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Objectives: We aimed to establish machine learning models based on texture

analysis predicting pelvic lymph node metastasis (PLNM) and expression of

cyclooxygenase-2 (COX-2) in cervical cancer with PET/CT negative pelvic

lymph node (PLN).

Methods: Eight hundred and thirty-seven texture features were extracted from

PET/CT images of 148 early-stage cervical cancer patients with negative PLN.

The machine learning models were established by logistic regression from

selected features and evaluated by the area under the curve (AUC). The

correlation of selected PET/CT texture features predicting PLNM or COX-2

expression and the corresponding immunohistochemical (IHC) texture features

was analyzed by the Spearman test.

Results: Fourteen texture features were reserved to calculate the Rad-score for

PLNM and COX-2. The PLNMmodel predicting PLNM showed good prediction

accuracy in the training and testing dataset (AUC = 0.817, p < 0.001; AUC =

0.786, p < 0.001, respectively). The COX-2 model also behaved well for

predicting COX-2 expression levels in the training and testing dataset

(AUC = 0.814, p < 0.001; AUC = 0.748, p = 0.001). The wavelet-LHH-GLCM

ClusterShade of the PET image selected to predict PLNMwas slightly correlated
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with the corresponding feature of the IHC image (r = −0.165, p < 0.05). There

was a weak correlation of wavelet-LLL-GLRLM LongRunEmphasis of the PET

image selected to predict COX-2 correlated with the corresponding feature of

the IHC image (r = 0.238, p < 0.05). The correlation between PET image

selected to predict COX-2 and the corresponding feature of the IHC image

based on wavelet-LLL-GLRLM LongRunEmphasis is considered weak positive

(r = 0.238, p=<0.05).

Conclusion: This study underlined the significant application of the machine

learning models based on PET/CT texture analysis for predicting PLNM and

COX-2 expression, which could be a novel tool to assist the clinical

management of cervical cancer with negative PLN on PET/CT images.
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Introduction

Cervical cancer is the fourth most prevalent cancer and the

fourth leading cause of female cancer, with more than

6,00,000 incidences and 3,00,000 death cases reported in 2020

(Sung et al., 2021). The most commonly used clinical treatments

are radical hysterectomy with pelvic lymph node dissection.

However, the prognosis of post-operative patients varied

significantly due to tumor heterogeneity (Bhatla et al., 2021).

Several studies have indicated the most relevant prognostic factor

in early cervical cancer is pelvic lymph node metastasis (PLNM)

(Rudtanasudjatum et al., 2011; Horn et al., 2014; Zyla et al., 2020;

Federico et al., 2022; Wenzel et al., 2022). Kulisara et al. have

proved that patients with lymph node metastasis (LNM) had

poorer 5-year overall survival than the patients without LNM

(p < 0.05) (Nanthamongkolkul and Hanprasertpong, 2018). In

addition, lymphadenectomy may increase the probability of

some complications including lower limb lymphedema, ileus,

and chylous ascites (Yost et al., 2014; Kuroda et al., 2017; Nica

et al., 2020; Umbreit et al., 2020). The accuracy of predicting

LNM in cervical cancer patients is crucial for treatment decision-

making.

Previous studies have indicated that PET/CT could be used for

the evaluation of LNM as a preoperative imaging test, which is of

vital importance for clinical strategies and individualized treatment

(Sironi et al., 2006; Lv et al., 2014; Fasmer et al., 2020).

Nevertheless, these studies usually used lymph node metabolism

and diameter to assess LNM. Few studies have evaluated the

metastasis of PLN with slightly higher FDG metabolism and

diameter less than 1 cm on PET images which has limitations

in detecting micrometastasis. Radiomics is rapidly gaining

momentum and this technique is characterized by quantifying

tumor heterogeneity through extraction of computational features

using advanced computational algorithms. Texture parameters of

radiomics features of PET images and IHC pathomic features

could potentially be adopted to predict the PLNM for strategy

choice of cervical cancer patients.

Substantial evidence suggests that cyclooxygenase-2 (COX-

2), a key protein in prostaglandin metabolism, has a critical role

in PLNM in cervical cancer (Ryu et al., 2000; Hoellen et al., 2016).

