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Background:Human enamel and dentin temperatures have been assessedwith

non-contact infrared imaging devices for safety and diagnostic capacity and

require an emissivity parameter to enable absolute temperaturemeasurements.

Emissivity is a ratio of thermal energy emitted from an object of interest,

compared to a perfect emitter at a given temperature and wavelength,

being dependent on tissue composition, structure, and surface texture.

Evaluating the emissivity of human enamel and dentin is varied in the

literature and warrants review. The primary aim of this study was to evaluate

the emissivity of the external and internal surface of human enamel and dentin,

free from acquired or developmental defects, against a known reference point.

The secondary aimwas to assess the emissivity value of natural caries in enamel

and dentin.

Method: Fourteen whole human molar teeth were paired within a thermally

stable chamber at 30°C. Two additional teeth (one sound and one with natural

occlusal caries–ICDAS caries score 4 and radiographic score RB4) were sliced

and prepared as 1-mm-thick slices and placed on a hot plate at 30°C within the

chamber. A 3M Scotch Super 33 + Black Vinyl Electrical Tape was used for the

known emissivity reference-point of 0.96. All samples were allowed to reach

thermal equilibrium, and a FLIR SC305 infrared camera recorded the warming

sequence. Emissivity values were calculated using the Tape reference point and

thermal camera software.

Results: The external enamel surface mean emissivity value was 0.96 (SD 0.01,

95% CI 0.96–0.97), whereas the internal enamel surface value was 0.97 (SD

0.01, 95% CI 0.96–0.98). The internal crown-dentin mean emissivity value was

0.94 (SD 0.02, 95% CI 0.92–0.95), whereas the internal root-dentin value was

0.93 (SD 0.02, 95% CI 0.91–0.94) and the surface root-dentin had a value of

0.84 (SD 0.04, 95% CI 0.77–0.91). The mean emissivity value of the internal

enamel surface with caries was 0.82 (SD 0.05, 95% CI 0.38–1.25), and the value

of the internal crown-dentin with caries was 0.73 (SD 0.08, 95% CI 0.54–0.92).

Conclusion: The emissivity values of sound enamel, both internal and external,

were similar and higher than those of all sound dentin types in this study. Sound

dentin emissivity values diminished from the crown to the root and root surface.

The lowest emissivity values were recorded in caries lesions of both tissues. This

methodology can improve emissivity acquisition for comparison of absolute
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temperatures between studies which evaluate thermal safety concerns during

dental procedures and may offer a caries diagnostic aid.
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1 Introduction

1.1 Infrared imaging

Infrared imaging devices (such as thermal cameras) collect

emitted infrared radiation and process this to provide a

quantitative temperature measurement. The use of such an

infrared imaging device, that collects, rather than projects,

infrared radiation to provide an absolute temperature, is based

on the theory that any tissue with a temperature above absolute

zero emits infrared radiation. Absolute zero (0 K or −273.15°C) is

where molecular motion is predicted to cease, resulting in no

emittance of infrared radiation (Gaussorgues, 1994).

With technological developments, these devices are now

more affordable and accessible, and, to provide accurate

temperatures, certain parameters are required, which include

the emittance-value or emissivity (E) of the object of interest.

1.2 Use of infrared imaging in dentistry

The use of non-contact infrared imaging devices to report

temperature via thermography has benefits, which include data-

collection from inaccessible areas, provision of areas of interest

rather than a point of contact and avoidance of loss-of-contact

during data-recording, and reduced cross-infection risk which, in

turn, has a cost-benefit, compared to contact devices such as

thermometers, thermocouples, and thermistors. The latter aspect

of cross-infection is particularly beneficial for medical

application.

With increased interest in the use of infrared imaging devices

to assess the temperature of mineralized tooth tissue, it is relevant

to assess the emissivity of each sample to report a valid

temperature. Many in vitro studies have been carried out with

thermal imaging devices to assess potential damage to both the

soft and mineralized tooth tissue from temperature changes, e.g.,

during laser application (Launay, et al., 1987; Pogrel, et al., 1988;

Anić, et al., 1993; Arima & Matsumoto, 1993; Neev, et al., 1993;

Arrastia, et al., 1994; Anić and Matsumoto, 1995; Arrastia, et al.,

1995; Machida, et al., 1995;Wilder-Smith, et al., 1995; Anić, et al.,

1996a; Anić, et al., 1996b; Meyer & Foth, 1996; Neev, et al., 1996;

Whitters & Strang, 2000; Yu, et al., 2000; Yamazaki, et al., 2001;

Kishen, et al., 2003; Ishizaki, et al., 2004; Madura, et al., 2004;

Wang, et al., 2005; Ana, et al., 2007; Da Costa Ribeiro, et al., 2007;

Stock, et al., 2011; Da Silva Barbosa, et al., 2013; Uzunov, et al.,

2014; Forjaz, et al., 2022), light-curing-composite (Al-Qudah,

et al., 2005; Bouillaguet, et al., 2005; Aksakalli, et al., 2014; Jo,

et al., 2019; Mouhat, et al., 2021), endodontic treatment

(McCullagh, et al., 1997; McCullagh, et al., 2000; Behnia &

McDonald, 2001; Lipski and Zapałowicz, 2002; Lipski &

Woźniak, 2003; Lipski, 2004; Lipski, 2005a; Lipski, 2005b;

Lipski, 2006; Hsieh, et al., 2007; Ulusoy, et al., 2015; Diegritz

et al., 2020; Podolak, et al., 2020), pin-placement (Biagioni, et al.,

1996), post-removal (Budd, et al., 2005; Lipski et al., 2010a),

cavity preparation and restoration (Carson, et al., 1979; Lipski

et al., 2020), caries assessment (Liu, et al., 2021; Roointan, et al.,

2021), and bleaching (Gontijo, et al., 2008; Kabbach, et al., 2008).

