vessel constriction and repair, inflammation, including promotion of

atherosclerosis, host defense, and even tumor growth/metastasis (Harrison (2005)).When

needed, platelets respond rapidly through activation, adhesion, aggregation, release of the

materials stored in their granules, etc.Any disorder in these physiological processes results

in impaired haemostasis and inappropriate thrombus formation. For example, arterial
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thrombi can develop within atherosclerotic lesions resulting in

stroke and heart attack, two of the major causes of morbidity and

mortality in the western world Harrison (2005).

From a physical point of view, platelets are small rigid

suspensions interacting with other, larger, deformable

suspensions, the red blood cells. It is well recognized that the

physics of such systems is rich and complicated Eckstein and

Belgacem (1991); Kumar and Graham (2012). Processes such as

margination and segregation are observed in which platelets

move towards the wall of the system, while red blood cells

concentrate in the center of the vessel, producing the so-called

cell free layer at the wall (Kim et al. (2009); Fedosov et al. (2010);

Carboni et al. (2016)).

Adhesion and aggregation of platelets depend not only on

their affinity with the endothelium or the deposition surface but

also on their flow towards this surface. Platelets movement in the

blood is affected by their interactions with red blood cells

(D’Apolito et al. (2015)). In order to properly interpret

platelet function tests and evaluate if platelets are

dysfunctional in a patient, it is important to identify and

separate the effect of transport properties to the wall from the

intrinsic biochemical platelets properties (adhesion and

aggregation). In several diseases, the shape of red blood cells

is modified, affecting platelet motion Boudjeltia et al. (2020).

When analyzing the way platelets deposit on a surface, their

adhesion and aggregation rates can only be determined if their

flow is correctly known.

In a blood flow subject to a shear rate, platelets experience an

enhanced random motion in the direction perpendicular to the

flow. The accepted description of this process, the so-called

Zydney-Colton theory (Zydney and Colton (1988)), is that

platelets are subject to a diffusion process, whose diffusion

coefficient depends on the shear rate _γ and the hematocrit H,

the fraction of space occupied by red blood cells Affeld et al.

(2013):

DZC � DPRP 1 −H( ) + 0.15 d2
RBC H/4( ) _γ 1 −H( )1.8 (1)

where DPRP is the diffusivity of platelets in a platelet-rich plasma

(i.e. without red blood cells) with a typical value of DPRP �
O(10−13) m2s−1 and dRBC is the typical diameter of a red blood

cell. For H = 0.35 and _γ � 100s−1 the value of DZC is

DZC � 5 × 10−11m2s−1, (2)

The present study was motivated by the determination of

platelets adhesion and aggregation rates from in-vitro

experiments with the Impact-R platelet analyzer device. It is

made of a cylinder filled with whole blood and closed by two

disks. The upper disk rotates to produce a prescribed shear flow

and the lower disk is a deposition surface on which platelets can

adhere and aggregate. In Chopard et al. (2017); Dutta et al. (2018,

2022) we show that platelet adhesion and aggregation rates can

be computed from the in-vitro observations (deposition patterns

in the Impact-R), by combining a mathematical model of

platelets deposition and a machine learning technique.

However, to explain the deposition pattern observed in our

experiments, platelets must experience a large flow towards

the deposition surface. More precisely, we found that with

H = 0.35 and _γ � 100s−1, a diffusion coefficient of the order

10–8 m2s−1 is needed. This value is more than two orders of

magnitude larger than the value predicted by Eq. 2.

The Zydney-Colton model has been extensively validated

by numerous numerical studies in which red blood cells and

platelets were resolved (Zhao and Shaqfeh (2011); Zhao et al.

(2012); Reasor et al. (2013); Vahidkhah et al. (2014);

Mehrabadi et al. (2015, 2016); Závodszky et al. (2019)).

However, divergence from Zydney-Colton has also been

observed and attributed to the presence of a drift term

(Eckstein and Belgacem (1991); Crowl and Fogelson (2011);

Kumar and Graham (2012)). While this leads to much higher

diffusion than Zydney-Colton, it remains challenging to

understand why such symmetry breaking occurs, at least

with the geometry of the Impact-R.

In this context, we have developed a high-fidelity numerical

blood flow solver, Palabos-npFEM, described and validated in

Kotsalos et al. (2019, 2020). This computational framework is

based on a lattice Boltzmann fluid solver with suspensions (red

blood cells and platelets), whose deformable membranes are

described with the finite element method (FEM). The fluid-blood

cell interaction is computed with the immersed boundary method.