Previous studies have indicated elevated COX-2 was strongly

related to LNM in stage IB cervical cancer (Kang et al., 2006), the

high COX expression has been revealed positive correlation with

malignancy in the parametrial tumor tissue or LNM (Ryu et al.,

2000). Other studies also found that high-level expression of

COX-2 was correlated with a poorer prognosis, recurrence, low

sensitivity of nedaplatin, and radiosensitivity (Kim et al., 2003;

Chen et al., 2005; Ishikawa et al., 2006; Manchana et al., 2006; Jo

et al., 2007; Huang et al., 2013; Stasinopoulos et al., 2013; Kato

et al., 2015). In neoplasia, COX-2 stimulates cell proliferation

which promotes angiogenesis through pathways involving an

increase in VEGF production (Huang et al., 2013; Xu et al., 2014).

It has been suggested that COX-2 expression may enhance LNM

after the onset of lymphovascular space invasion

(Khunamornpong et al., 2009; Hoellen et al., 2016). The

heterogenic 18F-FDG uptake was strongly related to the

histopathological appearance in the tumor region. 18F-FDG

heterogenic uptake within the tumor was correlated with the

heterogeneity of tumor histopathological tissues (Zhao et al.,

2005; Henriksson et al., 2007). IHC assay demonstrated that

tumor angiogenesis and cancer cell proliferation were

significantly related to the enhancement of tumor

heterogeneity. Therefore, the high expression of COX-2 played

a connecting role between the increase of tumor heterogeneity

and PLNM (Liu et al., 2011).

Based on texture parameters of radiomics features of PET

images, the global and local-regional heterogeneities of 18F-FDG

distribution could be potentially assessed. Moreover, some

mathematical methods were obtained to describe the

relationships between their position in PET images and the

gray-level intensity of pixels or voxels (Chicklore et al., 2013;

O’Connor, 2017). In this study, we hypothesized that the

overexpression of COX-2 promoted the increase of tumor

heterogeneity and then caused the change of texture features
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of radiomics derived from IHC and PET/CT imaging. The

texture features of the primary tumor lesion may be correlated

with PLNM in patients with early-stage cervical cancer.

Therefore, we aimed to establish machine learning models of

texture analysis that could predict PLNM and COX-2 expression

based on PET/CT imaging to assist the clinical management of

PLNM therapy in cervical cancer with PET/CT negative PLN.

Materials and methods

Radiomics workflow

The study flowchart and radiomics workflow are shown in

Figure 1 and includes the collection and exclusion of patients,

image acquisition, ROI segmentation, feature extraction and

selection, establishment and evaluation of machine learning

models, and correlation analysis between PET and IHC

images with the same texture features.

Patients

This retrospective study consisted of 170 patients with

histologically confirmed stage IA-IIA cervical cancer who

underwent radical hysterectomy with pelvic node dissection

between September 2015 and December 2019 in Shengjing

Hospital of China Medical University. All patients

underwent 18F-FDG PET/CT scan within 1 week before

treatment. The Hospital Institutional Review Board approved

this study and informed consents were nor required due to

retrospective nature. Inclusion criteria for cases: (Sung et al.,

2021) Cervical squamous cell carcinoma confirmed by

pathology and lymph node dissection performed in the

patient; (Bhatla et al., 2021) Ia-IIa stage identified by

2021 Federation of Gynecology and Obstetrics (FIGO)

staging (Bhatla et al., 2021); (Horn et al., 2014) The SUVmax

of PLNM was less than 2.5 and the diameter was less than 1 cm;

(Zyla et al., 2020) Normal serum glucose level before PET/CT

scanning; (Rudtanasudjatum et al., 2011) No other tumor or

metabolic disease. A total of twenty-two patients were excluded

from the sample. Seven of them were excluded because they had

received chemoradiotherapy before surgery. Nine histological

sections could not be obtained. The tumor volumes of three

patients were less than 1 cm3 to be unable to extract texture

parameters. The PET image quality of the three cases was too

bad to segment regions of interest (ROI). Eventually, 148 cases

(54 PLNM and 94 non-PLNM) were enrolled in the study and

randomly divided into a training dataset and a testing dataset

according to the 7:3 ratio.

18F-FDG PET/CT technique

The patients were all performed with the PET-CT (Discovery

PET/CT 690; GE Healthcare, Chicago, Illinois, United States)

and received an injection of 3.7 MBq/kg 18F-FDG intravenous.