A smaller number of in vivo studies have also assessed the

temperature of tooth tissue and oral soft tissue, e.g., investigation

of infection (Crandell & Hill, 1966; Pedreira, et al., 2016;

Aboushady, et al., 2021), vitality (Hartley, et al., 1967; Pogrel,

et al., 1989; Kells, et al., 2000b; Mendes, et al., 2020), composite

curing (Hussey, et al., 1995), and tooth temperature after laser

application (Arrastia, et al., 1994). A small infra-camera has been

developed and used clinically to assess root caries in vivo (Yang

et al., 2020), progressing the application of infrared imaging in

clinical dentistry. However, recognition of the emissivity value

of mineralized tooth tissue and the method of calculation is

very varied within the dental literature, with values ranging

from 0.65 to 1.0 (Table 1). Some studies report the method of

emissivity assessment, some reference other studies for the

transferred value, some have previously reported a value in a

study, and others may not report a methodology due to space

available in the article or due to prior unpublished work

ascertaining the emissivity value. Diegritz, et al., 2020,

stated ‘it is of vital importance to determine the emissivity of

the object of interest as it will affect the radiation emitted and,

therefore, also affect the temperature measurement’. Without

the emissivity value, the temperature reported may be of

limited value, as seen from the range of temperatures in

Figure 1.

1.3 Emissivity

When the thermal stability of an object is achieved, there is a

balance between the radiation entering and emitted from an

object. To maintain this thermal equilibrium, when the energy is

absorbed, energy must also be released, which is the emitted

radiation (E). This amount is dependent on the temperature,

wavelength, material composition, and surface texture, as well as

the viewing angle (Gaussorgues, 1994; Vollmer & Möllmann,
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TABLE 1 Emissivity values sourced in literature to July 2022 for mineralized human tooth tissue.

Emissivity
(ε)

Author Year Tissue
(E, D, R)

In vivo
(VV) In
vitro (VT)

Sample
S or W

Calculation method

1.0 Jo, et al. 2019 D VT W Default setting of the program

0.98 Mouhat, et al. 2021 D VT W Previous study by same group 2017 with no method
given

0.98 Kaneko, et al. 1999 E demineralized VT W Assumed

0.98 Preoteasa, et al. 2010 E VV W Referenced Voicu et al., 2009

0.97 Soori, et al. 2020 E VT W Thermocouple comparison 40°C–60°C

0.97 Meyer & Foth 1996 E & D VT S Assumed

0.96 Soori, et al. 2020 E VT W Thermocouple comparison 20°C–40°C

0.96 Lancaster, et al. 2017 E & D VT S .

0.92 Liu, et al. 2021 E VT W Comparison with the original reference image to
ambient temperature

0.92 Soori, et al. 2020 D VT W Thermocouple comparison 40°C–60°C

0.92 Dabrowski, et al. 2000 E VT W Reflection method

0.92 Lee, et al. 2016a R VT W .

0.92 Lin, et al. 2010a D VT S Manufacturer’s guide

0.91 Forjaz, et al. 2022 R VT W Considering emissivity to be equal to 0.91

0.91 Soori, et al. 2020 E VT W Thermocouple comparison 20°C–40°C

0.91 Mendes, et al. 2020 E VV W Resultant from the vestibular surface of the assessed
teeth

0.91 Podolak, et al. 2020 R VT W Referenced Kells et al. (2000a)

0.91 Arslan, et al. 2018 R VT W Calibrated to the specific root

0.91 Lee, et al. 2016b E VT S .

0.91 Lipski, et al. 2020 Roof of pulp
chamber

VT W Referenced Kells et al. (2000a)

0.91 Lipski 2005a R VT W Referenced Kells et al. (2000a)

Lipski, et al. 2010a

Lipski, et al. 2010b

0.91 Lipski 2005b R VT W ·
0.91 Lipski 2006 R VT W Camera calibration

0.91 Ana, et al. 2007 E & D VT S ·
0.91 Da Costa Ribeiro,

et al.
2007 R VT W Referenced McCullagh et al. (2000)

0.91 Da Silva Barbosa,
et al.

2013 E Deciduous VT S Referenced Ana et al. (2007)

0.91 Kabbach, et al. 2008 RD VT W ·
0.91 Lin, et al. 2010a E VT S Manufacturer’s guide

0.91 Kilic, et al. 2013 R VT W Referenced Lipski et al. (2010a) & Kells et al. (2000a)

0.91 Ulusoy, et al. 2015 R VT W ·
0.9 Diegritz, et al. 2020 R VT W Thermal comparison with thermocouple

0.84 Paredes, et al. 2018 E VT W Reference tape

0.8 Neev, et al. 1993 D VT S Black paint assumed-emissivity 1

0.65 Kells, et al. 2000a
and b

E VT/VV W Spot-measurement from within the hot oven and
software

0.65 Kells, et al. 2000a
and b

E VT/VV W Spot-measurement from within the hot oven and
software

E, enamel; D, dentin; R, root; RD, root-dentin; VV, in vivo; VT, in vitro; S, sectioned flat surface of a slice; W, whole tooth.
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2010), although the visible color of the object is not influential

(Hardy, 1934).

