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In minimally invasive surgery, endoscopic image quality plays a crucial role in

surgery. Aiming at the lack of a real parallax in binocular endoscopic images, this

article proposes an unsupervised adaptive neural network. The network

combines adaptive smoke removal, depth estimation of binocular

endoscopic images, and the 3D display of high-quality endoscopic images.

We simulated the smoke generated during surgery by artificially adding fog. The

training images of U-Net fused by Laplacian pyramid are introduced to improve

the network’s ability to extract intermediate features. We introduce

Convolutional Block Attention Module to obtain the optimal parameters of

each layer of the network. We utilized the disparity transformation relationship

between left- and right-eye images to combine the left-eye images with

disparity in HS-Resnet to obtain virtual right-eye images as labels for self-

supervised training. This method extracts and fuses the parallax images at

different scale levels of the decoder, making the generated parallax images

more complete and smoother. A large number of experimental research results

show that the scheme can remove the smoke generated during the operation,

effectively reconstruct the 3D image of the tissue structure of the binocular

endoscope, and at the same time, preserve the contour, edge, detail, and

texture of the blood vessels in the medical image. Compared with the existing

similar schemes, various indicators have been greatly improved. It has good

clinical application prospects.
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1 Introduction

With the development of society, image processing (Li et al., 2016a; Li et al. 2016b; Li

et al. 2018) is widely used in the medical field. During clinical surgery, the quality of

medical images is degraded by noise. Noise is mainly composed of blood, light changes,

specular reflection, smoke, etc. Among them, the smoke generated by laser and
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electrocautery-based human tissue ablations will significantly

reduce the imaging quality of the lesion area. The results will

affect the doctor’s judgment, prolong the operation time, and

increase the operation risk. Therefore, it is necessary to remove

the smoke by physical means and purify it by image-processing

algorithms (Kotwal et al., 2016; Yang and Sun, 2018; Chen et al.,

2019a; Sidorov et al., 2020; Venkatesh et al., 2020). In addition,

the particularity of the human tissue and imaging conditions are

limited. Due to the influence of equipment light source and

thermal noise acquisition, the quality of the collected endoscopic

images is generally not high. Images obtained directly by

endoscopy tend to have low imaging quality, resulting in the

loss of some vascular tissue characteristics. Therefore, for the

accuracy and convenience of later diagnosis, it is particularly

important to improve the recognition ability of endoscopic

images, filter out noise, and enhance the outline of the

vascular tissue by reconstructing 3D details.

In the 3D display research based on the traditional stereo-

matching method, the pixels of the left- and right-eye images

have a parallax correspondence, and the 3D display can be

performed after the parallax is obtained from the algorithm

model (Hu et al., 2012; Besse et al., 2014; Yang and Liu, 2014;

Penza et al., 2016). Compared with traditional algorithms, the

method based on visual Simultaneous Localization and

Mapping (SLAM) is slightly better in real-time performance.

Most SLAM algorithms perform an inter-frame estimation and

loop closure detection through feature point-matching

techniques. Although the SLAM-based method only regards

depth estimation as an intermediate product, its double-end

depth estimation network provides a clear idea for subsequent

research. Many subsequent articles have used its basic model

(Mahmoud et al., 2016; Yi et al., 2016; Vijayanarasimhan et al.,

2017; Wang et al., 2018a; Qiu and Ren, 2020). However, for the

complex tissues and organs of the human body, traditional

methods cannot meet the requirements of medical scenarios in

terms of 3D reconstruction time and accuracy. In the research

of 3D displays based on the neural network, researchers

conducted supervised training on natural scene datasets

containing depth labels. The final test can achieve the effect

of real-time depth estimation (Antal, 2016; Kendall et al., 2017;

Pang et al., 2017; Huang et al., 2018; Luo et al., 2019; Zhang

et al., 2019). Since medical endoscopic images contain fewer

datasets with depth labels (Penza et al., 2018), unsupervised

learning is more suitable for 3D display of binocular

laparoscopic images (Shurrab and Duwairi, 2022). A novel

self-supervised learning strategy based on context restoration

in order to better exploit unlabeled images (Chen et al., 2019b;

Chen et al., 2022). The virtual viewpoint is obtained as a label

through an implicit function, and the neural network is

calculated and solved. Researchers can avoid a lot of dataset

labeling work (Garg et al., 2016; Feng et al., 2017; Kendall et al.,

2017; Zhou et al., 2017; Yin and Shi, 2018; Wang et al., 2019a;

Tosi et al., 2019; Taleb et al., 2021).

In fact, it is often necessary to preprocess the image to remove

various noises in the application of traditional methods and

neural network schemes. Although the performance of neural

networks on endoscopic images increases with the number of

neurons, the complexity of convolution operations is very high.

This leads to a blind increase in the size of the network and

consumes a lot of training time. Therefore, combined with the

real-time application requirements of clinical operations and the

imaging characteristics of binocular endoscopes, we propose a

3D reconstruction method of binocular endoscope medical

images based on adaptive neural network. The overall flow

chart of the process is shown in Figure 1. The main

contributions of this paper can be summarized as follows:

1) We proposed an improved U-NET adaptive network model

for the smoke generated during laparoscopic surgery. We

added training images fused by Laplacian pyramids at each

layer of the encoder. A lightweight Convolutional Block

Attention Module (CBAM) (Woo et al., 2018) attention

mechanism module was added to the last five layers of the

decoder to improve the network’s ability to extract

intermediate features. The processing time of a single

image reaches 90.19 pfs, which can purify endoscopic

surgical smoke in real time.

2) In view of the lack of true parallax in binocular endoscope

images, we propose an improved HS-Resnet network. The

left-eye image is combined with disparity to obtain a

virtual right-eye image as a label for self-supervised

training. In the process of feature extraction, multi-scale

segmentation and synthesis are performed so that the

network can effectively extract different scale features of

various receptive fields. We reconstructed 3D structures

with visibility and realism.

3) We proposed a color-difference 3D reconstruction scheme

which separates the red component of the original image and

combines the parallax, and fuses the combined red

component with the blue–green component of the original

image to obtain a 3D image. This can effectively reduce the

details and color loss of the endoscopic image and retain the

details of the medical images.