The CT parameters were 3.27 mm slice thickness, 120 kV tube

voltage, and 30–210 Ma. Then, with a three-dimensional

acquisition mode and a matrix size of 192 × 192, PET data

were captured at a speed of 1.5 min/bed (total of seven to eight

beds). Using an iterative reconstruction algorithm of order subset

expectation maximization, the PET image was reconstructed

with twice iteration, 24 subsets and 6.4 mm Gaussian filter. In

FIGURE 1
Study flowchart and radiomics workflow. (A) Study flowchart. (B) Radiomics workflow.
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the AW4.5 workstation (GE Healthcare), and all PET images

were transferred. The conventional metabolic parameters of

tumors in 18F-FDG PET images for all patients consisted of

total pathological glycolysis (TLG), the metabolic tumor volume

(MTV), SUVmax, SUVpeak, and SUVmean. SUV corrected for body

weight and was measured automatically using a threshold of 42%

SUVmax from the ROIs.

Immunohistochemical analysis

Department of Pathology in our hospital prepared all

paraffin sections for cervical cancer. IHC staining was

performed by Leica BOND MAX™ (Leica Biosystems). Goat

anti-human COX-2 (1:400 dilution) polyclonal primary

antibodies (Abcam) were used to incubate these sections,

following species-appropriate secondary antibodies and the

standard procedures were performed as in the previous

report (Li et al., 2021a). Tumor sections were scanned using

the Pannoramic MIDI slice scanner (3DHISTECH Ltd.)

forming a digital image (×400) and analyzed by

QuantCenter software with the Pannoramic viewer. The

whole images were scanned by the DensitoQuant software

and the analysis procedure was performed as in previous

reports (Yeo et al., 2015; Li et al., 2021b). The

immunoreactive scoring system (IRS) was utilized to assess

the expression level of COX-2 (Kim et al., 2008). The IRS was

derived from the addition of staining intensity (scored on a

0–3 scale: 0, negative; 1, weakly positive; 2, moderately positive;

and 3, strongly positive) and staining extent (scored on a

0–4 scale: 0, no staining; 1, 1%–25% positive 2, 26%–50%

positive; 3, 51%–75% positive; and 4, 76%–100% positive

tumor cells). The level of COX-2 expression was classified as

a dichotomous variable for high (IRS, 4–7) or low (IRS, 0–3)

expression.

Extracting texture features of PET and
immunohistochemical images

All PET images were loaded to 3D slicer (https://www.

slicer.org) software 4.10.2 version. Two nuclear medicine

physicians manually segmented independently the largest

slice of all tumors in PET images to form 2D ROI, blinded to

patient clinical information. Then, the texture features of

ROI in PET images were extracted by the pyradiomics

package (van Griethuysen JJMFedorov et al., 2017). The

resampled voxel size was set to 1 mm × 1 mm × 1 mm to

be isotropic of the image. The discretization of the grayscale

was set to 25 bin width. The PET original images were

transformed into eight images by the first level wavelet

transform. Then the texture features were extracted from

ROI based on PET original images and wavelet transformed

images.

A pathologist randomly captured the cancer tissue area of the

cervix on the digital IHC image (×20). The captured images that

were native red/green/blue (RGB) images were converted to

greyscale before computing the texture features (Kather et al.,

TABLE 1 Patient characteristics.

Training
dataset (N = 104)

Testing
dataset (N = 44)

p value

Age 51 (33–64) 53 (35–74) 0.266

Stage

IA 27 11 0.743

IB 43 21

IIA 34 12

Differentiation 0.482

Well 24 12

Moderate 65 23

Poor 15 9

PLNM 1.000

No 66 28

Yes 38 16

COX-2 0.856

Low expression 44 20

High expression 60 24

WBC (×109/L) 6.106 5.784 0.272

NEU (%) 60.622 59.048 0.537
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2016). Then the same texture features as PET images were

extracted with 3D slicer.

Dimensionality reduction of texture
features

All texture feature parameters were standardized using the

Z-score method. In the training dataset, with 10-fold cross-

validation, the least absolute shrinkage and selection operator

(LASSO) algorithm was used to filter clinical features, the

conventional metabolic parameters, and texture features

derived from PET images that could be used to predict

PLNM and COX-2 expression. A classical metabolic

parameter was generated using a linear combination of

selected texture features of PET images of non-zero

coefficient after dimensionality reduction. Afterward, both

of them were weighted by their respective coefficients to

establish the radiomics score (Rad-score) (Huang et al.,

2016). The Rad-score was utilized to construct machine

learning models to prognosticate PLNM and COX-2

expression.