The maximum potential value for the emitted radiation is

1 and is described for an idealistic blackbody, which theoretically

absorbs all incident radiation and can subsequently emit all of it.

Commercially available blackbodies have reported emittance

values of 0.98 or 0.99 rather than 1, which is the highest

empirical value achievable (Vollmer & Möllmann, 2010). The

emissivity value, which is unitless and can range from 0 to 1, is

the ratio of the emitted radiation from the surface-of-interest,

compared to that emitted by a blackbody at the same wavelength

and temperature.

Emissivity calculation methods may involve a blackbody, but

this is expensive and often unavailable. Temperature

measurement has also been described (Webb, 1991) but

requires bespoke software to compute the value and an

environment with known stable temperatures to assess the

samples, whereas a known reference allows emissivity

calculation using the thermal camera’s software and is

accessible to all with such a camera. Stability of the thermal

environment is still an important consideration. An affordable

and accessible reference, which may be a black paint or black tape

with reported emissivity, e.g., 3M Scotch Super 33 + Black Vinyl

Electrical Tape (≈$12 for 20 m) has a recorded value of 0.96

(British Standards, 2008; FLIR ThermaCAM™ Researcher

Professional, 2010).

Emissivity may vary due to composition, tissue structure,

surface contour (as seen with occlusal fissures and the natural

curve of a whole tooth crown, compared to the flat internal

surface of a tooth slice), and the tissue temperature and

wavelength-collection of different thermal devices. Transfer of

emissivity values, as seen in multiple articles (Lipski, 2005a; Da

Costa Ribeiro, et al., 2007; Lipski, et al., 2010a; Lipski, et al.,

2010b; Preoteasa, et al., 2010; Da Silva Barbosa, et al., 2013; Kilic,

et al., 2013; Lipski et al., 2020; Podolak, et al., 2020), requires care,

and a standardized approach to assess the emissivity of tooth

tissue would be beneficial. As seen in Figure 1, a difference in

emissivity can lead to large temperature differences. In a stable

environment of ≈30°C, the surface enamel may be reported to

have a temperature of 79.2°C, with an emissivity value of 0.1,

whereas a temperature of 30.8°C is reported with an emissivity

value of 0.99, a difference of 48.4°C. If used for assessing

temperature differences with new equipment or comparing

with threshold values for safety, this can lead to misleading

outcomes if incorrectly applied.

Two studies were sourced in a literature search of Medline,

Web of Science, and Scopus databases up to July 2022, which

focused solely on emissivity values of human mineralized tooth

tissue (Dabrowski, et al., 2000; Soori, et al., 2020). The recent

study by Soori, et al. (2020) reported experimental estimation of

human enamel and dentin emissivity to be 0.96 ± 0.01 and 0.92 ±

0.01, respectively, between 20 and 40°C, 0.97 ± 0.01, and 0.93 ±

0.01, respectively, between 40 and 60°C, which lies within

previously reported values from thermal studies (Table 1) and

reports the variances are due to compositional and structural

differences in the tissues, as well as surface quality.

Thermocouples were used internally on the teeth, which could

not be applied clinically. Dabrowski, et al. (2000) reported an

enamel emissivity of 0.92 and also recognized the kind of

material that affects this parameter. To assist the clinical

evaluation of emissivity, a non-invasive method is desirable.

1.4 Composition, structure, and surface
texture of human teeth–health and caries

The composition, structure, and surface texture of the human

tooth can be variable, and this will be reviewed considering the

implications for the range of emissivity values for human enamel,

both external surface-enamel and internal enamel visible when a

tooth is sliced, internal crown and root-dentin, as well as external

surface root-dentin. The impact of dental caries on the

composition, structure, and surface texture is also considered

as emissivity may offer an additional diagnostic tool for detecting

demineralized tissue.

The human tooth has a clinical crown visible in the oral

cavity and a root, invisible in the oral cavity, which attaches to the

alveolar bone of the jaw via a soft tissue, the periodontal ligament.

There are three mineralized tissues that compose a tooth: enamel,

FIGURE 1
Line graph of changing temperature with emissivity of human
enamel at 30°C.
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dentin, and cementum, and one soft tissue internally encased in

the mineralized tooth tissue: the pulp.

Developmentally, enamel has an epithelial origin, whereas

dentin, cementum, and the alveolar bone are mesenchymal in

origin. Despite different origins and final structure, which relates

to tissue function, the underlying mineral of the tooth enamel,

dentin, and cementum is quite similar, being calcium

hydroxyapatite (Ca10(PO4)6(OH)2).

1.4.1 Enamel
During tooth development, ameloblasts produce enamel

(amelogenesis) after dentin formation (dentinogenesis),

commencing from odontoblasts within the central pulp-tissue.

The enamel forms the external surface of the tooth exposed in the

oral cavity and has a varying thickness depending on age, sex,

genetics, developmental anomalies, location, and physiological

and pathological wear.

The enamel is a very hard and organized tissue primarily

composed of inorganic calcium hydroxyapatite

(Ca10(PO4)6(OH)2) (96% by weight when mature— Goldberg,

et al., 2011) and soft organic tissue, such as the non-collagenous

structural proteins, amelogenin, ameloblastin, and enamelin, as

well as proteinases, kallikrein-related peptidase-4 (KLK4) and

matrix metalloproteinases-20 (MMP20) (Simmer, et al., 2012;

Bartlett, 2013; Smith, et al., 2017). As the enamel matures,

mineral content increases with the loss of protein and water,

most likely resulting in a non-homogenous mineral distribution

(Cuy, et al., 2002; He, et al., 2010; Zheng, et al., 2013), although

Glas (1962) reported little mineral change across the enamel.