2 Methods

2.1 Smoke removal

2.1.1 Smoke synthesis
The improved U-Net (Zhou et al., 2021) model is used to

realize the smoke purification function of endoscopic images.

The steps of the smoke purification model are shown in Figure 2

below. Due to the lack of medical endoscopic image datasets

containing real labels, we used the Render software to add smoke

to real laparoscopy images as training images, and used the
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original images without smoke as labels. The loss function was

obtained by comparing the purified image obtained by the model

and the label, and back propagation reduced the loss to obtain the

parameters of each layer of the network. In the network design, in

order to increase the network’s ability to retain image details and

colors, we added the Rapp to the encoder. For the original fog

image of Laplace fusion, the scale of Laplace transform is the

same as that of the encoder. In order to improve the network’s

performance, we added the CBAM attention mechanism to the

last five layers of the decoder to use the synthetic image

containing smoke as the training set. The original image is

sent to the improved U-Net model as a training set label for

training. Through back propagation, each layer of the network

obtains the corresponding parameters. Finally, the test set is sent

to the model to predict the purified image.

The medical scene dataset in the field of smoke

purification is relatively rare. There is currently no dataset

containing real labels. Therefore, either unsupervised learning

can be used or software can be used to add smoke to medical

endoscopic images. Then, use the images without the added

smoke as labels. In the two schemes, simple supervised

learning can be used to solve the problem after smoke

synthesis, and supervised learning is mature in the field of

deep neural networks. So, we choose the scheme of artificially

synthesizing smoke. The smoke generated in laparoscopic

surgery is usually generated randomly and has nothing to

do with the depth. The modern image-rendering engines have

a complete built-in model. This can better simulate the shape

of the smoke compared to physical solutions. Therefore, we

used the 3D graphics-rendering engine. Render to the training

FIGURE 1
Overall process flow chart.

FIGURE 2
Smoke removal flow chart.
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images are obtained by rendering the smoke on laparoscopic

images that do not contain smoke.

The smoke is rendered by the rendering engine and has

local color and transparency. The smoke is controlled by the

input parameters Trad, Drand, and Position, as shown in

formula (1):

Ismoke(x,y) � Blender(Trand, Drand, Prand) (1)

Using Render to fog the laparoscopic image, the rendered

smoke is similar to the real smoke. It has the characteristics of

local pure white and transparency. The fogged image is

superimposed by the original image and random smoke, as

shown in formula (2):

Is−image(x, y) � Is−free(x, y) + Ismoke (2)

The smoke added to the laparoscope is obtained by

superimposing the luminance values of the rendered R, G,

and B channels proportionally. The ratio is shown in

formula (3):

Imask(x, y) � (0.3pIsmoke(x, y)R) + (0.59pIsmoke(x, y)G)
+ (0.11pIsmoke(x, y)B) (3)

To better simulate light smoke, fog, and thick smoke fog, we

rendered two types of fog. Firstly, images without fog are selected

as the original training set in the dataset. In rendering, the

original dataset is randomly added fog using the data settings

of the aforementioned formula. We added primary smoke as the

light fog dataset. Then, the light fog dataset is sent into the

rendering for secondary random adding fog to obtain the thick

fog dataset. Finally, training is performed on the thick fog dataset

and the light fog dataset, respectively.

2.1.2 Improved U-net network
For the original U-Net, it is found through experiments that

it cannot effectively purify the smoke, or the image resolution

decreases after purifying the smoke. This is due to the loss of

image details in the process of up-sampling and down-

sampling. But for medical scenes, the loss of detail

information will seriously affect the doctor’s judgment.

Therefore, we added the training image fused by the

Laplacian pyramid in the down-sampling part to compensate

for the loss of details of the image during the down-sampling

process. The image fusion of the Laplacian image pyramid is

equivalent to a filter, which maps the image to different

frequency bands. The features are learned, and fusion

operations are performed on each frequency band, thereby

effectively preserving image details on each frequency band.

The U-Net model is improved according to the characteristics

of medical endoscopy, as shown in Figure 3.

The down-sampling part on the left of Figure 3 is the

encoder. The encoder can extract features of different scales of

endoscopic images through convolution operations. Each layer of

the encoder corresponds to splicing, two convolutions, and amax

pooling operation. Laplace the superposition operation refers to

the fusion of the Laplacian pyramid image for the input training

image according to the size of each layer of the encoder. The

transformed image and the features of each layer are spliced and

sent to training. The seven convolution groups are named

conv1 to conv7, respectively. The size of the convolution

kernel of each layer is 7 × 7, 5 × 5, 3 × 3, 3 × 3, 3 × 3, 3 × 3,

and 3 × 3. Each layer is convolved twice. The strides of the two

convolutions are 1 and 2, respectively. The number of output

layers per layer is 32, 64, 128, 256, 512, 512, and 512. Therefore,

the encoder down-sampling factor is 64.

FIGURE 3
Encoder–decoder network.
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The decoder restores the down-sampled image to its original

size. The CBAM attention module is inserted into the first five

layers of the decoding part of the U-Net network, as shown in the

up-sampling part on the right side of Figure 3. The decoder also

adopts 7 sets of convolutions; each group contains two up-

sampling layers with steps 1 and 2. The size of the

convolution kernel is all 3 × 3, and the number of output

layers is 512, 512, 256, 128, 64, 32, and 16, respectively. In

addition, there are corresponding connections between the

encoders and decoders where the features of the lower layers

are connected with the features of higher layers. Information

from the higher layers can be directly transmitted to the bottom

layer of the network to prevent the loss of high-quality details.

The loss function of the improved U-Net network is the

minimum absolute value deviation loss of the original image and

the synthetic smoke image, as shown in formula (4):

L � ∑
xy

∣∣∣∣Ioriginal(x, y) − Idesmoked(x, y)∣∣∣∣ (4)

2.1.3 Laplacian image pyramid fusion
The maximum pooling operation is used in the down-

sampling process. Due to the continuous down-sampling

operation, the image details are lost in each frequency

domain. In order to better preserve the image quality in the

specified frequency domain, a Laplacian image is introduced in

the encoder part of the pyramid fusion. This method uses the

nearest point interpolation when up-sampling the image after

Gaussian sampling. Especially in the place where the image

gradient changes greatly, the problem of sudden change of the

pixel value occurs easily. The image details are lost, and there may

be mosaic or sawtooth noise (Wang et al., 2019b). This article

uses bidirectional interpolation to replace the nearest neighbor

interpolation to improve this problem. It processes the four direct

neighbors near the sample point. The image quality is higher after

processing.