Establishing and testing machine learning
model

The Rad-score (PLNM) in the training dataset was utilized to

establish the PLNM model for predicting PLNM with logistic

regression algorithm. And the Rad-score (COX-2) was the

FIGURE 2
The result of extracting texture feature parameters of PET images. Eight hundred and thirty-seven texture features were extracted from the ROI
in the PET image, including the first order features (n = 18), gray level co-occurrence matrix (GLCM) features (n = 24), gray level size zone matrix
(GLSZM) features (n = 16), gray level run length matrix (GLRLM) features (n = 16), neigbouring gray tone difference matrix (NGTDM) features (n = 5),
gray level dependence matrix (GLDM) features (n = 14), and wavelet features derived from one level of wavelet decomposistions yielding eight
derived images (n = 93*8).

Frontiers in Physiology frontiersin.org05

Zhang et al. 10.3389/fphys.2022.994304

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.994304


parameter for establishing the COX-2 model. The PLNM and

COX-2 models in the testing dataset were tested independently.

Statistical analysis

The Mann-Whitney U test (continuous variables) or the

Pearson chi-square test (rank variables) was used to evaluate the

distribution of the clinical feature between the training and

testing dataset. The correlation of selected PET texture

features and the corresponding IHC texture images was

analyzed with the Spearman correlation method. The

differences in Rad-score (PLNM) between the PLNM group

and non-PLNM group in all datasets and Rad-score (COX-2)

between the COX-2 high expression group and COX-2 low

expression group were analyzed with the Wilcoxon test. To

evaluate the results of PLNM and COX-2 models, the ROC

curve was used. All data processing, establishing machine

learning models, and statistical analysis were performed with

R software version 3.5.1 or SPSS software version 25.0 (IBM

Corp., Armonk, NY, United States). A two-tailed p < 0.05 was

considered statistically significant in all statistical analysis.

Results

The distribution of clinical characteristics
of patients

The basic clinical characteristics of patients were summarized

in Table 1. With a median age of 51 years, 104 patients were

randomly assigned to the training dataset, containing 38 patients

with PLNM. COX-2 was highly expressed in 60 patients in the

training dataset. There were 44 patients with a median age of

53 years old in the testing dataset. Sixteen of them were PLNM

positive. In the testing dataset, there were 24 patients with COX-2

high expression. Statistical analysis showed that there was no

statistically significant difference in the distribution of all clinical

features between the training and the testing dataset (p > 0.05).

Filtering and integration of features

A total of 837 texture features were extracted from the ROI in

the PET image, including the First Order Features (n = 18), Gray

Level Co-occurrence Matrix (GLCM) Features (n = 24), Gray

Level Size Zone Matrix (GLSZM) Features (n = 16), Gray Level

Run Length Matrix (GLRLM) Features (n = 16), Neigbouring

Gray Tone Difference Matrix (NGTDM) Features (n = 5), Gray

Level Dependence Matrix (GLDM) Features (n = 14) and

Wavelet Features derived from one level of Wavelet

decomposistions yielding eight derived images (n = 93*8). The

detailed texture feature parameters of PET images were shown in

Figure 2. The same 837 texture features were extracted based on

the IHC images.

All clinical features, conventional metabolic parameters, and

texture features derived from PET images were selected to predict

PLNM. When Lambda was 0.027 in predicting PLNM with the

LASSO algorithm, the 14 most informative features were

reserved in the training dataset (Figure 3). And minimal

binomial deviation for predicting PLNM was acquired with

the 14 reserved features. Figure 4 showed that the coefficients

of the reserved texture feature were used to predict PLNM with

logistic regression algorithm. Partial regression coefficients were

negative for nine of the reserved features and positive for five of

the features. Then the reserved features were multiplied by their

partial regression coefficients and linearly integrated into Rad-

score (PLNM). The Rad-score (PLNM) was used to establish the

PLNM model with logistic regression algorithm.