This non-homogenous distribution can lead to different

properties of the tissue in different places.

The structure of the enamel and dentin is quite different and

can explain their different properties.

The initial layer of enamel interdigitates with dentin and has

no rods. Rods are produced later with thousands of crystallites

which vary in size, increasing with maturity (≈5 µm cross-section

diameter—Meckel, et al., 1965), up to 40,000 crystallites per

bundle, varying in thickness from 30 nm × 30 nm (Robinson,

et al., 2003) and width 26 nm × 68 nm (Kerebel, et al., 1979),

producing smooth surfaces extending the full width of enamel to

the surface (Daculsi & Kerebel, 1978; Daculsi, et al., 1984).

Between the rods are an organic rod-sheath and an interrod

area of differently orientated crystals. Human rod cross-sections

are key-hole-shaped, with a circular head and elongated tail.

Adjacent enamel crystals have been reported to be misoriented

with a range of 0–30o and a mean of 2–8o (Stifler et al., 2021), and

this relates with the reported hardness of this unique tissue,

which is the hardest tissue in man. This change in orientation

produces Hunter–Schreger bands which are observed to be

horizontal at the side of a cusp, as the rods may be viewed in

cross-section or longitudinal. At the occlusal surface, a final

aprismatic enamel layer (30–70 µm) overlies the radial

enamel, which has rods parallel to each other and

perpendicularly orientated to the surface (Speirs, 1971;

Whittaker, 1982; Maas & Dumont, 1999; Popowics, et al.,

2004; Cui & Ge, 2007; Risnes & Li, 2018), unlike the body of

enamel. The post-secretory maturing ameloblasts secrete

proteases which degrade the matrix, reducing the extra-

cellular content from 20 to 0.4–0.6%, and with crystal growth,

the peptides are removed (Goldberg, et al., 2014).

As seen, there is a difference between the cross-section

internal structure of enamel compared with the outer

aprismatic layer, followed by the outer radial prismatic layer

and finally the inner enamel with Hunter–Schreger bands,

compared to the sound intact outer surface enamel, which

may be totally aprismatic (40%–47%) (Risnes & Li, 2018),

with areas of the ends of radial prisms visible, or, subject to

greater enamel loss, may show areas of Hunter–Schreger bands

from the inner enamel (Whittaker, 1982). With sufficient enamel

loss, the inner layer may be seen in the transverse section

clinically. The prism-free enamel is less rough than that with

prisms, especially when etched. The surface enamel on unerupted

teeth shows primarily small crystals (5 nm), which are loosely

packed, with a few larger plate-like crystals (1.0µm—50 nm).

Following the eruption, such crystals were not observed, and

aprismatic enamel had crystals of 40 nm ormore (Palamara et al.,

1980). The surface enamel may be fissured occlusally or curved

over the cusps and buccal and lingual surface, whereas the inner

surface will be flat following slicing.

Enamel is deposited rhythmically by each ameloblast

producing individual prisms, and collectively the striae of

Retzius demonstrate the overall enamel deposition and

growth, which results in the presence of enamel surface

ridges—the perikymata. This is the interface with the oral

cavity and will be examined clinically and thermographically

for the external surface of the enamel. All of these enamel types

are in a different orientation internally compared to externally,

with or without wear, and this may affect the emissivity value of

the tissue due to surface texture.

1.4.2 Dentin
Beneath the enamel lies the dentin, which forms the bulk of

the tooth’s mineralized tissue, both in the crown and the root,

which is less mineralized than enamel at 70% by weight

(Goldberg, et al., 2011). Physiological deposition of dentin

continues throughout the vital life of the tooth from

odontoblasts at the outer edge of the pulp, which moves

toward the center of the tooth, secreting the collagenous

predentin matrix 15–20 µm thick and commencing

mineralization of intra- and extra-fibrillar crystals in a ratio of

25–30% and 70–75%, respectively (Kinney, et al., 2001; Kinney,

et al., 2003; Balooch, et al., 2008), which is dissimilar to enamel

but similar to bone (Bonar, et al., 1985; Pidaparti, et al., 1996).

Development of matrix vesicles from odontoblasts is reported

early in dentin-formation, which is similar to bone and may

contribute to mineralization of dentin (Goldberg, et al., 2011).
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There are multiple types of dentin, each with structural and

compositional differences. Mantle dentin is the first formed

coronally, without tubules as the odontoblast process develops

later. In the root, a Tomes granular layer with interglobular

spaces, with or without the hyaline Hopewell–Smith layer, is

deposited, and tubules are rare in any peripheral dentin

(Goldberg, et al., 2011). Primary dentin (circumpulpal dentin)

is composed of three dentin types: intertubular dentin may

account for up to 90% with 30% mineral and Type I collagen

as the main protein, intratubular dentin and peritubular dentin in

the human may account for 10%–20%, with 95%mineral with no

collagen, and the latter two are often considered one tissue. This

is variable depending on the location. The crystals of intertubular

dentin form from two plates and may be 2–5 nm thick and 60 nm

long, whereas peritubular dentin crystals of 25 nm appear

isodiametric, and, when viewed with higher resolution

dimensions are 36 nm × 25 nm × 9.75 nm (Goldberg, et al.,

2011). Once erupted and contacting the opposing dentition,

physiological deposition of secondary dentin continues at a

slower rate than that of primary dentin.

