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The objective of this study was to evaluate the effect of the interaction of the

zinc source (ZnSO4 vs. zinc amino acid complex) and vitamin E level (50 IU/kg

vs. 100 IU/kg) on meat yield and quality in broilers subjected to chronic cyclic

heat stress in the finisher phase. A total of 1224 one-day-old male Ross

308 broilers were randomly distributed among four dietary treatments. Each

treatment contained nine replicates of 34 birds, housed in floor pens in a

temperature- and lighting-controlled room. Treatments were organized in a

2 × 2 factorial arrangement: two sources of zinc, 60 mg/kg of Zn as ZnSO4 or

60 mg/kg of Zn as zinc amino acid complexes (ZnAA), combinedwith two levels

of vitamin E (50 or 100 IU/kg). From day 28 until day 37 (finisher phase), all birds

were subjected to chronic cyclic heat stress (32 ± 2°C for 6 h daily). In the

present study, it was observed that replacing ZnSO4 with ZnAA increased breast

meat weight and yield of broilers reared under chronic cyclic heat stress

conditions, whereas total slaughter yield was not affected. Moreover, it was

observed that replacing ZnSO4 with ZnAA resulted in breast meat with a lower

drip and thawing loss and a higher marinade uptake. In conclusion, replacing

ZnSO4 with more readily available ZnAA can improve breast meat yield and

increase the water-holding capacity of breast meat of broilers exposed to

chronic cyclic heat stress at the end of the production cycle. However, as no

thermoneutral group was included in the present study, the observed effects of

the zinc source cannot be generalized as a solution for heat stress. Moreover,

the beneficial effects of ZnAA on breast meat yield and quality seem to be

independent of the vitamin E level, and increasing vitamin E level has no

additional beneficial effects.
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1 Introduction

Heat stress is a major concern in poultry production because

it has a profound effect on animal health and performance.

Modern broiler breeds display reduced heat tolerance because of

a lack of sweat glands and the high metabolism associated with

low feed conversion and rapid growth (Lara and Rostagno, 2013;

He et al., 2018). Moreover, chronic heat stress leads to the

deterioration of meat quality by changing the aerobic

metabolism and by increasing glycolysis and fat deposition

(Petracci et al., 2015; Lu et al., 2017; Wang et al., 2017).

Consequently, the meat from broilers reared under high

environmental temperatures is characterized by a pale color,

low water-holding capacity (WHC), and therefore also increased

cook and drip losses (Wang et al., 2017). The impaired WHC is

detrimental to the valorization of broiler meat which is further

processed by marination, tumbling, and cooking (Zaboli et al.,

2019). Supplementation of vitamin A, C, and E can improve heat

tolerance ability and animal performance during heat stress

(Khan et al., 2011; Khan et al., 2012; Rehman et al., 2017).

Some antioxidant minerals, including chromium (Akbari and

Torki, 2014; Attia et al., 2017), selenium (Habibian et al., 2015),

and zinc, (Sahin et al., 2009; Chand et al., 2014) are also used to

prevent negative effects of heat stress. Zinc is an essential

component of many enzymes, and it has both structural and

catalytic functions in metalloenzymes. Furthermore, zinc is

required for normal immune function as well as proper

skeletal development and maintenance (Sahin et al., 2009).

One of the most important functions of zinc is its antioxidant

role and its participation in the antioxidant defense system. An

increased level of reactive oxygen species is one of the main

causes of decreased meat quality due to heat stress (Zaboli et al.,

2019). In broiler diets, ZnSO4 and ZnO are two of the main

inorganic zinc sources. There are also organic zinc sources

available that are characterized by improved bioavailability

(Star et al., 2012; Swiatkiewicz et al., 2014). A more readily

available zinc source might be more efficient in reducing the

adverse effects of stressors in broiler production, such as heat

stress. Both zinc and vitamin E are frequently used antioxidants

to alleviate the negative impact of heat stress; however, vitamin E

is expensive, and lower levels may be sufficient in combination

with a more readily available zinc source. To the best of our

knowledge, there is no information available concerning the

interaction of zinc sources, as opposed to different zinc levels,

on meat quality of broilers subjected to a temperature challenge,

and on the interaction with the vitamin E level. Therefore, the

objective of this study was to evaluate the effect of the interaction

of the zinc source (ZnSO4 vs. zinc amino acid complex) and

vitamin E level (50 vs. 100 IU) on meat quality and yield of

broilers exposed to chronic cyclic heat stress in the finisher phase.