Although not the purpose of the present discussion, we emphasize

the fact that such numerical simulations are extremely demanding in

computing resources, even for relatively small system sizes (much

less than a cubic millimeter) and short periods (of the order of a

second). In the present paper, we revisit platelets transport and

propose a new characterization based on a probability distribution of

their velocity. We estimate this distribution from high-fidelity blood

flow simulations resolved at typical length and time scales similar to

those considered in Müller et al. (2016); Závodszky et al. (2019), and

we extrapolate platelets trajectory at much greater spatiotemporal

scales using a surrogate stochasticmodel of plateletsmotion.We find

that the resulting randomwalk process leads to a diffusion coefficient

whose magnitude tends towards our in-vitro observations. We also

argue that the traditional ways to compute the diffusion coefficient

from the particle mean square displacement is very sensitive to finite

size effects, hence resulting, for small systems, in a significant

underestimation of the diffusion coefficient and questioning

limitations of the Zydney-Colton theory at large spatiotemporal

scales.

2 Methods

2.1 Palabos-npFEM framework

Palabos-npFEM is a computational framework for the

simulation of blood flow with fully resolved constituents. The
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software computes the movement and deformation of red blood

cells and platelets, and the complex interaction between them.

The tool combines the lattice Boltzmann solver Palabos for the

simulation of blood plasma (fluid phase), a finite element method

(FEM) solver for the resolution of blood cells (solid phase), and

an immersed boundarymethod (IBM) for the coupling of the two

phases. Palabos-npFEM provides, on top of a CPU-only version,

the option to simulate the deformable bodies on Graphic

Processing Units (GPUs), thus the code is tailored for the

fastest supercomputers Kotsalos et al. (2021).

In more details, the framework resolves blood cells like red

blood cells and platelets individually (both trajectories and

deformed state), including their detailed non-linear

viscoelastic behavior and the complex interaction between them.

The fluid solver is based on the lattice Boltzmann method

(LBM) and solves indirectly the weakly compressible Navier-Stokes

equations. The solid solver is based on the nodal projective finite

elements method (npFEM) Kotsalos et al. (2019), which offers an

alternative way of describing elasticity. The npFEM framework is a

mass-lumped linear finite element solver that resolves both the

trajectories and deformations of the blood cells with high accuracy.

The solver has the capability of capturing the rich and non-linear

viscoelastic behaviour of red blood cells as shown and validated in

Kotsalos et al. (2019). The platelets are simulated as nearly-rigid

bodies bymodifying the stiffness of thematerial. The implicit nature

of the npFEM solver renders it capable of resolving extreme

deformations with unconditional stability for arbitrary time steps.

The fluid-solid interaction is realized by the immersed boundary

method (IBM) and more specifically by the multi-direct forcing

scheme proposed in Ota et al. (2012). The IBM imposes a no-slip

boundary condition, so that each point of the surface and the

ambient fluid moves with the same velocity.

Collisions between blood particles, whether red blood cells or

platelets, are implemented through a repulsive force acting as a

spring, when the surfaces delimiting two particles are getting too

close to each other. In the current study, we employ the same

parameters as reported in Kotsalos et al. (2019, 2020).

2.2 Probability distribution function of
platelets absolute velocities

From the fully resolved simulations we have recorded the

position yi(t), perpendicular to the flow, of the ith platelet, at

every time interval δt = 10–5 s. We define the absolute velocity as:

vi t( ) � yi t + δt( ) − yi t( )∣∣∣∣ ∣∣∣∣
δt

(3)

and computed the mean absolute velocity vmoy:

vmoy � 1
N

∑N
i�i

1
n

∑(n−1)δt

t�0
vi(t)⎛⎝ ⎞⎠ (4)

where N is the total number of platelets and n the number of

iterations.

We find that the probability distribution function of the

platelets absolute velocities P(v) is well described by the

relation:

P v( ) �
p0 exp −λv( ) for v≤ vmin

p0 exp −λvmin( ) v

vmin
( )−1−α

for v≥ vmin

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (5)

where p0, λ, vmin and α are parameters to be determined. The

quantity vmin, a velocity threshold separating the exponentially

decreasing bulk of the distribution to its heavy tail, and α were

estimated with the python package powerlaw Alstott et al. (2014),

which is the python implementation of the seminal work of

Clauset et al. (2009). Note that there has to be a lower bound as

power-law distributions diverge when the variable tends to zero.