The Laplacian-transformed smoke image is added before

each convolutional layer in the encoder, and the main process of

the Laplacian pyramid fusion is shown in formula 5:

Li(I) � Gi(I) − up(down(Gi(I))) (5)

where I represents the original image containing smoke; i

represents the level pyramid. up(down(Gi(I))) represents the

up-sampled lower-layer Gaussian sampled image; and Gi(I)
represents the Gaussian sampled image.

As shown in Figure 4, to smoothly image the image to

different frequency bands, we performed Gaussian down-

sampling on the endoscopic image. As shown in the color

endoscopic image, as the number of Gaussian sampling

increases, the size of the endoscopic image becomes smaller.

But it can retain the more important pieces of information in the

image. For a Laplacian-transformed image of a specific size,

Gaussian down-sampling is performed according to the

specified scale, and then the Laplacian pyramid fusion image

is obtained. As shown in the black and white image, the Laplacian

pyramid fusion image (in order to make the image easy to

observe, the brightness value of the Laplacian fusion image is

increased) effectively retains the line and edge information of the

image. The size is the same as the U-Net down-sampling size.

Therefore, it can be directly superimposed and spliced with the

input feature image in the network and then be sent to the

network for training. Finally, this article splices it to the

corresponding size of the convolutional layer to participate in

training.

2.1.4 CBAM attention mechanism
The CBAM attention mechanism module is lightweight and

effective. Therefore, we inserted the CBAM attention mechanism

module in the last five layers of the decoder; following the

network to participate in the training process to improve the

feature selection performance of the model. For any input

feature, CBAM obtains attention features along two

independent dimensions of channel and space. The original

input feature is optimized by multiplying the attention feature

with the original input feature image. The specific process is as

follows: for the input feature image F ∈ RCpHpW of any size,

CBAM will calculate a one-dimensional channel feature image

Mc ∈ RCp1p1. A two-dimensional spatial feature image

Mc ∈ R1pHpW is derived in the blue part of Supplementary

Figure S1. The orange part is shown in formulas 6 and 7. The

blue part of the channel information and the orange part of the

spatial information are fused with the original input feature to

obtain the optimized input feature. This feature is used as the

next input to the convolutional layer.

F′ � Mc(F) ⊗ F (6)
F″ � Ms(F′) ⊗ F′ (7)

We treat each channel of input features as a feature detector,

as shown in the blue part of Supplementary Figure S1. Channel

attention is used to pay attention to the content of the input

image, so the features are compressed into a “pipe”. Observe the

image content that still exists after the reduction, and find its

calculation method as follows: First, average the pooling and

summing of the input features according to their feature-stacking

direction. Convolution is performed after max pooling, followed

by the activation of the result of the convolution, and finally the

feature fusion. As shown in formulas 8 and 9:

Mc(F) � σ(MLP(AvgPool(F)) +MLP(MaxPool(F))) (8)
Mc(F) � σ(W1(W0(Fc

avg)) +W1(W0(Fc
max))) (9)

where W0 ∈ RC/rpC and W1 ∈ RCpC/r, using ReLU as the

activation function after W0.

Channel attention pays attention to the key positions of the

image. Spatial attention compresses the feature dimension into
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an “image”, which is convenient for the neural network to

identify the position of the image object. As shown in the

orange part of Supplementary Figure S1, two different feature

descriptions Fs
max ∈ R1pHpW and Fs

avg ∈ R1pHpW are obtained by

using max pooling and average pooling in the dimension of the

channel, and then, the aggregation operation is used to generate

the spatial feature image Ms(F) ∈ RH*W. As shown in formulas

10 and 11:

Ms � σ(f7p7([AvgPool(F);MaxPool(F)])) (10)
L � ∑

xy

∣∣∣∣Ioriginal(x, y) − Idesmoked(x, y)∣∣∣∣ (11)

FIGURE 4
Laplacian image pyramid decomposition.

FIGURE 5
Flowchart of the parallax estimation algorithm.
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2.2 A method for estimating binocular
disparity in endoscope is proposed

The parallax estimation method of a binocular endoscopic

image based on self-supervised deep learning is shown in

Figure 5. The corrected left and right images are used as

inputs. The left image is used as a standard input into a

convolutional neural network for training. The left and right

original images are used as labels to provide supervision

information for the network.

Step 1: The corrected left and right images are taken as the

training images, and the left image is sent into the neural network

for training. Then, the initial left and right parallax images are

obtained by a CNN non-linear function fitting.

Step 2: The left and right parallax images obtained from the

network can be regarded as the deviation between the left and

right views. So, the virtual right image can be obtained by

combining the original left image and the left parallax

through bilinear interpolation. The virtual left image can be

obtained by combining the original right image and the right

parallax.

Step 3: Reverse propagation is carried out by comparing the

difference between the virtual left view and the real left view and

between the virtual right view and the real right view.

Appropriate parameters can be obtained for each layer of the

network.

2.2.1 CBAM attention mechanism
The encoder is used to construct the U-NET structure with

ResNet as the convolutional layer of the network, extracting the

features of endoscope images. The size of the images is restored to

the original size through the decoder. Specifically, the encoder

first preprocesses the convolution for the inputted RGB images,

with a convolution kernel size of 7 × 7, step length of 2, and zero

fill of 3. After preprocessing, the image is batch normalized,

followed by 4 convolutions with a convolution kernel of 3 × 3.

After 5 convolutions, the feature dimensions of the convolution

kernel size are 16, 32, 64, 128, and 256.

Multi-scale features are particularly important in machine

vision, which can image features to multiple frequency domains

and be conducive to keeping detailed features of images. Focusing

on medical endoscope images that require highly detailed

features, an HS-Resnet containing multi-scale features is

adopted (Godard et al., 2017). It contains a hierarchical

separation module embedded in the convolutional module of

the deep network, where HSB can effectively improve the

performance of the network and HS-ResNet 50 can achieve

81.28% of the datasets on ImageNet, exceeding the current

optimal effect of ResNet. As shown in the Figure 6, HS-Resnet

is composed of multiple segmentation and splicing operations, of

which the hierarchical segmentation and splicing operations

together constitute the HSB multi-scale feature extractor.