Tertiary dentin may be produced in response to a

pathological stimulus, e.g., caries, which offers additional

protection of the pulp from the original odontoblast

(reactionary dentin) or from odontoblast-like cells

differentiated from pulpal stem cells following the death of

the original odontoblast. This dentin differs from

physiological and reactionary dentin as the odontoblast-like

cells do not have an odontoblast process around which a

tubule forms (Smith, et al., 1995). The odontoblast process

may extend up to 1 mm into the dentin, resulting in

cellularity, unlike enamel (Pashley, 1996). The tubule diameter

varies across the dentin-thickness, being larger at the pulp-face

(2.5–3.5 µm) than at the periphery of the amelodentinal junction

(0.6–1.5 µm) (Fearnhead, 1957; Linde and Goldberg, 1993;

Pashley, 1996; Montoya, et al., 2015).

1.4.3 Root
The root of the tooth is not normally visible intra-orally when

held in a healthy periodontium, and the outer surface is covered

with a thin layer of the mineralized tissue cementum. There are

several types of cementum—acellular, cellular, mixed, and

acellular afibrillar—composed of small mineralized plates

similar to bone (Yamamoto et al., 2010; Nanci, 2012).

1.5 Properties

These compositional and structural differences between

enamel and dentin can impact their properties, e.g.,

conductivity, diffusivity, and emissivity.

Thermal conductivity of the enamel is reported to range

between 0.65 and 0.93 Wm·K (Lisanti and Zander, 1950; Phillips

et al., 1956; Craig and Peyton, 1961; Braden, 1964; Lin, et al.,

2010b; Lancaster, et al., 2017), indicating enamel is an insulator

offering thermal protection to the underlying dentin and

pulp. Consideration was given to the orientation of enamel

rods (parallel to or perpendicular to) in one study (Soyenkoff

and Okun, 1958), but it did not impact the outcome, as both

orientations produced a value of 0.65 Wm·K. A later study did

report a higher value (0.93 Wm·K) when analyzing parallel rods.

However, neither study had large sample sizes (2 v

7 respectively), and each used different temperatures,

i.e., 26–29°C v 50°C, to record thermal conductivity with

different devices, e.g., thermistor v thermocouple.

The thermal conductivity of dentin is reported to range

between 0.108 and 0.959 Wm·K (Lisanti & Zander, 1950;

Phillips, et al., 1956; Soyenkoff & Okun, 1958; Craig &

Peyton, 1961; Braden, 1964; Brown et al., 1970; Fanibunda

and de Sa, 1975; Minesaki et al., 1983; Fukase et al., 1992;

Panas et al., 2003; Little, et al., 2005; De Magalhaes et al.,

2008; Lin et al., 2010b; Lancaster, et al., 2017), which is a 10-

fold change rather than a 1.5-fold change for enamel. Dentin

structure may have greater variability than enamel, especially

when reviewing crown- and root-dentin and young and mature

dentin. Tubule orientation was viewed in parallel and

perpendicular, giving similar results with a range of

0.4–0.6 Wm·K.
Human enamel thermal diffusivity ranges from 0.23 to 0.47 ×

10−6 m2/s, approaching twice the value of human dentin at

0.18–0.26 × 10−6 m2/s (Lisanti & Zander, 1950; Phillips et al.,

1956; Soyenkoff & Okun, 1958; Craig & Peyton, 1961; Braden,

1964; Brown et al., 1970; Fanibunda and de Sa, 1975; Minesaki

et al., 1983; Fukase et al., 1992; Panas et al., 2003; Little, et al.,

2005; DeMagalhaes et al., 2008; Lin, et al., 2010b; Lancaster, et al.,

2017).

1.6 Caries

During the life of a human tooth, there is likely to be a

physiological and pathological impact on the tissue from

abrasion and/or attrition, which may smooth the surface or

expose the underlying structure clinically; demineralization

and remineralization due to erosion or caries with an ionic

exchange, e.g., calcium, phosphate, magnesium, and fluoride

can result in a changeable composition (Fejerskov, 1997).

Immature teeth may be susceptible to caries due to increased

porosity, incomplete mineralization, and plaque accumulation

(Carvalho, 2014). Caries initially has a subsurface effect with an

intact surface layer of 20–50 µm, which may have surface

roughness and pore volume of 1% (Darling, 1958) and an

increasing porosity below the body of the lesion (5%–25%),

with increased loss of mineral, e.g., magnesium, which may

arrest or progress, leading to breakdown of the surface and

underlying tooth structure. The crystal size is affected,

reducing to 10–30 nm in the body of the lesion, and also
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alters the structure and composition of the enamel, which may

also affect the emissivity value.

Dentin may also be affected if caries progresses, leading to

bacterial invasion and a zone of destruction and degradation of

the organic matrix with loss of extrafibrillar mineral initially

(Frank, 1990; Pugach, et al., 2009).

Coronal caries can be visually and radiographically

characterized for research using the International Caries

Detection and Assessment System (ICDAS) and ICDASII,

with scores for enamel and dentin ascertained by assessing the

surface changes of a tooth, which has been related to the

histological extent of the lesion (Pitts et al., 2013). This

improves the consistency of reporting caries compared to a

basic indication of the presence or absence of decay. For the

unrestored tooth, caries can be visually scored from 0 to 6, ± for

activity status, as well as by merged variations to simplify the

classification process–Tables 2, 3.