More generally, power laws are observed in the tail, and these

distributions deviate from the power law exhibiting various

behaviors below some threshold value of the measured

variable Redner (1998); Ioannides and Skouras (2013). We

obtain the following values:

α � 3.8 vmin � 5 × 10−3ms−1 vmoy � 10−3ms−1 (6)

The values of p0 and λ are obtained from the conditions

1 � ∫∞

0
dvP v( ) � p0 exp −λvmin( ) vmin

α
− 1
λ
+ p0

λ
[ ] (7)

and

vmoy � ∫∞

0
dv vP v( ) � p0 exp −λvmin( ) v2min

α − 1
− vmin

λ
− 1

λ2
[ ] (8)

These two equations for p0 and λ can be solved numerically,

knowing α, vmin and vmoy. The solution is p0 = 1015.24 and λ =

1017.36.

Here we assume that v can be arbitrarily large. This is of

course not true in practice but adding to P(v) the numerically

observed cut-off speed does not change our results because the

probability of such high velocity decreases fast enough for the α

value we have here. Similarly, imposing a low velocity threshold

did not modify our results.

2.3 Stochastic model for platelets
velocities

From the expression of P(v), one can sample the distribution

and generate platelets velocities that mimic the behavior of the

fully resolved blood flow simulation. We call this velocity

sampling a stochastic model for platelets velocities. Concretely

if r is a random number uniformly distributed in [0, 1], the value

of v is sampled through the relation:
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r � ∫v

0
dv′ P v′( ) (9)

The resulting velocity is:

v �
−1
λ
ln 1 − λr

p0
( ) if r< p0

λ
1 − exp −λvmin( )( )

vmin 1 − α

p0 exp −λvmin( ) r − p0

λ
1 − exp −λvmin( )( )( )[ ]−1/α

if r> p0

λ
1 − exp −λvmin( )( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(10)

Of course, when generating a velocity from P(v) we should

remember that here, v is the absolute velocity, without its sign.

The data from the simulation show that both signs of the platelets

velocities are equally likely. This is expected due to the symmetry

of the problemwith respect to the y-axis. Therefore the sign of v is

chosen at random with a probability 1/2 for both directions,

independently of the value v. This is obtained by generating a

second random number r′.
For each stochastic simulation we used the following

procedure. First, we set the initial positions yi (0) by placing

randomly N platelets on a segment of length L. Then at each

iteration the velocities vi were drawn from the distribution

described previously and the platelets positions were updated

accordingly 3. A platelet i with a position yi ≤ 0 is removed from

the system (deposited platelet), while the boundary yi > L is

reflective. Based on velocity auto-correlation measurements

discussed below, we set δt = 0.5ms.

3 Results and discussion

We have performed simulations of the system depicted in

Figure 1A, for shear rates 100 s−1 and an hematocrit of 35% as in

the Impact-R experiments. We have analyzed platelets trajectories

along the vertical direction, that is perpendicular to the flow. We

consider these simulations for 1s of physical time and for a system of

size 50μm × 50 μm horizontally, and of height L, with L ∈ {50, 100,

250, 500} μm in the vertical direction. Periodic boundary conditions

are imposed horizontally along the x and z directions, while the y

direction (or wall direction) is bounded by walls. The upper moving

wall has a constant velocity Vmw so as to produce the desired shear

flow. Although these simulations are significantly smaller in size and

time than the actual Impact-R experiment, they require

supercomputing capabilities.

In what follows, we focus on shear rate 100s−1 as in the

Impact-R experiments, and on the smallest system of size L =

50 μm. The reason is two-fold. First this is the typical size that has

been already considered in the literature for high-fidelity blood

flow numerical simulation. Second, due to the small size, the flow

reaches much faster a steady state on which reliable

measurements can be considered.

A typical trajectory is shown in Figure 2A. Note that we

consider the trajectory as long as the platelet stays far enough

from the boundaries. Indeed, we observe in our high-fidelity

simulations that the trajectory of the platelets is strongly affected

by the presence of the walls (see Figure 2A). This is the so-called

margination process that naturally brings and traps platelets

close to walls. To obtain data not affected by the system

boundaries, the region we consider goes from y = 10 μm to

y = L − 10μm, which corresponds to discarding from the analysis

a bottom and a top layer of about one red blood cell diameter.