Rad-score (PLNM) = − 0.038 * wavelet-LLH-GLCM MCC

−0.177 * wavelet-LLL-GLRLM LongRunEmphasis

+0.076 * wavelet-HLL-GLCM MCC

−0.334 * wavelet-HHL-GLDM LargeDependenceLowGray

LevelEmphasis

+0.671 * wavelet-LHH-Firstorder Median

−0.311 * wavelet-HLH-Firstorder Median

FIGURE 3
All features of PET image selected to predict PLNM by LASSO
algorithm. When lambda was 0.027 in predicting PLNM with the
LASSO algorithm, 14 most informative features were reserved to
predict PLNM in the training dataset.
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+0.133 * wavelet-LLH-Firstorder Kurtosis

−0.327 * wavelet-LHL-GLCM Correlation

−0.048 * original-GLCM ClusterShade

+0.242 * wavelet-LHH-GLCM Correlation

−0.121 * wavelet-LLH-Firstorder Median

+0.069 * wavelet-HLH-Firstorder Skewness

−0.158 * original-GLDM LargeDependenceLowGrayLevel

Emphasis

−0.004 * wavelet-LHH-GLCM ClusterShade − 0.641.

Fourteen features were selected to predict COX-2 by LASSO

10-fold cross-validation in the training dataset (Figure 5). The

histogram showed the coefficients of the reserved features in

Figure 6. Partial regression coefficients were negative for eight of

the reserved features and positive for six of the features. Rad-

score (COX-2) was integrated according to the calculation

formula below. The Rad-score (COX-2) was used to establish

the COX-2 model with logistic regression algorithm.

Rad-score (COX-2) = − 0.044 * wavelet-LLH-GLCM MCC

−0.326 * wavelet-LLH-GLCM Correlation

−0.245 * wavelet-LHL-GLCM MCC

+0.165 * wavelet-LLL-GLRLM ShortRunEmphasis

+0.144 * original-GLDM LargeDependenceLowGrayLevel

Emphasis

+0.198 * wavelet-HLL-GLDM LargeDependenceLowGray

LevelEmphasis

−0.206 * wavelet-LHL-Firstorder Kurtosis

+0.17 * wavelet-HLH-Firstorder Mean

+0.042 * wavelet-HLH-Firstorder Median

−0.31 * wavelet-HHL-GLCM Correlation

−0.205 * wavelet-LLH-GLDM DependenceVariance

FIGURE 4
The coefficients histogram of texture features was selected
to predict PLNM. Using the LASSO model, 14 corresponding
texture features were selected to predict PLNM.

FIGURE 5
All features of PET image selected to predict COX-2 by LASSO
algorithm. When lambda was 0.025 in predicting PLNM with the
LASSO algorithm, 14 most informative features were reserved to
predict PLNM in the training dataset.

FIGURE 6
The coefficients histogram of texture features was selected
to predict COX-2 expression. Using the LASSO model,
14 corresponding texture features were selected to predict COX-2
expression.
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FIGURE 7
Rad-score (PLNM) distribution difference between PLNM negative subgroup and positive subgroup in the training dataset and testing dataset.
The rad-score (PLNM) of patients with PLNM was higher than the rad-score (PLNM) of patients with non-PLNM in the training dataset and testing
dataset (p < 0.001, p < 0.05, respectively).

FIGURE 8
Rad-score (COX-2) distribution difference between COX-2 low expression subgroup and high expression subgroup in the training dataset and
testing dataset. Rad-score (COX-2) of patients with high expression of COX-2 was higher than that with low expression of COX-2 in the training
dataset (p < 0.001). In the testing dataset, therewas no significant difference in Rad-score (COX-2) between patients with high COX-2 expression and
patients with low COX-2 expression (p < 0.05).
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−0.324 * wavelet-HLH-Firstorder Skewness

+0.427 * wavelet-LHH-GLCM Correlation

−0.415 * wavelet-HHL-Firstorder Median + 0.324.

Distribution differences of rad-scores in all
datasets

The Rad-score (PLNM) of patients with PLNM was higher

than the Rad-score (PLNM) of patients with Non-PLNM in the

training dataset and testing dataset (p < 0.001, p < 0.05,

respectively) (Figure 7). And the Rad-score (COX-2) of

patients with high expression of COX-2 was higher than that

with low expression of COX-2 in the training dataset (p < 0.001).

Whereas, in the testing dataset, there was no statistically

significant difference in Rad-score (COX-2) between patients

with high COX-2 expression and patients with low COX-2

expression (p < 0.05) (Figure 8).

Evaluation of machine learning models

The AUC value of the machine learning model was shown in

Figure 9 which was aimed to predict PLNMwas 0.817 (p < 0.001)

in the training dataset, and 0.786 (p < 0.001) in the testing

dataset. And the COX-2 model also behaved well for predicting

COX-2 expression levels in the training and testing dataset

(AUC = 0.814, p < 0.001; AUC = 0.748, p = 0.001)

(Figure 10). The sensitivity (Sen) value of the PLNM model

was 65.8% in the training dataset, and 100.0% in the testing

dataset. The specificity (Spe) value of the COX-2 model was

72.7% in the training dataset, and 90.0% in the testing dataset

(Table 2).