2 Materials and methods

All experimental procedures in this study were in compliance

with the European guidelines for the care and use of animals in

research (Directive 2010: 63: EU) and were approved by the

Ethical Committee of the Research Institute for Agriculture,

Fisheries and Food (ILVO), Merelbeke, Belgium, under

authorization number 2017: 308.

2.1 Experimental design, animals, and diets

A total of 1224 one-day-old male Ross 308 broilers

(Belgabroed, Merksplas, Belgium) were randomly allocated to

36 floor pens (9 pens per treatment and 34 broilers per pen) in an

alternating block design, with one replicate per treatment in each

block. Up to day 7, the broilers were subjected to a light schedule

of 23 hours of light and 1 hour of darkness. From day 7 onwards,

the animals were subjected to a light schedule of 18 hours of light

and 6 hours of darkness. The temperature was kept at 29°C

during the first week of the experiment and reduced thereafter

until a final temperature of 22°C was reached at day 28. From day

28 until day 37 (slaughter age), the temperature and relative

humidity (RH) in the stable were raised up to 32 ± 2°C and

55–65%, respectively, for 3 h and subsequently maintained for

6 h before cooling down again to the initial temperature of 22°C.

Heat stress was confirmed empirically on randomly selected

birds from different pens equally divided over treatments by

measuring the rectal temperature, in order to confirm that the

temperature was raised above the physiological range of

41.2–42.2°C. The house was equipped with a dynamic

ventilation system with an air entrance on one side and air

extraction on the other side. The temperature and RH were

constantly monitored and steered by the adjustment of the

heating system and ventilation rate. Humidity was increased

by nebulizing water via water nozzles and decreased by

increasing the ventilation rate.

Dietary treatments were organized in a 2 × 2 factorial design

with two sources of zinc (Zn). Treatments contained equal

amounts of elemental zinc (60 mg/kg), either originating from

ZnSO4 (ZnSO4.7H2O; containing 22% of elemental zinc, Sigma-

Aldrich, St. Louis, United States) or originating as zinc amino

acid complexes (ZnAA; containing 10% of elemental zinc,

Availa®Zn, Zinpro Corporation, Eden Prairie, United States),

and two levels of vitamin E (50 or 100 IU/kg; dl-α-tocopheryl
acetate). The dietary treatments were provided in a wheat–rye-

based diet (Table 1). Availa®Zn is a zinc chelate based on single

amino acids from hydrolyzed soy protein and zinc bound in a

one-to-one molar ratio. All dietary treatments contained equal

zinc levels that comply with the dietary needs as described by
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NRC (1994). A vitamin E level of 50 IU/kg is recommended in

the Ross 308 manual (Aviagen, 2018) and was set at the standard

dose, and 100 IU/kg was selected as the elevated level of vitamin

E. The total levels of zinc included in the experimental diets were

determined using inductively coupled plasma atomic emission

spectroscopy with a method derived from NEN 15763, ISO

TABLE 1 Dietary composition of the diets.

Starter diet Grower diet Finisher diet

Ingredient (%)