Note also that, due to the symmetry of the flow, the density of red

blood cells is uniform along y so that the vertical platelets

transport is independent of y as shown by the profiles of the

velocity and its variance along the wall direction (Figure 2B).

Such symmetry consideration does not hold anymore in different

geometries, for instance in a tube, where the shear rate is not

uniform.

From the values of yi(t), it is traditional to compute the

platelets mean square displacement MSD(t) as

MSD t( ) � 〈 yi t( ) − yi 0( )[ ]2〉i (11)

where 〈·〉i indicates an average over the platelets, in our case

those that are still in the domain at time t. The diffusion

coefficient is linked to the means square displacement, as

DMSD = MSD(t)/(2t) for 1D systems (Figure 2B).

We consider platelets that remain in the domain of interest

during all the simulation time to compute a first quantity Din.

Further, we compute Din&out from the trajectories of all the

platelets until they leave the domain.

FIGURE 1
(A) A typical configuration of our high-fidelity blood
simulation, with deformable red blood cells and platelets (yellow
particles) in suspension in a Newtonian flow subject to a shear rate.
In this setup, fluid velocity increases linearly from 0 (at the
bottom fixed wall) to Vmw (velocity of the top moving wall). The
system has periodic boundary conditions along the x and z axis,
while the y-direction (or wall direction) is bounded by walls. (B)
Illustration of the process taking place in the Impact-R platelets
analyzer. Under the action of a shear flow and their interactionwith
red blood cells, platelets move towards the bottom of the system
where they deposit, forming aggregates displayed on the gray slab
as dark clusters.
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We obtain, for the present small system, Din&out = 1.71 ×

10−10m2s−1 and Din = 1.99 × 10−10m2s−1 (Figure 2), which is

compatible with previous numerical observations (see for

instance Reasor et al. (2013)), but larger than the MSD(t) that

would emerge from a diffusion constant given by DZC. However,

as shown below, the determination of D directly from the

platelets trajectories in such small spatial system is not

accurate and we claim that it underestimates D. Therefore we

FIGURE 2
(A) Sketch of the system with the region in which platelets trajectories are recorded. Trajectories y(t) of two representative platelets along the
direction perpendicular to the flow. Platelets (gray) with trajectory inside the excluded region are not considered for analysis. The situation shown in
this figure corresponds to a wall to wall distance of L = 50μm, hematocrit H = 0.35 and shear rate _γ � 100s−1. (B) Profiles of the velocity Vy (blue) and
the variance of the velocity ΔV2

y (green) along the wall direction y. Velocity and its variance are computed in bins of 0.1 μm and bins with
frequency lower than 0.1% are not represented. The total mean (resp. variance) in thick (resp. thin) dashed line is computed away from the wall
(between y = 10 μm and y = 40 μm). (C) The mean square displacement MSD(t) measured within the system limits is shown, as well as the
corresponding diffusion coefficient. The blue curve represents the MSDmeasured from the platelets that remain in the domain of interest during all
the simulation time (in), while orange curve is computed from the trajectories of the platelets during their residency in the domain (in and out). The
dashed straight line represents the MSD expected by Zydney-Colton theory.

FIGURE 3
(A) Velocity probability distribution P(v) obtained from sampling the platelets trajectories at a time resolution δt = 10–5 s (blue), and δt = 10–3 s
(orange). The straight lines represent an exponential decrease and the dashed one a powerlaw behavior, hence suggesting a velocity distribution
described by Eq. 5. The distributions were computed with logarithmically spaced bins. The inset indicates how velocities are measured from
trajectories samples at different values of δt. (B) Platelet velocity auto-correlation function VACF(τ) � 〈vi(t + τ)vi(t)〉i as a function of the time
delay τ. The fit of the data points gives a power law relation, VACF(τ) ~ τ−b, with b = 0.808.
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will consider below a different procedure, relating the diffusion

coefficient to the velocity probability distribution (Figure 3A and

Method) and velocity auto-correlation function.