The correlation of texture features derived
from PET image with same texture
features of immunohistochemical image

Table 3 showed the correlation between the texture features derived

from ROI in the PET image selected to predict PLNM and the same

texture features of the IHC image by Spearman correlation analysis.

Only the wavelet-LHH (glcm) (ClusterShade) derived from the PET

image was slightly correlated with the same feature of the IHC image

(r = −0.165, p < 0.05). The correlation of texture features of the PET

image selected to predict the COX-2 expression level with the IHC

image’s same texture features as illustrated in Table 4. There was a weak

correlation that wavelet-LLL (glrlm) (LongRunEmphasis) derived from

the ROI of the PET image correlated with the same feature of the IHC

image (r = 0.238, p < 0.05).

FIGURE 9
The ROC curves of the PLNM model in the training dataset
and testing dataset. The blue ROC curve represents the training
dataset; the yellow ROC curve represents the testing set. The AUC
value of each model that was aimed to predict PLNM was
0.817 (p < 0.001) in the training dataset, and 0.786(p < 0.001) in the
testing dataset.

FIGURE 10
The ROC curves of the COX-2 model in the testing dataset.
The blue ROC curve represents the training dataset, the yellow
ROCcurve represents the testing set. Both of them behavedwell in
predicting COX-2 expression levels in the training dataset and
testing dataset (AUC = 0.814, p < 0.001; AUC = 0.748, p = 0.001,
respectively).
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Discussion

We provided machine learning models to study the

diagnostic value of the textural features in PET images for

predicting PLNM and performed well with good accuracy,

sensitivity and specificity. Based on PET texture analysis

predicting PLNM and COX-2 expression levels, this study

revealed that machine learning models could assist clinical

treatment of PLN in patients with early-stage cervical cancer.

The rate of PLNM among patients with cervical squamous cell

carcinoma stages IA-IIA was 36.54% in the training dataset

and 36.36% in the testing dataset. The rate of COX-2 high

expression among the patients was 57.69% in the training

dataset and 54.55% in the testing dataset. The high expression

of COX-2 were characteristics to predict PLNM associated

with PET texture analysis and enriched level of COX-2 in the

IHC images located in tumor, respectively. The Chi-square

test or M-U analysis confirmed that the distribution of all

clinical features was balanced between the training and testing

dataset avoiding the inaccuracy and overfitting of the

imbalanced feature distribution for building machine

learning models.

The correlation between COX-2 high expression of primary

tumor lesions and PLNM has been widely reported in cervical

cancer (Ryu et al., 2000; Kim et al., 2003; Liu et al., 2011). The

COX-2 model in this study performed well in the training and

testing dataset (AUC = 0.814/0.748, p < 0.001/p = 0.001,

respectively). And the specificity was 0.727 in the training

dataset, and 0.900 in the testing dataset. The correlation

feature of GLCM based on original and wavelet transformed

images was also selected to calculate the Rad-score (COX-2). This

TABLE 2 Evaluation of machine learning model prediction in the training and testing dataset.

Model Training dataset Testing dataset

AUC (95% CI) p Sen Spe AUC (95% CI) p Sen Spe

PLNM model 0.817 (0.730–0.886) <0.001 0.658 0.924 0.786 (0.636–0.895) <0.001 1.000 0.538

COX-2 model 0.814 (0.726–0.884) <0.001 0.750 0.727 0.748 (0.594–0.866) 0.001 0.542 0.900

AUC, area under the curve; Sen, sensitivity; Spe, specificity; CI, confidence interval.

TABLE 3 Correlation of PET texture parameters selected to predict the
PLNM with same texture parameters of IHC image.