Wheat 48.54 54.45 57.65

Rye 5.00 5.00 5.00

Soybean meal (48%) 30.18 24.39 21.61

Soybeans* 7.50 7.50 7.42

Rapeseed meal 2.00 2.00 2.00

Animal fat 2.50 2.60 2.70

Soy oil 1.00 1.00 1.00

Vitamin + trace mineral mix§ 1.000 1.000 1.000

CaCO3 0.707 0.788 0.702

Di-Ca-phosphate 0.737 0.456 0.206

NaCl 0.272 0.235 0.278

Na-bicarbonate 0.104 0.145 0.087

L-Lys-HCl 0.134 0.144 0.121

DL-Methonine 0.260 0.213 0.172

L-Threonine 0.064 0.056 0.040

Phytase‡ 0.020 0.020 0.020

Calculated nutrient composition

Crude protein (%)† 23.00 21.00 20.00

Crude fat (%)† 6.46 6.41 6.50

Non-soluble polysaccharides (%) 14.66 14.21 13.98

Metabolizable energy (MJ/kg) 11.00 11.25 11.46

Dig. lysine (%) 1.15 1.03 0.95

Dig. methionine + cysteine (%) 0.86 0.77 0.71

Dig. threonine (%) 0.75 0.67 0.62

Dig. valine (%) 0.89 0.81 0.76

Ca (%) 0.85 0.80 0.70

Available P (%) 0.40 0.35 0.31

NaCl + KCl (mEq/kg) 267 247 213

Linoleic acid (18:2) (%) 2.10 2.08 2.06

Analyzed nutrient composition

Crude protein 23.67 22.09 20.90

Crude fat 6.33 6.56 6.49

Crude ash 5.21 4.75 4.46

§Provided per kg of diet: vitamin A (retinylacetate 3a672a), 10,000 IU; vitamin D3 (E671), 3000 IU; vitamin E (dl-α-tocopherol acetate), 50 IU (T1+T2) or 100 IU (T3+T4); vitamin K,

2.5 mg; vitamin B1 (thiaminemononitrate), 2 mg; riboflavin, 5 mg; calciumD-pantothenate, 15 mg; vitamin B6, 4 mg; vitamin B12, 0.025 mg; niacinamide, 30 mg; folic acid, 1 mg; biotin,

0.2 mg; choline (choline chloride), 689.7 mg; Cu (CuSO4.5H2O), 20 mg; Mn (MnSO4.H2O), 95.9 mg; Fe (FeSO4.H2O), 49.2 mg; I (KI), 1.2 mg; Se (Na2SeO3), 0.4 mg; HSepioliet, 7.0 mg;

propylgallate, 2.0 mg; BHT, 3.0 mg; Zn (T1+T3, ZnSO4.7H2O, and T2+T4, Availa®Zn), 60 mg.
‡Ronozyme® NP. 10 000 FYT/g.
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21033, and ISO 27085 at the ECCA laboratory (Merelbeke,

Belgium) (Table 2). The total levels of vitamin E included in

the experimental diets were determined according to Claeys et al.

(2016) (Table 2). A three-phase feeding scheme was applied, and

dietary treatments were applied in all phases. The starter diet was

fed from day 0 up to day 10 and was provided as a crumble. The

grower and finisher diets were fed as pellets from day 10 up to day

28 and from day 28 up to day 37, respectively. Feed and drinking

water were provided ad libitum.

2.2 Slaughter yield and meat quality
analysis

On day 37, three broilers per pen were selected, and live

weight was determined by weighing the animals on a scale suited

for animal use before transport to the slaughterhouse, where they

were commercially slaughtered. Carcasses were immediately

chilled after processing. Slaughter yield was determined

approximately 24 h after slaughter (108 birds in total, 27 from

each treatment group). The broilers were manually dissected by

trained personnel to determine carcass, wing, leg (thigh and

drumstick) and breast meat weight, and total yield. Carcass yield

was calculated as eviscerated carcass weight relative to live weight

before slaughter. The carcasses were cut as shown in Figure 1, and

the breast, thigh, drumstick, and wing yields were calculated as

their weight relative to eviscerated carcass weight. All parts were

skin-on and bone-in after cut-up, except for the breast.

The different meat quality parameters were determined using

the breast (pectoralis major muscles) (Figure 2). Left breast fillets

(n = 9 per treatment) were weighed, and color measurements

were performed using a MiniScan EZ colorimeter (Hunterlab,

Reston, VA) to record CIE L* (lightness), a* (redness), and b*

(yellowness) values. Temperature and pH ultimate were

measured using a Portamess® 910 (Knick, Berlin, Germany).