Our goal with this stochastic model is to generate representative

platelets trajectories, much faster than with the fully resolved blood

flow simulation, and in any geometry, including scales and time span

similar to the Impact-R experiment. To do so, we still need to

determine the mean time between two random changes of v. This

is obtained by measuring the velocity auto-correlation function

〈vi(t)vi(t + τ)〉i as a function of τ. The results obtained from the

high-fidelity blood simulation are shown in Figure 3B. We observe

that

VACF(τ) � 〈v(t + τ)v(t)〉 � aτ−b (12)
with a = 0.017 × 10−3s (SD = 0.0015) and b = 0.808 (SD = 0.029),

when τ is expressed in ms.

The fact that VACF(t) is not an exponential function indicates

that platelets keep amemory of their velocity over a rather large time

interval Δt. The effect of these long-range correlations is significant
when sampling the trajectories at different rates. For δt = 10−3s, the

velocity histogram captures only the exponential part of the

distribution, suggesting that the tail of the distribution results

from short-time correlated platelets displacements (see the inset

in Figure 3A). To determine the value ofΔtwe compute the standard

deviation σ of the distribution of values in the tail of VACF(τ) (gray

box in Figure 3B). The value of τ above which measurement points

match the value of σ is considered as the typical time Δt after which
the velocity is randomized. Therefore we define

Δt � 0.5 × 10−3s (13)

From the value of Δt and the distribution P(v), we can use the
stochastic model to generate representative platelets trajectories

at much larger spatial and temporal scales, since it requires very

modest computational resources.

A typical trajectory is obtained as

y t + Δt( ) � y t( ) + v t( )Δt (14)
with

v t( ) ~± P v( ) (15)
where the notation ~±P(v) means that a new velocity is drawn

from P(v) with an equally likely positive or negative sign.

Figure 4A compares the velocity distributions of the

stochastic model, the high-fidelity model and the analytical

expression. We measure a Pearson correlation coefficient

0.999 (pval < 10–64) between the analytical expression and the

distribution of velocity of the stochastic model, and a correlation

coefficient 0.995 (pval < 10–35) between the analytical expression

and the distribution of velocity of the fully resolved model.

Figure 4B shows the mean square displacement MSD(t)

corresponding to particles following this stochastic model. We

investigate the finite size effects on the measure of the MSD(t)

and the estimation of the diffusion coefficientD. For small system

sizes, the MSD saturates, hence resulting in spurious estimation

of the diffusion coefficient (inset Figure 4B). Note that the

asymptotic value of D can only be found at large system sizes.

Increasing only the simulation time is not sufficient as the

saturation of the MSD is still present after 20s. For the largest

system, 10−2m, the diffusion coefficient associated with

MSD(t) is:

D � 0.67810−9m2s−1 (16)
which is more than 65 times larger than Dzc. It is also about

4 times larger than the value obtained from a direct measurement

of MSD(t) as shown in Figure 4B.

One can further use our stochastic model to simulate the

number N of platelets that deposit within 20 s in the Impact-

R. In the simulation, platelets whose trajectory reaches the

deposition surface at y = 0 are counted as absorbed and

removed from the system. Those reaching the upper

boundary at y = L = 0.82 mm are bounced back. This

process can be iterated for 20s with an initial number of

4,800 platelets uniformly distributed along L. The total

number of platelets that reach the absorbing boundary y =

0 increases in time as
�
t

√
, as predicted from the survival

probability in a 1D diffusion-absorption process. After 20s we

measure near 800 deposited platelets (see Figure 4C). This is

however still significantly less than the 3,000 platelets

observed to deposit in the Impact-R during this same time

interval.

It is important to notice that our results are sensitive to the

values α, vmin and vmoy measured from the velocity

distribution given in Figure 3A. We first investigate the

effect of the parameterα in Figures 5A–C. Changing the

value of α only modifies the tail of the distribution,

whereas the exponentially decreasing bulk of the

distribution remains unchanged (see Figure 5A). We

explored the set of following values α = 1.8, 2, 3, 4, and 5.

This set of values includes the very peculiar Levy-flight regime

that is characterized by infinite variance Viswanathan et al.

(2008). We do not observe significant change, both for the

number of platelets and the diffusion coefficient, for values of

α above 2 (Figures 5B,C). Instead, the diffusion coefficient D

increases as α decreases below 2, and we measure D = 4.4

10−9m2s−1 and approximately 1300 deposited platelets. Our

fully resolved simulation does not show such values for α, but

we cannot exclude totally the existence of such a regime for

simulated systems with size and time scales comparable to

those of the Impact-R setup. Yet speculative, these results

show that except for the Levy-flight regime, the parameter α

does not modify significantly the transport properties of the

platelets.