HSB contains two main operations: split and concatenate.

Among these two, split is used for feature grouping and to make

the two groups after grouping have the same number of channels.

When the number of features to be grouped is odd and the

channel number of the two groups after the split operation is

different, one part can be regarded directly as the output,

equivalent to identity imaging, and the other part can be used

as the input to the next convolution layer for a more in-depth and

detailed feature extraction. The concatenate operation fuses

features with the same size but different contents so that

features with different convolution degrees can carry out

information interaction. When the concatenate operation

adopts a simple superposition operation, the characterization

ability of the original features can be better ensured.

Figure 6 shows the structure of HSB, where HS-Resnet uses a

deep residual module and HSB processes features in the 3 ×

3 convolution layer. The input features are divided into S groups

xi with the same number of channels after 1 × 1 convolution.

Then, after passing through a 3 × 3 convolution layer Fi() times,

xi becomes yi, which can be divided into yi,1, yi,2, yi,3, yi,4, and

yi,5. Among them, yi,1 is added directly to the layer and to the

output xi+1, similar to the green feature on the top. yi,2 is

segmented into two groups with yellow features after the

convolution operation, where one group is added to the layer

and to output xi+1. The other group is sent to the convolution

layer after matching with yi,3. Similarly, yi,3 is divided into two

groups with red features, where one group is added to the layer

and the output xi+1. The other group is sent to the convolution

layer to obtain the green feature after matching with yi,4. yi,4 is

processed same as yi,3. Finally, the feature of yi,5 after the

convolution operation will be taken as the last part of the

layer’s output. After such continuous processing, the features

are equivalent to more scale and deeper convolution. The small

receptive field in the final output feature can pay attention to the

detail part and enhance the processing ability of the network for

small features.

Figure 6 shows the situation in which s is set to 5. In fact, a

larger number of groups can achieve the extraction performance

of more scales. A larger number of channels means richer

features requiring more parameters. Therefore, it is necessary

to choose between the number of parameters and the capability

of feature extraction.

yi � { xi i � 1
fi(xi ⊕ yi−1,2) 1< i≤ s (12)

HSB does not increase the number of parameters in the

network. Compared with a standard convolution, it even has

fewer parameters. The standard parameter complexity is shown

in Formula 13:

Pnormal � k × k × s × w × s × w � k2 × s2 × w2 (13)
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The complexity of HSB is shown in Formula 14:

PHSB �
⎧⎪⎪⎨⎪⎪⎩

0, i � 1

k2 × w2 × (2s−1 − 1

2s−1
+ 1) 1< i≤ s

(14)

It can be seen from the comparison between Formulas 13 and

15 that the complexity analysis of HSB is actually smaller than

that of an ordinary convolution.

k2 × w2 × (2s−1 − 1
2s−1

+ 1)≤ k2 × w2 × (2s−1 − 1
2s−1

+ s − 1)<

k2 × w2 × (s − 1 + s − 1) � k2 × w2 × (2s − 2)< k2 × w2 × s2

(15)

2.2.2 Multi-scale decoder
The decoder is the deconvolution process of the encoder,

aiming to restore the image to the original image size. The

decoder up-samples the image, which includes a 3 ×

3 deconvolution, to restore each layer of the image to the

same size as the decoder. The output feature dimensions of

each convolution are 256, 128, 64, 32, and 16. Bilinear sampling

has gradient locality, and may not converge to the global

minimum during the training process of the final disparity

estimation. Therefore, the disparity is extracted from the last

four layers of the filter during decoding. And then, the disparity

calculation loss function of each layer is fused into the final loss

function solution. Each layer calculates the loss function

according to different image sizes. Due to the severe

compression of low-resolution images, it is difficult to retain

important details of the image. Parallax discontinuities are prone

to occur in the weak repeating parts of the tissue structure,

because the photometric errors at these locations are blurred and

inaccurate. Inspired by binocular stereo vision, we improved the

loss function and reconstructed the disparity image in the last

four layers of the decoder with different image sizes. The loss

functions of different scales were calculated.

2.2.3 Improved loss function
1) Photometric reconstruction loss

Self-supervised learning mainly uses the disparity

relationship between the left and right images of the binocular

endoscopic image to establish a loss function (Godard et al.,

2019). The training loss is expressed as a photometric re-

projection loss, which is used to describe the difference

between the virtual viewpoint and the real view. The total loss

is obtained by adding the losses of all pixel points. The calculation

process of the loss function is shown in formula 16:

L(p) � ∑pt(It, I′t) (16)

It is the original image, I′t is the virtual view, and pt is the

difference between the two images. The total photometric loss is

obtained by combining the differences of all images (Zhao et al.,

2019). The structural similarity index SSIM is used to

characterize the photometric reconstruction error. The specific

calculation process is shown in formula 17:

pt(It, I′t) � α

2
(1 − SSIM(It, I′t)) + (1 − α)����It, I′t����1 (17)

Among them, α is the weight coefficient between SSIM and

L1 norms, which can be obtained from training experience. We

set it as α = 0.85. During training, the model extracts image

features from the left image in the binocular laparoscopic image

to obtain the initial disparity. Then, it use the left image and the

FIGURE 6
HSB module.
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original image to linearly translate to get the virtual right image,

and then compare the real right image with the original right

image to get the loss. Image sampling is performed using Spatial

Transformer Networks (STN) (Jaderberg et al., 2015). The

original image is sampled with the disparity image as the

standard, and the STN takes the weighted sum of the

surrounding four pixels for each sampling point. Its

calculation process can be differentiated and can follow the

neural network to participate in the process of back propagation.

As shown in formula 16, the existing literature generally

averages the re-projection loss across all training images when

calculating the photometric reconstruction error for self-

supervised depth estimation. This has some problems in

consecutive images. Certain matching feature points do not

match in the occluded image. This leads to a large error in

photometric reconstruction. However, the loss function is

averaged, so that the two points cannot be correctly matched.

Then, the obtained disparity image or depth image is blurred.