Following these measurements, breast fillets were vacuum-

packed and stored at -20°C in order to determine protein

solubility at a later time point. The remaining left breast fillets

(n = 18 per treatment) were vacuum-packed and transported to

the University of Bologna (Italy, Cesena, Department of

Agricultural and Food Sciences) in order to determine

marinade uptake. The right breast fillets (n = 18 per

treatment) were removed from the carcass and put in a

polypropylene bag, hung for 24 h at 4 ± 2°C, and then blotted

dry, and weighed again to measure drip loss. Drip loss was

calculated as the difference between the weight before storage

(W1) and the weight after storage (W2) relative to the weight

before storage. Drip loss was calculated using the following

formula: drip loss (%) = [(W1–W2)/W1 ] × 100. The

remaining right (n = 9 per treatment) breast fillets were

weighed (W3), vacuum-packed, and stored at -20°C for

4 days. They were then defrosted for 24 h at 5°C, blotted dry,

and weighed (W4) in order to determine thawing loss. Thawing

loss was calculated using the following formula: thawing loss =

[(W3–W4)/W3 ] × 100. After the thawing loss was determined,

the fillets were cooked in a warm water bath (80°C) for 30 min.

Afterward, they were blotted dry and weighed (W5) to record

cooking loss. Cooking loss was calculated using the following

formula: cooking loss (%) = [(W4—W5)/W4 ] × 100. Drip loss,

thawing loss, and cooking loss were used to evaluate the water-

holding capacity.

TABLE 2 Analyzed zinc and vitamin E concentrations in the different dietary treatments for broilers.

Treatment Added zinc or vitamin E level Analyzed zinc level Analyzed vitamin E level

Added zinc source
and concentration (mg/kg)

Added
VE level (IU/kg)

Starter Grower Finisher Starter Grower finisher

1 60 mg/kg ZnSO4 50 94 88 90 73 82 67

2 60 mg/kg ZnAA 50 91 90 91 67 86 69

3 60 mg/kg ZnSO4 100 89 91 89 121 145 105

4 60 mg/kg ZnAA 100 90 98 90 113 119 104

ZnAA, zinc amino acid complex; Vit E, vitamin E, dl-α-tocopheryl acetate.

FIGURE 1
Illustration of dissected carcass to determine slaughter yield.
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2.2.1 Myofibrillar and sarcoplasmic protein
solubility

Protein solubility was determined based on the difference in

extractability of proteins in solutions at different ionic

strengths. Sarcoplasmic protein solubility was determined by

homogenizing (Ultraturrax, T25 basic, New Brunswick NJ) 3 g

of minced meat in 80 ml of extraction medium (150 mM

sodium chloride and 0.01 mM iodo acetic acid). The

supernatant was centrifuged (3,000 g, 10 min) and filtered

(Schleicher & Schuell nr. 597½), and the protein

concentration of this supernatant was determined using the

biuret method (Layne, 1957). To determine myofibrillar protein

solubility, the remaining pellet was suspended in 45 ml of

extraction buffer (0.1 M citric acid, 1 mM EDTA, 0.4 M

sodium chloride, and 0.01 mM iodo acetic acid). The

suspension was incubated at room temperature for 2 h. The

supernatant was centrifuged (5,000 g, 20 min) and filtered

(Schleicher & Schuell nr. 597½), and the protein

concentration of this supernatant was determined using the

biuret method (Layne, 1957).

2.2.2 Marinade uptake
In order to assess marinade performances, meat was cut in

order to obtain parallel cut samples (8 × 4 × 2 cm, weighing about

80 g), which were individually labeled and marinated by the

addition of 20% marinade solution (6% sodium chloride and

1.8% sodium tripolyphosphate) using a small-scale vacuum

tumbler (model MGH-20, Vakona Qualitat, Lienen,

Germany). The tumbling time was 40 min under vacuum

(-0.95 bar) (two working cycles of 20 min/cycle and one pause

cycle of 5 min). After tumbling, samples were weighed again, and

the difference in weight was used to determine marinade uptake.

Marinade uptake was calculated based on carcass weight before

marination (W1) and its weight after marination (W2),

according to the following equation: marinade uptake (%) =

[(W2 –W1)/W1] × 100.

2.3 Statistical analysis

Statistical analysis was performed in R for Windows

(version 3.5.1). All data were checked for outliers and the

normality of the residuals. Slaughter yield and meat quality

were analyzed using a general linear model (GLM) with “zinc

source” and “vitamin E level” as fixed factors and block as a

random factor (factorial analysis). In the two-factorial analyses,

when there was no significant interaction or no trend, only the

main effects were taken into account. The differences were

considered statistically significant at p < 0.05 and considered

tendency at 0.05 < p < 0.1.