Feature Spearman test

Filter Class Name r p

Wavelet-LLH GLCM MCC −0.157 0.057

Wavelet-LLL GLRLM Long Run Emphasis −0.002 0.980

Wavelet-HLL GLCM MCC 0.024 0.772

Wavelet-LHH First order Median −0.025 0.767

Wavelet-HLH First order Median −0.006 0.946

Wavelet-LLH First order Kurtosis −0.070 0.400

Wavelet-LHL GLCM Correlation 0.026 0.754

Wavelet-HHL GLDM LDLGLE 0.085 0.302

Original GLCM Cluster Shade 0.115 0.163

Wavelet-LHH GLCM Correlation −0.016 0.849

Wavelet-LLH First order Median −0.008 0.920

Wavelet-HLH First order Skewness −0.144 0.080

Original GLDM LDLGLE −0.155 0.060

Wavelet-LHH GLCM Cluster Shade −0.165* 0.045

GLCM, gray level co-occurrence matrix; MCC, maximum correlation coefficient;

GLRLM, gray level run length matrix; GLDM, gray level dependence matrix; LDLGLE,

large dependence low gray level emphasis. * indicating significant correlation.

TABLE 4 Correlation of PET texture parameters selected to predict the
COX-2 expression level with same texture parameters of IHC
image.

Feature Spearman
test

Filter Class Name r p

Wavelet-LLH GLCM MCC −0.157 0.057

Wavelet-LLL GLRLM Short Run Emphasis −0.042 0.614

Wavelet-LLH GLCM Correlation 0.238* 0.004

Wavelet-LHL GLCM MCC −0.098 0.238

Wavelet-LHL First order Kurtosis −0.043 0.606

Wavelet-HLH First order Mean 0.123 0.135

Wavelet-HLL GLDM LDLGLE 0.079 0.338

Wavelet-HLH First order Median −0.005 0.947

Wavelet-HHL GLCM Correlation 0.109 0.187

Original GLDM LDLGLE 0.050 0.545

Wavelet-LLH GLDM Dependence Variance 0.047 0.568

Wavelet-HLH First order Skewness −0.144 0.080

Wavelet-LHH GLCM Correlation −0.016 0.849

Wavelet-HHL First order Median 0.114 0.168

GLCM, gray level co-occurrence matrix; MCC, maximum correlation coefficient;

GLRLM, gray level run length matrix; GLDM, gray level dependence matrix; LDLGLE,

large dependence low gray level emphasis. * indicating significant correlation.

The bold values represents the wavelet-LLL (glrlm) (LongRunEmphasis) derived from

the ROI of PET images correlated better with the same feature of IHC images relative to

other texture features (r = 0.238, p<0.05).
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indirectly confirmed that PET texture analysis of the primary

tumor can predict that PLNM may be partly due to the high

expression of COX-2. At present, the clinical evaluation of COX-

2 mainly relies on IHC analysis, and the study ulitized PET/CT

texture features for predicting COX-2 expression level before

treatment is evaluated. We made a workflow based on the

prediction of PLNM and COX-2 expression to assist the

clinical management of PLN in early-stage cervical cancer

(Figure 11). Kim et al. (2008) have confirmed that images

with para-aortic lymph node recurrence possessed valuable

expression of COX-2 attributes in cervical cancer across

different patients. The prediction of the PLNM model was

positive, the PLN dissection may be necessary whereas the

prediction of the PLNM model was negative and the

predicting COX-2 model was positive, COX-2 inhibitors were

helpful for patients to control micrometastasis or recurrence of

lymph nodes. Moreover, our results demonstrated the two of

selected PET texture to predict PLNM and COX-2 expression

that were slightly correlated with corresponding texture features

from IHC images.

There are several limitations in the current study. Firstly, it

was retrospective and performed at a single institution based on a

small sample size. Prospective multicenter studies on automatic

image acquisition and reconstruction are required to improve the

process. Secondly, although we chose 2D ROI to be consistent

with the 2D IHC image feature extraction method, the cross-

sections of the IHC images in this study may not correspond

exactly to the cross-sections of PET/CT. Further clinical studies

on large-scale data sets based on the 3D printing technology are

needed to achieve more accurate matching of PET images and

pathological images to fully address this question. Thirdly,

further test-retest studies and more standardized workflow are

needed to assess feature robustness of PLNM for better

generalization.

Conclusion

In conclusion, combining PET/CT texture analysis to predict

PLNM and COX-2 expression can improve the predictive ability of

machine learning models for PLNM trends in PLN-negative patients.

In addition, the correlation between the texture features of PET images

and the corresponding texture features of IHC images provides a

reasonable explanation that the texture features of the primary tumor

on PET images can predict PLNM. Based on this machine learning

model integrating PET/CT radiomic and IHC pathomic features, it is

expected to provide guidance for the treatment strategy of negative

pelvic lymph node cervical cancer in the near future.
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