Pixels that are easily occluded during continuous motion mainly

come from the boundaries of moving objects. For example, in the

process of laparoscopic surgery, the forceps move more

frequently and there will be a long-term or short-term

occlusion in the patient’s body. The background in the human

body cannot bematched. For the photometric reconstruction loss

of the same pixel appearing in different images, this article adopts

the minimum value instead of the average value to improve the

photometric loss. As shown in formula 18:

Lp � ∑
t′
pe(It, It′→t)0Lp � min

t′
pe(It, It′→t) (18)

For all pixels in an image, it is not necessary to calculate the

loss function in its entirety. We use an automatic masking

scheme that preserves points that move relative to the camera

and removes points that are stationary relative to the camera. For

example, in laparoscopic surgery, when the abdominal lens is

rotated, all pixels move with the lens. At this point, all pixel point

losses are calculated. When the abdominal lens remains

stationary, the background of the internal abdominal cavity

that the endoscope can look into is fixed. As the forceps

moves the abdominal tissue relative to the lens, only the

moving portion is counted when calculating the loss. The rest

of the points are removed, and the removed part is called a mask.

The mask is computed by the network. Masked pixels can be

characterized as a static camera, which is equivalent to being

relatively stationary with the camera, or can represent low-

texture areas.

This article uses the binary mask parameter μ ∈ {0, 1}.
Among all loss functions, μ is only related to the photometric

reconstruction loss, as shown in formula 19:

μ � [min
t′

pe(It, It′→t)< min
t′

pe(It, I′t)] (19)

2) Left–right consistency loss

Our proposed photometric reconstruction error can examine

the similarity between the original view and the virtual view. The

left and right consistency loss is used to measure the similarity

between the left and right disparity images generated by the

network. The disparity acquisitionmodule only has the left image

as input, but needs to predict the left and right binocular disparity

images. Therefore, the similarity between the left and right

disparity images needs to be constrained. A virtual right

disparity image can be obtained by linearly transforming the

left image disparity on each pixel using right image disparity. The

original right disparity image is compared with the virtual right

disparity image, and the L1 norm is obtained as the left–right

consistency loss. The left and right consistency losses can

constrain the left and right parallaxes to ensure the accuracy

and continuity of the parallax. In order to reconstruct the loss

obtained from the right disparity, we also calculated the loss to

reconstruct the left disparity during training, as shown in

formula 20:

Ll
lr �

1
N

∑
i,j

∣∣∣∣∣∣dl
ij − dr

ij+dlij

∣∣∣∣∣∣ (20)

3) Edge-smoothing loss

There is a very strong connection between adjacent disparity

images. Constraining the transformation magnitude of disparity

through a loss function can effectively improve the problem of

discontinuous disparity. Parallax can also be locally smoothed.

We used the L1 norm to constrain the left and right disparities to

ensure continuous and smooth binocular disparity, as shown in

formula 21:

Ll
ds �

1
N

∑
i,j

∣∣∣∣∣zxdl
ij

∣∣∣∣∣e−
����zxIlij���� + ∣∣∣∣∣zydl

ij

∣∣∣∣∣e−
����zyIlij���� (21)

To sum up, the improved loss function is composed of the

aforementioned three types of loss functions, as shown in

formula 22:

L � μ(Lr
p + Ll

p) + λ(Ll
lr + Lr

rl + Ll
ds + Lr

ds) (22)

2.3 Evaluation method

In clinical applications, the doctor’s subjective evaluation is

the most important factor in judging the image quality. There is

no gold standard available for quantitative assessment especially

in laparoscopic and endoscopic images (Zhang et al., 2022).

Therefore, to verify the performance of tissue blood vessels,

brightness, and color enhancement, we define two evaluation
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metrics: 1) Peak Signal-to-Noise Ratio (PSNR), and 2) Structural

Similarity Index (SSIM).

PSNR and SSIMwere used to evaluate image quality. PSNR is

a measure of the quality of image reconstruction. The higher the

PSNR value, the better the image quality will be. The formula is as

follows:

MSE � 1
mn

∑m−1

i�0
∑n−1
j�0

[I(i, j) −K(i, j)]2 (23)

PSNR � 10 × log10(MAX2
I

MSE
) (24)

where MSE represents the mean square error; MAX2
i represents

the maximum possible pixel value of the image; I(i, j) represents
the original image; and K(i, j) represents the noise image.

SSIM is used to measure the similarity of two images. The

larger the SSIM value, the more similar the two images are. The

formula is as follows:

SSIM(x, y) � [l(x, y) · c(x, y) · s(x, y)] (25)

l(x, y) � 2μxμy + c1

μ2x + μ2y + c1
(26)

c(x, y) � 2σxσy + c2
σ2x + σ2y + c2

(27)

s(x, y) � σxy + c3
σxσy + c3

(28)

where μ represents the mean, σ represents the variance; and σxy
represents the covariance of x and y; c1 � (k1L)2 and c1 � (k2L)2
represent two constants, with k1 � 0.01 and k2 � 0.03; and L

represents the range of image pixels.

3 Results and discussion

3.1 Data set and training parameter
settings

Our experimental conditions are 64-bit Windows

10 operating system, using Intel(R) Core(TM) i7-10750H

CPU; 32 GB RAM; NVIDIA 12 GB 3080Ti GPU. Install

CUDA9.0 and use cuDNN7.0 for acceleration. On this basis,

the U-Net model is built on the Tensorflow1.10.0 framework, as

shown in Supplementary Table S1.

The dataset adopts the updated laparoscopic binocular

dataset from the Hamlin Center (Chen et al., 2017). The left

eye image is used for smoke cleaning. The binocular data are used

for disparity estimation. The experimental dataset has a total of

34,240 pairs of binocular laparoscopic training images and

7,000 pairs of test images. This article divides the training

images, of which 30,000 pairs of laparoscopic images are used

as training sets and 4,240 pairs of validation images. Since many

images in the laparoscopic dataset originally contain images of

smoke, we perform supervised learning after fogging the images.