3 Results

3.1 Slaughter yield and meat quality

There were no interactions observed between the dietary zinc

source and vitamin E level for total slaughter yield and the

different meat quality parameters (Table 3). A tendency (p =

0.052) for live body weight was observed for the zinc source.

FIGURE 2
Overview of meat quality parameters determined on left and right breast fillet.
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Broilers that were fed a diet supplemented with ZnAA tended to

have a higher slaughter weight than broilers that were fed diets

supplemented with ZnSO4.

Only a main effect of the zinc source on breast yield and

certain meat quality parameters was observed, whereas no main

effect of the vitamin E level was observed. The zinc source

TABLE 3 Effect of the supplemental zinc (Zn) source and vitamin E level (Vit E) on live weight and carcass composition of broilers at slaughter age
(day 37).

Treatment Live weight (g) Breast weight (g) Carcass yield (%) Breast (%) Drumstick (%) Thigh (%) Wing (%)

Zn source (Zn)

1. ZnSO4 2,843 341.9 71.34 32.25 12.83 22.63 9.93

2. ZnAA 2,950 352.5 71.69 33.31 12.60 21.96 9.82

p-value 0.052 0.032 0.346 0.005 0.224 0.494 0.383

Vitamin E dose (E)

1. 50 IU/kg 2,893 353.8 71.88 32.83 12.65 22.20 9.92

2. 100 IU/kg 2,913 340.7 71.15 32.73 12.79 22.39 9.84

p-value 0.677 0.807 0.098 0.768 0.425 0.750 0.572

Interaction Zn X E

p-value 0.292 0.309 0.916 0.208 0.823 0.952 0.352

SEM 48.33 14.03 0.48 0.37 0.21 0.95 0.13

ZnAA, zinc amino acid complex; E, vitamin E; SEM, standard error of the mean.

TABLE 4 Quality characteristics and functional properties of breast meat of broilers at slaughter age (day 37).

Treatment pH L* a* b* Drip
loss
(%)

Thawing
loss (%)

Cooking
loss (%)

Marinade
uptake (%)

Myofibrillar
protein solubility
(mg/ml)

Sarcoplasmic
protein solubility
(mg/ml)

Zn Source (Zn)

1. ZnSO4 6.17 57.95 7.45 15.30 5.44 10.93 20.95 8.9 6.94 18.50

2. ZnAA 6.14 58.16 8.09 16.03 4.09 8.07 21.18 9.4 7.25 19.35

p-value 0.968 0.623 0.104 0.300 0.027 0.026 0.401 0.066 0.353 0.347

Vitamin E dose (E)

1. 50 IU/kg 6.13 58.54 7.88 16.07 4.59 9.35 20.98 10.0 7.30 18.50

2. 100 IU/kg 6.18 57.67 7.66 15.26 4.94 9.66 21.15 8.3 6.90 18.38

p-value 0.685 0.858 0.782 0.353 0.582 0.819 0.765 0.052 0.244 0.236

Interaction Zn x E

p-value 0.427 0.864 0.742 0.524 0.818 0.425 0.452 0.924 0.924 0.924

SEM 0.05 1.01 0.62 0.64 0.05 0.01 0.01 0.37 0.33 0.87

ZnAA, zinc amino acid complex; E, vitamin E; SEM, standard error of the mean; L*, lightness; a*, redness; b*, yellowness.

Frontiers in Physiology frontiersin.org06

De Grande et al. 10.3389/fphys.2022.992689

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.992689


significantly affected the breast yield and water-holding capacity

of the breast meat. A higher breast meat yield was observed for

birds that fed a diet supplemented with ZnAA than birds that fed

a diet supplemented with ZnSO4. Breast meat of birds that were

fed a diet supplemented with ZnAA was characterized by a

significantly lower drip loss and thawing loss than breast meat

of birds that were fed a diet supplemented with ZnSO4. No effect

of dietary treatment on cooking loss was observed. Dietary

treatment did not significantly influence protein solubility and

marinade uptake in breast meat (Table 4).

4 Discussion

Broilers reared under high temperatures often show lower

meat yield and impaired meat quality (Zaboli et al., 2019).