The impact of natural caries on human enamel is reported to

reduce the thermal conductivity for both enamel (0.22 Wm·K)
and dentin (0.24 Wm·K) (Lancaster, et al., 2017), and this may

also affect the emissivity value.

1.7 Aims

The primary aim of this study is to evaluate the emissivity of

the external and internal surface of human enamel and dentin

from a known reference of 3M Scotch Super 33 + Black Vinyl

Electrical Tape. The secondary aim is to assess the emissivity of

natural caries in internal enamel and dentin.

The hypothesis for this study is that emissivity will be the

same for all enamel and dentin types, whether sound or carious.

2 Materials and methods

Ethical approval was gained from Leeds Dental Institute

Research Tissue-Bank for all teeth. Two teeth, one sound and

one with a natural carious lesion, were radiographed (70kV/

7mA/0.16s) with a Focus 50420 radiographic unit

(Instrumentarium Dental TUUSULA, Finland) sliced bucco-

lingually at 1-mm intervals with an Accutom-5 (Struers,

Copenhagen, Denmark) and polished with an 800-grit

abrasive sheet, while being cleansed with distilled water as

necessary. The slices were immersed in distilled water and

stored flat in boxes, which were refrigerated until needed.

Fourteen whole human molar teeth were held as pairs within

a purpose-built unit, numbered 1 to 7, for ease of placement and

removal from a fixed, rigid aluminum frame attached to an

aluminum cube at a focal distance of 8 cm from the thermal

camera. The frame had two supports to hold the paired units of

teeth with the Tape attached, which were secured with wing-nuts

(Figures 2A,B). The pairs of teeth were embedded within a

simulated alveolar bone of Aluwax (www.Aluwaxdental.com)

and secured with Green Stick Compound (www.kerrdental.com).

A thermal camera (FLIR SC305 with x4 lens, 100 µm spatial

resolution) was attached to the aluminum cube with macro- and

micro-thermal-regulation (previously described by Lancaster,

et al., 2017), with a focal distance of 8 cm to the object of

interest. Parameters of reflected apparent temperature

(assessed with a thermal image of crumpled aluminum foil)

were 27.2°C with a humidity of 50% (Prime Capsule Data

Logger—www.perfect-prime.com) at a stable cube temperature

of 22°C for the slices and 34.6°C with a humidity of 29% at a stable

cube temperature of 30°C for whole teeth.

A Bibby Hotplate Techne DB-2TC (www.bibby-scientific.

com) with an aluminum block was secured within the cube and

provided a stable heat source of 30°C. A hand carrier with a

copper baseplate (0.5 mm × 50 mm × 50 mm) and attached

thermal tape (6 W m·K; www.thegamebooth.co.uk)

transported the paper-dried tooth slices for heating on the

heated aluminum block (Figure 3). The 3M Scotch Super 33 +

Black Vinyl Electrical Tape was used for the known emissivity

reference-point of 0.96 (ε = 0.96). The sliced samples were

heated within the cube for 20 min, when thermal equilibrium

was achieved, and emissivity was calculated against the

reference Tape using the thermal camera software

(ThermaCAM Researcher Professional 2.10).

TABLE 2 ICDAS II Merged Caries Codes adapted from Pitts et al. (2013).

ICDAS II Caries
code

Merged codes Description

0+/− 0−no caries evident Sound tooth—no or questionable changes in enamel translucency viewed clean and after prolonged air-drying of 5 s

1+/− A+/−initial stage
decay

Initial stage of caries—first visible change in the enamel observed as a caries opacity or discoloration of pits after drying
with air, not consistent with sound enamel. No surface breakdown or dentin shadowing.

2+/− Change in enamel visible on moist enamel, extending beyond pits

3+/− B+/−moderate decay White or brown spot lesion with localized enamel destruction, without visible dentin

4+/− Underlying dentin shadow with or without localized enamel destruction

5+/− C+/−extensive decay Clear cavity, less than half of the dental surface, in enamel showing dentin

6+/− Extensive cavity, more than half the tooth surface, which is deep and wide, extending into the dentin
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A stable thermal environment of 30°C was provided within

the cube for the whole teeth, and, when in thermal equilibrium,

the enamel-surface emissivity was assessed from the

thermographs against the reference Tape attached to each tooth.

Data were processed and analyzed with ThermaCAM

Researcher Professional 2.10 Software, which was also

embedded in a Macro-enabled Microsoft Excel File

(Microsoft®), and 95% confidence interval and Intraclass

correlation coefficient were calculated in IBM SPSS Statistics

Version 23.

3 Results

3.1 Descriptive data of teeth

The fourteen whole molar teeth evaluated for the

emissivity of surface enamel comprised three upper-third

molars, four lower-third molars, one lower-second molar,

five upper-first molars, and one lower-first molar. Nine

were donated by females and five by males. The mean age

of donors was 16 years 11 months (range 10–28 years).

Twelve donors were of white ethnic origin, and two were

unknown.

A lower-third molar from a female donor, aged 18 years, of

unknown ethnic origin, and an upper-third molar, also from a

female donor, aged 28 years, also of unknown ethnic origin,

provided five slices from each tooth. The caries lesion of the

whole upper third molar tooth was classified as ICDAS II caries

score 4 and radiographic score RB4.