The fog in the original image will affect the performance of the

model, so we selected images that do not contain fog from the

dataset to add fog. To ensure the reliability of the experimental

data, each round of experiments is tested on synthetic smoke

images and real smoke images. They were used in ten-fold cross-

validation experiments. After training and validation separately,

we used the test set to test, repeat this process ten times, and

finally take the average of the ten results as the evaluation of

algorithm accuracy. The synthetic image test set contained

1,000 images and the real smoke dataset contained

129 images. After fog rendering was performed on each image

as a training set, the rendered images were divided into two levels:

light fog and dense fog. During the training process, all images

were first resized to a fixed size of 256 × 128, and then input to the

model, the mean square error loss function was used, Adam is

used as the optimization, the batch is set to 16, and the initial

learning rate is set to 0.0001. The experiment adopts the control

variable method, and conducts four sets of experiments for two

levels of fog: including U-Net network, U-Net network plus

CBAM attention mechanism, U-Net network plus Laplace

transform, U-Net network plus CBAM attention mechanism,

and Laplace transform.

The average training time of each model group is 4.5 h.

According to the different levels of smoke and different model

combinations, when the average loss is reduced to 0.02–0.03 in the

light fog image training set, it will no longer decrease, and overfitting

will not occur. The average loss on the validation set drops to around

0.3 and no longer decreases. When the average loss is reduced to

0.03–0.04 in the training set of dense fog images, there is no drop

and no overfitting. The average loss on the validation set drops to

around 0.4 and no longer drops. After training, export the model.

This article can perform smoke purification on the synthetic image

dataset. In order to apply it to engineering practice, this article uses

the real dataset containing smoke; this model can purify real smoke.

3.2 Experiment results of dehazing of
laparoscopic images

In addition, the test results of the synthetic dataset are shown in

Figure 7. Figure 7A shows a synthetic smoke image, which is

characterized by thick smoke and blocking of the original tissue

structure. Figure 7B shows the results of using the original U-NET.

There is still some residual smoke and the effect is not good.We used

the Laplace pyramid transform to completely purify the smoke in

Figure 7C. But, the brightness and color saturation of the bright parts

of the original image were reduced. The smoke can be effectively

purified with good color retention after the Laplacian pyramid

transform is added in Figure 7D and Figure 7E.

In order to verify the validity of the model, we used the light

fog dataset to conduct comparison experiments with other

parameter settings under the same control experiment. The

results are shown in Table 1. The training loss of adding the
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CBAM module alone is 0.023, and adding the Laplace transform

alone is 0.038. In the case of Laplacian pyramid transform and

the CBAM attention mechanism, the training loss of the model

was 0.026. The CBAM module can better optimize the model. In

terms of processing time, the CBAM module achieved a good

result of 106.4pfs, and the best PSNR value was 31.435 dB. On the

SSIM index, the experiment of adding the Laplacian pyramid

obtained the best effect of 0.98.

3.3 Three-dimensional display experiment

Resnet50 was used for training; the training time was 7–8 h;

the final loss obtained by training was 0.06. When HS-Resnet50

was used for training, the final loss was about 0.05. There was no

overfitting in both schemes. The loss of HS-Resnet50 was lower,

and the model training effect was better.

Qualitative test results are shown in Figure 8. Figure 8A and

Figure 8C show the endoscope test images. Figure 8B and

Figure 8D show the RGB parallax images obtained using the

HS-Resnet model. It can be seen from the test images that the

parallax images generated by the proposed model are complete

and continuous, without any void phenomena. In the parallax

images, a light-colored part is an object close to the camera and a

dark-colored part is an object far from the camera. It can be

confirmed from the original image that the distance relationship

in the parallax images generated by this model is accurate.

As shown in Figure 9, the binocular endoscope depth-estimation

algorithm based on the improved HS-Resnet model can effectively

obtain the disparity image while retaining the image details. The

blood vessels in the abdominal cavity in Figure 9A are well preserved

in the parallax Figure 9B. The original tissue texture of the image can

be observed through the parallax image. The blood vessel

information is very important in medical images, highlighting the

blood vessels in the image and more. More details can also prevent

doctors from accidentally injuring patients.

Figure 10 shows the influence of smoke on disparity

estimation. Figure 10A represents the synthetic smoke

image, and it can be seen from the image that the smoke

FIGURE 7
Synthetic smoke laparoscopic images and purified images. (A) Laparoscopic image with synthetic smoke and after purification; (B)
Laparoscopic image with U-NET; (C) Laparoscopic image with U-NET + BAM; (D) Laparoscopic image with U-NET + Laplace; (E) Laparoscopic
image with U-NET + CBAM + Laplace.

TABLE 1 Model performance verification.

Model PSNR SSIM PFS Loss

U-Net 30.522 0.936 72.256 0.045

U-Net + CBAM 31.435 0.966 106.40 0.023

U-Net + Laplace 31.126 0.977 74.074 0.038

U- Net + CBAM + Laplace 31.045 0.980 90.191 0.026
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covers the front of the abdominal image. Figure 10B

represents the image after chapter 3 smoke purification; it

can be seen from the image that it no longer contains smoke.

Figure 10C shows that the disparity value is obtained by

performing a depth estimation on the image containing

smoke. Due to the occlusion of the smoke, the disparity

estimation is relatively blurred. The color is darker and it is

difficult to distinguish the edge information. There are large

black areas in the image that cannot be identified. Figure 11D

shows the parallax estimation of the cleaned image compared

with Figures 10C, D is lighter in color and easier to observe.

The edge information image is clearer. The parallax

estimation model in Figure 10C is occluded by smoke,

which makes it difficult for the parallax estimation model

to estimate the specific depth of human tissue. The parallax

can be accurately estimated after the smoke is purified.

3.4 Smoke removal model performance
verification

The CBAM attention module can effectively improve various

indicators of the model. The Laplacian pyramid transform can

better retain image details. The experimental results on real

images are shown in Figure 11, and it can be seen from

Figure 11A, Figure 11C, and Figure 11A that in surgery, real

smoke generally blocks the doctor’s sight and fuzzes up the real

vision in the scene. After removal, Figure 11B, Figure 11D, and

Figure 11F show that the image processed using this model can

purify smoke in the figure so that the fuzzy images are clearer.

In each subimage, the left is a smoke image randomly

captured from a real surgery video and the right is the smoke

removal result of the CBAM + Laplace image pyramid fusion +

U-NET model.

FIGURE 8
Parallax estimation results. (A,C): endoscopic test images. (B,D): the parallax image obtained using the HS-RESNET.