Breast meat of broilers exposed to chronic heat stress results in

pale meat color (Petracci et al., 2004; Zhang et al., 2012),

decreased WHC (Feng et al., 2008; Wang et al., 2009), and

increased cook and drip losses (Woelfel et al., 2002) and is

characterized by an increased denaturation of sarcoplasmic or

myofibrillar proteins and a lower WHC (Zaboli et al., 2019).

Additionally, higher breast meat yields are often associated with

lower meat quality, characterized by a higher drip and cooking

loss and lower marinade uptake (Petracci et al., 2015; Wang

et al., 2017).

Interestingly, in the present study, it was observed that

supplying zinc as ZnAA, resulted in increased yield in breast

meat, characterized by lower drip and thawing losses, as

compared to supplying zinc as ZnSO4. The lack of

differences in cooking loss is probably due to the fact that

fillets used to assess thawing loss were also used to assess the

cooking loss. The increased breast yield might be partly

attributed to the tendency for an increased live body weight

of broilers supplemented with ZnAA, as modern broilers are

selected for increased yield of pectoralis major muscles

(Zuidhof et al., 2014). A previous study (De Grande et al.,

2020) showed that ZnAA can improve performance under

thermoneutral conditions. As zinc plays an important role in

normal development and growth, it is possible that zinc

supplements with increased bioavailability may better

support growth under heat stress conditions. Although this

could not be concluded from this study, no thermoneutral

control group was included. Therefore, further research

needs to be performed to confirm this hypothesis.

Zinc supplementation as such or increasing

supplementation levels might decrease drip loss and

improve the water-holding capacity of the meat under

thermoneutral conditions (Liu et al., 2011; Yang et al.,

2011). Trace minerals help to sustain the production in

animals, improve nutrient utilization and at the same time

effectively neutralize the oxidant stress and enhance the

compromised immune system of heat-stressed birds (Mir

et al., 2018). As the requirements for trace minerals increase

during heat stress, the inclusion of a more readily available zinc

source, such as ZnAA, might be more efficient in reducing the

adverse effects of heat stress on meat quality (Sahin et al., 2009;

Chand et al., 2014; Farag and Alagawany, 2018). In addition,

Liu et al. (2015) reported that increased dietary

supplementation of Zn can upregulate the expression of Zn-

containing superoxide dismutase. As the negative impact of

high ambient temperatures on meat quality is mainly caused by

oxidative damage to the skeletal muscle (Zaboli et al., 2019),

the improved quality traits when supplying ZnAA could be

ascribed to improved support of the antioxidant defense

system (Liu et al., 2015; Kamran Azad et al., 2018). Indeed,

a previous study performed by De Grande et al. (2020) showed

that ZnAA could decrease the activity of the glutathione

peroxidase in plasma on day 36, while malondialdehyde

levels did not differ, indicating that ZnAA might better

support the oxidative status.

Although it has been acknowledged that vitamin E has a

positive effect on meat quality by protecting membranes against

lipid oxidation, thus reducing drip loss in meat (Estevez, 2015;

Pompeu et al., 2018), no effects could be observed when the

dietary vitamin E level was increased in the present study. It is

possible that the increase in the level of vitamin E was insufficient

to create an impact on meat quality and yield under these

conditions; in the recent literature, supplementation at a level

of 250 mg/kg was advised to improve meat quality in broiler

chickens (Shakeri et al., 2020).

Overall, it can be argued that an organic form of Zn, in

particular ZnAA, which is characterized by improved

bioavailability (Star et al., 2012; De Grande et al., 2020),

might be able to better mitigate lipid and protein oxidation in

post-rigor breast muscles and increase both the water-holding

capacity and water-binding ability. However, as no

thermoneutral control group was incorporated in this study,

the observed effects of the zinc source cannot be generalized as a

solution for the negative effects of heat stress. Therefore, further

research needs to be performed to elucidate the underlying

mechanism concerning the effects of zinc sources on meat

yield and quality.

In conclusion, comparing ZnSO4 with more readily available

ZnAA shows improved breast meat yield and increased water-

holding capacity in broilers exposed to chronic cyclic heat stress

at the end of the production cycle. Moreover, the beneficial effects

of ZnAA on breast meat yield and quality seem to be independent

of the vitamin E level, and increasing the vitamin E level has no

additional beneficial effects.
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