3.2 Thermal equilibrium

Thermal equilibrium was achieved for each sample prior to

emissivity assessment. As seen in Figure 4, the tooth slice warmed

from the base temperature (lowest value of 28.2°C for the root

surface) to 31.8°C for all tissues and materials bar one in

approximately 360 s (6 min) and remained stable (±0.3°C) for

the rest of the 20-min sequence, at the end of which the emissivity

value was calculated. The lowest value found was for the root

surface of dentin (green line), which stabilized between 31.5°C and

31.1°C.

3.3 Enamel and dentin emissivity

Table 4 and Table 5 show the results for the emissivity value

by sample location (external or internal) and sub-sample slice

with and without caries and descriptive statistics for emissivity

values of sound external enamel, internal enamel, dentin, root-

face dentin, and caries-affected internal enamel and dentin,

respectively.

Comparison of enamel emissivity produced similar outcomes

for the external enamel (x�= 0.96, SD 0.01) and internal enamel

(x� = 0.97, SD 0.01), both falling within the 95% confidence

interval. Repeat sequences of two slices gave an Intraclass

Correlation Coefficient of 0.86 for the internal enamel.

Comparison of internal caries enamel emissivity (x�= 0.82,

SD 0.05) indicated a potential difference in emissivity, falling

below the 95% confidence interval of 0.96–0.98 for sound

internal enamel.

FIGURE 2
(A): Vertical and (B): horizontal close-up of the tooth-pair unit secured by wing-nuts to the rigid-stand in the aluminium cube. 3M Scotch Super
33+ Black Vinyl Electrical Tape attached to tooth-surface for emissivity-reference-point of 0.96.
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FIGURE 3
Thermograph with areas-of-interest selected in internal enamel, crown-dentin, root-dentin and root-face of a slice of tooth. Emissivity-
reference-point provided by 3M Scotch Super 33+ Black Vinyl Electrical Tape.

FIGURE 4
Line graph showing the Time-Temperature Curves of areas-of-interest of enamel, crown-dentin, root-dentin, root-surface-dentin of a slice of
human tooth-tissue and tape areas-of-interest achieving thermal equilibrium within the cube after approximately 6 min and remaining stable over
the next 14 min.
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Comparison of the internal crown (x�= 0.94, SD 0.02) and

root dentin (x� = 0.93, SD 0.02) emissivity produced similar

outcomes, both falling within the 95% confidence interval.

Repeat sequences of two slices gave an ICC of 0.86 for

internal root dentin.

Comparison of the external root-face dentin (x�= 0.84, SD

0.04) with the internal crown and root dentin indicates potential

differences in emissivity, with the root-face falling below the

confidence interval of both internal crown and root dentin.

Comparison of internal carious crown dentin (x�= 0.73, SD

0.08) indicated potential difference with the respective sound

tissue, falling below the 95% confidence interval of 0.92–0.95 and

having the lowest of all emissivity values.

Based on the above-mentioned findings, the study hypothesis

was rejected.

4 Discussion

The British Standards and Manufacturer’s Infrared

Thermography Handbook (British Standards, 2008; FLIR

ThermaCAM™ Researcher Professional, 2010) provide a

simple and recognized method of calculating emissivity by

using a reference point of known emissivity, e.g., 3M Scotch

Super 33 + Black Vinyl Electrical Tape.

Multiple samples (14) were used in this study to assess the

emissivity value of the external surface of the enamel of whole

teeth compared to one sample from Kells, et al. (2000a), despite

their study considering multiple teeth: one sample by Lin, et al.

(2010a) and three samples by Soori, et al. (2020). A total of

10 slices were used from two teeth to assess the emissivity of

internal enamel and dentin from healthy and caries-affected

teeth, and caution is needed when reviewing the outcomes

from the slices as their independence will not be as great as

that of 10 individual teeth. To the author’s knowledge,

assessment of internal sound and carious mineralized tissue

has not previously been reported from empirical data as

undertaken in this study, although an assumed emissivity of

0.98 was used by Kaneko, et al. (1999) when assessing the

feasibility of caries-detection using thermal data. The overall

mean emissivity values of healthy enamel were found to be

similar, at 0.97 for the internal flat surface and 0.96 for the

external curved surface, and had the greatest mean emissivity

value of any of the mineralized tooth-tissue assessed. This is

similar to previous reports ranging from 0.96 to 0.98 and higher

than others with a range of 0.65–0.9 (Table 1). Sound crown

dentin tended to have a higher mean emissivity value (0.94) than

root dentin (0.93), but not enamel, and the root face had the

lowest mean emissivity value (0.84) of all sound mineralized

tooth tissue. Both caries-affected enamel (0.82) and dentin (0.73)

had lower emissivity values than their sound equivalents.

This can be attributed to different tissue compositions and

structures, with enamel having a higher mineral content (95%)

than dentin (60%) and dentin being composed of mineralized

tubules rather than prisms and inter-prismatic crystals, as seen in

enamel. Enamel will have natural surface irregularities seen as

perikymata as well as internal irregularities from the prisms and

inter-prismatic crystals. These surface textures appear to emit

infrared radiation in a similar way, despite one being an internal

surface and one an external surface. Assessment of an area of

tissue may also account for this as a local change may be

compensated for within the area calculation, compared to a

spot-measurement as undertaken by Kells, et al. (2000a). The

duration for which the teeth used in this study had been in the

oral environment after eruption was unknown, and, thus, the

degree of maturity of enamel was also unknown, which may

affect the mineral content, as enamel increases in mineral

composition following eruption.