FIGURE 9
Details of the parallax estimation. (A): Raw endoscope image; (B) proposed model parallax.
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The first image in each subimage is a smoke image

randomly selected from a synthetic smoke dataset; the

second image shows the smoke removal results of the basic

U-NET model; the third image shows the smoke removal

results of the CBAM + U-NET model; the fourth image shows

the smoke removal results of the Laplacian image pyramid

fusion + U-NET model; and the fifth image shows the smoke

removal results of the CBAM + Laplacian image pyramid

fusion + U-Net model.

To verify the effectiveness of this model, we compared the

frames per second (fps) of this article with six other methods. As

shown in Table 2, our 90.19 (Fps) is inferior to GAN. But it achieves

the best results on two important metrics (PSNR and SSIM) in

Figure 12. The requirements for clinical endoscopic surgery have

been met.

Figure 12A shows the PSNR comparison between our method

and the other six methods. Figure 12B shows the SSIM comparison

between ourmethod and the other six methods. Bolkar et al. (Bolkar

FIGURE 10
The effect of smoke on disparity estimation. (A) Synthetic smoke images; (B) smoke-removed images; (C) disparity images of the smoke
containing images; (D) disparity images of the smoke-free images.

FIGURE 11
Laparoscopic images of real smoke and images after removal. (A–F) are randomly selected from the experimental results. Laparoscopic images
of real smoke (left sub-panels) and images after smoke removal by U-Net + CBAM + Laplace pyramid fusion (right sub-panels).
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et al., 2018) derived the atmospheric diffusion model and

implemented it with a neural network. It is an earlier classic

method in the field of smoke purification, so the results of

various indicators are lower compared with recent methods.

Chen et al. used a synthetic dataset. The U-Net architecture is

used to achieve smoke purification. Among the several methods

compared, the time performance is better. But the purification effect

on real smoke images is poor. Shin et al. (Shin et al., 2019) adopted

the radiation reflectance optimization scheme. The processing speed

of a single image is the slowest. Wang et al. adopted the U-Net

architecture and improved the down-sampling part. Compared with

the first three methods, the PSNR index is greatly improved. Isola

et al. (2017) used the adversarial neural network method, and

achieved the best results in time performance. Salazar et al.

(Salazar-Colores et al., 2020) used an adversarial neural network

and took the dark channel-detected image as input and achieved

good performance in various indicators. We used PSNR and SSIM

in PSNR and SSIM. The two indicators have achieved the best results

among several methods. In terms of time performance, the time

indicator can achieve a stable display playback without jitter, so it

can be applied in real-time systems.

3.5 Three-dimensional model
performance verification

There are few literature studies on disparity estimation of

endoscopic images. The evaluation indicators are not unique.

Basic (Ye et al., 2017) used DeConvNet as the basis of the model

network and adopted a self-supervised scheme. The disparity

image obtained by training endoscopic images and the original

image are used as the comparison standard, taking the structural

similarity SSIM as the indicator. ELAS (Geiger et al., 2010)

triangulated the matching points of the binocular image,

making the surrounding points easier to match. SPS

(Yamaguchi et al., 2014) proposed a new target optimization

algorithm to solve the occlusion problem. The algorithm

preserved the connectivity of image segments and utilized

shape regularization in the form of boundary lengths. The

algorithm finally realized image segmentation and disparity

estimation for natural scene images. Siamese (Xu et al., 2019)

is a stereo-automatic encoding and decoding structure, which is

similar to monocular. The input codec structure is Basic. The

initial disparity image is obtained from the codec structure. Then,

TABLE 2 Processing time comparison.

Methods Model Training images Time (fps) Platform

Bolkar et al. CNN + DCP Abdominal Cavity Images 32.40 Python(Caffe)

Chen et al. CNN Abdominal Cavity Images 89.14 Python(TensorFlow)

Shin et al. physical method Natural Images 1.28 Matlab

Wang et al. U-Net Abdominal Cavity Images 24.00 Python(Keras)

Isola et al. GAN Abdominal Cavity Images 120.0 Python(Pytorch)

Salazar et al. GAN + DCP Abdominal Cavity Images 92.19 Python(Pytorch)

Our Proposed method U-Net + CBAM + Laplace Abdominal Cavity Images 90.19 Python(TensorFlow)

FIGURE 12
PSNR and SSIM comparison: (A) PSNR comparison; (B) SSIM comparison.
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the virtual view is obtained by the STN network. The loss is

obtained by comparing the difference between the real view and

the virtual view. One layer gets suitable parameters. Compared

with the method proposed, the Siamese results obtained by

binocular images are better than the Basic results obtained by

monocular images. The SSIM effect reaches 0.726 ± 0.085, which

is better than the Siamese results as shown in Table 3:

The parallax image obtained by SLAM is the true value.

Using SSIM and PSNR as standards, we compared the predicted

parallax value with the true value. The results are shown in

Table 4. Our proposed average SSIM and PSNR results were

0.8826 ± 0.0678 and 17.2594 ± 1.6254, respectively. The results

showed that the proposed method is superior to other methods.

The experiments use the binocular heart data in the Hamlin

endoscopy dataset. This dataset originally did not contain ground

truth disparity values. Several algorithms are compared in Table 5.

Godard et al. obtained the disparity image by extracting image

features through CNN in the natural scene dataset. The parallax

information from the left image to the right image is imaged to obtain

the virtual view. The loss value is obtained by comparing the virtual

view with the real view. Themodel results obtained from this training

perform well on natural scene datasets. Wang et al. (Wang et al.,

2018b) used variational disparity estimation technology to minimize

the global energy function of the entire image. Based on the grayscale

and gradient constants, they supposed that a data term and a local and

non-local smoothing termwere defined to construct the cost function.

The real disparity image was obtained. Stoyanov et al. (Stoyanov et al.,

2010) and Luo et al. (Luo et al., 2019) used two encoders and decoders

to extract the disparity images for the left and right images,

respectively. They used the traditional binocular algorithm AD-

CENSUS to generate unsupervised training. The surrogate

disparity labels, which guide the training process, achieved better

results than the previous two literature studies on both MAE and

RMSE metrics. This article compares the results with the

aforementioned four methods. From the experimental results, we

find that our result has a certain improvement in MAE. The RMSE

index has a larger improvement than the aforementioned methods.