We then investigate the effect of changing vmoy and vmin.

For a sake of simplicity, and also to keep the distribution of
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FIGURE 4
(A) Velocity probability distribution obtained from the fully resolved simulation, the analytical expression and the stochastic model. (B) Mean
square displacement obtained with the stochastic model of trajectories, for different system sizes. The inset show of the corresponding diffusion
coefficient is sensitive to the size of the system, for small systems. The red dashed line represents the diffusion coefficient estimated from the
Impact-R experiments. (C) The number N of platelets that deposit as a function of time for a system of size L = 0.82 mm and initially
4,800 platelets uniformly distributed along L. The red dashed line represented the number of deposited platelets measured on the Impact-R device.

FIGURE 5
Velocity distribution, number of deposited platelets and finite size effect of the diffusion coefficient for different values of α (A–C) and different
values of vmoy and vmin (D–F). In Figures (D–F), the orange curve represents our reference values of vmoy and vmin.
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velocity smooth, we multiply concordantly vmoy and vmin by

values between 0.5 and 3 (see Figure 5C). We were motivated

to increase the mean velocity by the fact that the observed

mean velocity in the fully resolved model is related to the

actual time resolution of the model. Indeed, decreasing the

time resolution results in an increase of the mean velocity.

Typically, the mean velocity increases by a factor 2 when the

time resolution is decreased by a factor 100. This implies that

at the fluid resolution time δt = 10−7s, one could expect a

platelets mean velocity twice greater than the one measured at

δt = 10−5s. Simulations at lower time resolution can be

envisioned for future work, however at a dramatic

computational cost. According to the different velocity

distributions (see Figure 5D), we observe that both the

number of deposited platelets and diffusion coefficient

increase with the values of vmoy and vmin. Interestingly, for

the highest vmoy we tested, we find a diffusion coefficient

similar to the one obtained with α < 2 (D = 6.11 10–9 m2s−1),

but a number N of platelets twice greater. This suggests the

predominant role of the platelets mean velocity to explain the

number N observed in the Impact-R experiment.

4 Conclusion

This paper proposes a detailed analysis of the statistics of

platelets velocities when subject to an imposed shear flow of red

blood cells and plasma. Our motivation was to better understand

the deviation between the transport properties and deposition of

platelets predicted by the Zydney-Colton relation 1) and those

inferred from our Impact-R experiments.

Using fully resolved blood flow numerical simulations, in

which deformable red blood cells and platelets are in

suspension in a shear rate flow created between two walls,

we were able to reconstruct the probability distribution P(v) of

the platelets velocities. Such simulations are extremely time

consuming as they have to solve the flow, the deformability of

red blood cells, and the interaction between the fluids and the

blood cells, as well as the interaction between these blood cells.

Due to this high computational requirement, our study is

limited here to systems of size 50μm × 50μm × 50μm, for 1 s of

physical time.

From the simulation data, we found that P(v) is made of an

exponential part followed by a power law tail. We also

determine the velocity auto-correlation function and its

characteristic time scale Δt for velocity decorrelation. From

P(v) and Δt one can propose a stochastic model to generate

platelets trajectories that mimic actual trajectories. However,

with this stochastic model one can consider much larger

spatial and temporal scales. At such larger scales, we found

that the platelets diffusion coefficient perpendicular to the

flow direction is about 65 times larger than DZC, predicted by

the Zydney-Colton theory. However, for small system sizes,

the diffusion coefficient inferred from the evaluation of the

MSD within the systems boundaries gives a value of the same

order than predicted by the ZC relation. More in-silico

experiments, yet at high computational cost, are critical to

extend our findings in a broader parameter space, including

higher shear rate values, and validate our description in terms

of probability of velocities distribution and diffusion

coefficient at larger scales.

Overall our results go in the direction of the experimental

observation about the flux of platelets in the Impact-R device,

which requires a much larger diffusion coefficient than DZC but

still a diffusion constant at least one order of magnitude larger

than what is found here. More analysis is still needed to clarify

this discrepancy.

In view of the importance of a right characterization of

platelets transport in clinical devices to correctly test platelets

functionality, we hope that this study will stimulate more

experimental and numerical work.
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