The root-face returns the lowest value of all healthy

mineralized tooth-tissue assessed and not only has a greater

curvature than the flat surface of the cut crown-dentin and root-

dentin but may also contain remnants of the cementum which

has a reduced mineral content at 50% compared to the rest of

dentin. There may be soft-tissue traces from the periodontal

ligament as well, which influences the activity of the radiant

energy.

The crown-dentin and root-dentin values are slightly

higher than the published values of 0.8, produced from

comparison with a black paint assumed to have an

emissivity of 1 (Neev, et al., 1993). This is very improbable,

as a perfect blackbody is empirically unlikely. The

temperature of the assessment was also unknown. All tissue

samples are non-homogenous and will vary in mineral

composition and structure, all of which can affect the

emissivity values and may account for some of the

variations and demonstrates the need to assess each tooth.

Once dental caries demineralizes the tooth tissue, the

mineral content changes and emissivity assessment may

offer a diagnostic option early in the disease process. The

lesion assessed in this study was advanced. However,

attempts to assess caries due to thermal changes have been

challenging, and the assessment of the emissivity may be

sufficient to demonstrate early changes in tissue

composition. The caries tissues all produced lower emissivity

values than healthy tissues in thermal equilibrium. Occlusal

caries assessment may present challenges from increased

curvature of the cusps and the fissures which trap the

radiation, and further studies are needed to explore

emissivity further as a diagnostic aid.

4.1 Acceptance of methodology

The Tape method of assessing emissivity was simple and

cheap and would be recommended for providing actual

emissivity values for tooth tissue in any in vitro study,
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allowing consistency of methodology between research groups to

report absolute temperatures. The emissivity of this Tape has

been validated by the British Standards, and no independent

evaluation of emissivity was carried out. In this study, the Tape

was placed on the whole tooth sample and by the side of the

slices. This may be criticized as the Tape was not physically on

TABLE 3 ICDAS Radiographic Scores adapted from Pitts et al. (2013).

ICDAS Radiographic score Codes Description

0 No radiolucency

RA: initial stages RA 1 Radiolucency outer half enamel

RA 2 Radiolucency inner half of enamel ± enamel dentin junction

RA 3 Radiolucency limited to outer third of dentin

RB: Moderate stages RB 4 Radiolucency reaching middle third dentin

RC: Extensive stages RC 5 Radiolucency reaching inner third dentin and clinically cavitated

RC 6 Radiolucency into pulp and clinically cavitated

TABLE 4 Emissivity value by sample location (external or internal) and sub-sample slice with and without caries.

Whole
samples
(n = 14)

External
enamel

Sub-sample
slices
(n = 2)

Internal
enamel

Dentin Internal
enamel
caries

Internal
dentin
cariesCrown Root Root-

face

1 0.955 15a 0.973 0.950 0.921

2 0.965 15b 0.971 0.917 0.926

3 0.970 15c 0.957 0.943 0.940 0.838

4 0.970 15d 0.991 0.960 0.943 0.902

5 0.959 15e 0.951 0.827

6 0.966 16a - 0.796

7 0.961 16b 0.960 0.897 0.907 0.714

8 0.967 16c 0.978 0.930 0.910 0.781 0.658

9 0.963 16d 0.976 0.931 0.926 0.849 0.809

10 0.959 16e 0.992 0.960 0.960

11 0.958

12 0.954

13 0.940

14 0.948

TABLE 5 Descriptive statistics for emissivity values of sound external enamel, internal enamel, dentin, root-face dentin, and caries-affected internal
enamel and dentin.

Tissue n = Mean Std. deviation Std. error
mean

95% Confidence
interval

External enamel 14 0.96 0.01 0.002 0.96–0.97

Internal enamel 2 (nine slices) 0.97 0.01 0.005 0.96–0.98

Internal dentin

Crown 2 (eight slices) 0.94 0.02 0.008 0.92–0.95

Root 2 (eight slices) 0.93 0.02 0.006 0.91–0.94

Root face 2 (four slices) 0.84 0.04 0.022 0.77–0.91

Internal enamel caries 1 (two slices) 0.82 0.05 0.034 0.38–1.25

Internal dentin caries 1 (three slices) 0.73 0.08 0.044 0.54–0.92
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the slices. However, the slices were 1 mm thick and reached

thermal equilibrium within 6 min. It is acknowledged that two

teeth have been prepared to produce 10 slices for the assessment

of internal emissivity of enamel and dentin and one tooth for the

assessment of caries, which reduces the independence of

outcomes described.

There were no measurements of the mineral density of any

tissue, and, as such, the stage of demineralization is unknown for

enamel and dentin and can be explored in a further study, having

established the principle.

5 Conclusion

The method of calculation was cheap, simple and practical and

can improve emissivity acquisition for comparison of absolute

temperatures between studies evaluating thermal safety concerns

for dental procedures and may offer a diagnostic aid in detecting

demineralization and caries of tooth tissue.

Enamel had a high emissivity, which was similar whether

from the internal flat surface of sliced enamel or the external

curved enamel surface of a whole tooth and was reduced in

caries-affected enamel.

Dentin also had a high emissivity (but not as high as enamel),

which varied with location, with crown dentin being the highest

compared to root dentin, and the root face had the lowest emissivity

value but was still a good emitter of infrared radiation. Dentin

emissivity was similarly reduced when affected by caries.
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