In endoscopic image evaluation, the doctor’s subjective

evaluation is still the important method to verify the image

quality. The establishment of the quantitative assessment is a

challenging task since there are no available gold standards. More

specialized evaluations are needed to validate the effectiveness of

3D reconstruction methods for endoscopic images. Therefore, we

invited 10 chief physicians from the Affiliated Hospital of

Southwest Medical University with more than 5 years of

laparoscopic surgery experience to score the 3D images. The

subjective evaluation criteria referring to the Double Stimulus

Continuous Scale (DSCQS), 3D effect, viewing comfort, and

acceptability were rated on a scale of 1 (worst) to 5 (best). A

score of 1 indicated a non-diagnostic image, and a score of

5 indicated an excellent diagnostic image quality. Pathological

invariance was scored with 0 (change) or 1 (no change).

The evaluation of the 10 clinicians is shown in Table 6; our

method received the best subjective quality evaluation. 3D effect,

viewing comfort, and acceptability are better than other methods,

and the improved loss function can better retain the details of

medical images. It is proved that the proposed 3D reconstruction

algorithm can be applied to clinical scenarios.

In this article, a total of 1,200 endoscopic images in the

dataset were processed. The average processing time per image is

0.0275 s and 36fps was obtained. Therefore, it can meet the real-

time requirements of a 3D display system.

The improved U-NET network applied to an original

endoscopic image can obtain a better parallax image with

higher accuracy to obtain a better three-dimensional display

effect. Moreover, void-filling and reverse imaging can be

performed on the parallax image to recover a better right

view, color offset can be performed on the left and right

views, and the 3D display effect can be seen by wearing red

and blue lenses, as shown in Figure 13.

We validated the effectiveness of our method on the binocular

laparoscopy dataset. For any image on the binocular laparoscopic

dataset, an adaptive neural network endoscopic three-dimensional

reconstruction method is proposed. If there is smoke, first use the

TABLE 3 SSIM comparison.

Model Basic ELAS SPS Siamese Our proposed

Mean SSIM 0.555 0.473 0.547 0.604 0.726

Std SSIM 0.106 0.079 0.092 0.106 0.085

TABLE 4 PSNR and SSIM comparison.

Model Basic Autoencoder Our proposed

Mean SSIM 0.5414 ± 0.0709 0.8349 ± 0.0523 0.8826 ± 0.0678

Mean PSNR 7.7650 ± 1.3686 14.4957 ± 1.9676 17.2594 ± 1.6254

TABLE 5 MAE and RMSE comparison.

Model Methods MAE, mm RMSE, mm

Heart 1 Godard et al 2.39 ± 0.62 2.99 ± 0.61

Wang et al 2.16 ± 0.65 -

Stoyanov et al 2.36 ± 0.92 3.88 ± 0.87

Luo et al 1.84 ± 0.40 2.69 ± 0.58

Our Proposed 1.65 ± 0.35 2.45 ± 0.52

Heart 2 Godard et al 1.79 ± 0.40 2.65 ± 0.28

Wang et al 2.14 ± 0.83 -

Stoyanov et al 3.20 ± 1.15 4.85 ± 1.82

Luo et al 1.49 ± 0.41 1.90 ± 0.38

Our Proposed 1.45 ± 0.40 1.62 ± 0.42
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TABLE 6 Subjective evaluation and comparison of the 3D reconstruction effect. (Mean ± STANDARD, deviation).

Methods 3D Effect Viewing comfort Invariance Acceptability

Godard[27] 3.8 ± 0.48 3.5 ± 0.11 0.3 ± 0.15 3.2 ± 0.21

Wang[40] 3.7 ± 0.72 3.6 ± 0.82 0.3 ± 0.55 3.5 ± 0.74

Stoyanov[41] 3.9 ± 0.91 3.8 ± 0.25 0.4 ± 0.51 3.8 ± 0.11

Luo[42] 4.1 ± 0.40 4.0 ± 0.35 0.6 ± 0.51 4.1 ± 0.63

Proposed 4.1 ± 0.69 4.1 ± 0.11 0.7 ± 0.12 4.2 ± 0.38

FIGURE 13
Red and blue 3D display images. The left image in each sub-image is the original view, and the right image is the chromatic 3D display image. (A–D) are
randomly selected from the experimental results.

FIGURE 14
3D display of color difference; (A) Red Component; (B) Offset Red Component; (C) Blue Component; (D) Green Component; (E) Raw
endoscope image; (F) 3D Display.
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smoke purification algorithm to obtain the purified image, and

secondly obtain the disparity image. The result of 3D display is

shown in Figure 14. Figure 14A represents the red component of the

original image. Figure 14B represents the red component after fusion

of parallax. There is a slight difference between Figure 14A and

Figure 14B. It is difficult to observe with the naked eye. We need to

carefully observe the slight difference between the red boxes on the

right side of the image. There are certain wrinkles in Figure 14B. It

shows that the red component has moved after parallax stacking.

Figure 14B is a virtual image from another viewpoint. Figure 14C and

Figure 14D represent the blue and green components separated from

the original image, respectively, and Figure 14E represents the original

image. The RGB images are shown in Figure 14A, Figure 14C, and

Figure 14D, respectively. Figure 14F represents the color-difference

three-dimensional display image. FromFigure 14, we canfind that the

red–blue parallax movement range becomes larger, which is more

suitable for human eye observation.

4 Conclusion

To meet the practical application requirements of binocular

endoscopic medical images, this article organically combines a

global expansion with a local adaptive expansion of the network

structure. Aiming at the lack of real parallax in unsupervised

binocular endoscopic images, we proposed a 3D reconstruction

scheme for adaptively processing the smoke images. Subjective

evaluation and objective evaluation were used for verification.

The 3D effects in the subjective evaluation obtained an optimal

value of 4.2 ± 0.38. In the de-hazing tests on real datasets, our

method achieved an SSIM of 0.980, a PSNR of 31.545 dB, an

average running speed of 90.191 fps, and a much lower training

time than similar methods. The proposed self-supervised

disparity estimation method also outperformed the existing

methods, with an SSIM of 0.726 ± 0.085 and a PSNR of

17.2594 ± 1.6254 dB; MAE 1.45 ± 0.40, RMSE 1.62 ± 0.42. It

meets the needs of medical images in various indicators and

solves the real-time problem of clinical operations. The present

article can therefore guide the development of endoscopy devices.
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