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The adaptation of neural contractile properties has been observed in previous

work. However, the neural changes on the motor unit (MU) level remain largely

unknown. Voluntary movements are controlled through the precise activation

of MU populations. In this work, we estimate the neural inputs from the spinal

motor neurons to the muscles during isometric contractions and characterize

the neural adaptation during training by comparing the MU properties

decomposed from sprinters and nonathletes. Twenty subjects were

recruited and divided into two groups. The high-density surface

electromyography (EMG) signals were recorded from the lateralis vastus

muscle during the isometric contraction of knee extension and were then

decomposed into MU spike trains. Each MU’s action potentials and discharge

properties were extracted for comparison across subject groups and tasks. A

total of 1097 MUs were identified from all subjects. Results showed that the

discharge rates and amplitudes of MUAPs from athletes were significantly

higher than those from nonathletes. These results demonstrate the neural

adaptations in physical training at the MU population level and indicate the

great potential of EMG decomposition in physiological investigations.
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1 Introduction

Voluntary movements are controlled through the precise activation of motor unit

(MU) populations. As the smallest functional unit in the human neuromuscular system,

the MU converts the descending neural inputs into forces to generate movements

(Heckman and Enoka, 2012). The MU comprises two components, namely, the

motor neuron and its innervated muscle fibers (Weinberger and Dostrovsky, 2010).

These two components normally function as a single entity that provides the primary

output for the central neural system. The ensemble of discharges of motor neurons
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innervating a muscle represents the neural drive transferred from

the spinal cord to the muscle. It provides direct information on

the functional tasks associated with muscle activation (Farina

et al., 2013; Farina et al., 2014b; Dai et al., 2017). Moreover,

information on MU behavior has contributed to a better

understanding of the pathophysiological mechanisms of

tremor (Holobar et al., 2012), stroke (Li et al., 2015), as well

as the neural determinants of training and aging (Watanabe et al.,

2016; Piasecki et al., 2019).

Neural and muscular adaptations are two of the most critical

factors that contribute to the increase in muscle force caused by

strength training. Narici et al. (1989) demonstrated that during

strength training of the human quadriceps muscle, the increase in

the anatomical cross-sectional area accounts for only 40% of the

increase in force while the remaining 60% is attributable to an

increased neural drive and possibly to architectural changes

occurring within the muscle. The muscular and neural

adaptations were also observed in dorsiflexor muscles (Van

Cutsem et al., 1998). There were no changes in the time-to-

peak torque and the recruitment sequence of the motor units, but

obviously a different type of behavior occurs, since during

ballistic contractions they were activated earlier in the

contraction stage and their maximal firing rate was greater

after training. de Ruiter et al. (2012) investigated the effect of

imagery training on strength development and demonstrated the

increase in contractile impulse only following physical training.

Previous studies have used transcranial magnetic stimulation or

intramuscular recordings of electromyography (EMG) to investigate

the types of neural adaptations elicited by strength training (Weier

et al., 2012; Nuzzo et al., 2017). However, the neural changes on the

MU level remain largely unknown. The human neural system

modulates the recruitment/derecruitment and the discharge rate

of MUs to realize precise force control. Previous studies have

indicated that several weeks of strength training is sufficient in

eliciting significant adaptations in the MU discharge rate and

recruitment threshold force (Balshaw et al., 2016; Vecchio et al.,

2018). These findings suggest that the adaptations in MU function

may be attributable to changes in the synaptic input to the motor

neuron pool or adaptations in intrinsic motor neuron properties

(Vecchio et al., 2018). In addition, the muscle unit contractile

properties may also change after long-term training. The number

of motor neurons that innervate a muscle is comparatively stable,

whereas the number of muscle fibers innervated by those motor

neurons can increase (Heckman and Enoka, 2012).

Several studies have investigated the neuromuscular characters of

sprinters. In Cristea et al. (2008) work, the 10% increase in squat

jump in sprinters was accompanied by a 9% increase in the integrated

EMG of the leg extensors. Kamandulis et al. (2012) found that sprint

performance is poorly predicted by contractile kinetics of electrically

induced contractions from the quadriceps muscle. Generally, the

amplitude features, from whether intramuscular EMG or surface

EMG, are used among in studies. However, the EMG features could

only partially reflect the neural inputs from the spinalmotor neurons.

Up to now, there are few studies investigating the neural adaptations

of sprinters at the MU level. The action potentials of MUs transfer to

the surface of the skin and can be recorded as the surface EMG

signals (Merletti and Farina, 2016). Therefore, they can be identified

by processing and decomposing EMG signals, thereby allowing the

spinal cord’s output to be accessed non-invasively (Del Vecchio et al.,

2020).

MU activities can be decoded using electrodes placed inside the

muscle or mounted on the skin surface. Needle/wire electrodes have

been used for this purpose since the 1920s (Adrian and Bronk, 1929).

Automatic algorithms for processing intramuscular signals were

proposed in the 1970s (Farina et al., 2008; Merletti and Farina,

2009) and progressively improved over time (Negro et al., 2016;

Roussel et al., 2017; Yu et al., 2020). However, intramuscular EMG

(iEMG) can only identify relatively small samples ofMUs, with fibers

located close to the recording electrodes, because of the high

selectivity. Alternatively, MU activities can be identified non-

invasively by identifying the action potentials from interference

surface EMG signals through blind source separation (Holobar

and Zazula, 2007b; Holobar and Farina, 2014; Chen et al., 2018)

or template matching with machine learning (Nawab et al., 2010; De

Luca et al., 2015). The surface EMG recording modality allows the

measurement of MU properties that are difficult to access with

invasive recordings (e.g., muscle fiber conduction velocity or location

of endplates). In addition,moreMUs could be identified from surface

EMG compared with iEMG signals (Merletti et al., 2008; Holobar

et al., 2010; Holobar and Farina, 2014).

In the present study, we applied the EMG decomposition

technique to analyzing MU activities of lateralis vastus muscle.

The neural inputs sent into muscles during isometric contractions

were estimated and characterized at the MU population level.

Subsequently, the neural adaptations during training are

interpreted by comparing the MU properties between sprinters

and nonathletes.

2 Methods

2.1 Participants

A total of 12 sprinter athletes (Athlete group, all males, about

7 years sport-specific training) and 8 untrained subjects (Control

TABLE 1 Anthropometric data of participants.

Athletes (n = 12) Non-athletes (n = 8)

Age (years) 20 ± 3 20 ± 2

Height (cm) 182 ± 5 178 ± 4

Body mass (kg) 70 ± 7 72 ± 8

BMI (kg/m2) 20.21 ± 1.42 22.12 ± 2.03

Values are mean ± standard deviation (SD). BMI: Body mass index. There were no

significant differences between groups in the anthropometric data.
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group, all males, normal sports activity in school without further

sports training) participated in the experiments. The athletes

have all implemented specialized training (running rhythm,

maximum speed, swing arm, etc.) and strength training (squat

bench press, flip, jump, etc.). The detailed information of

participants is shown in Table 1. All participants had no

neurological disorders and had signed informed consent prior

to the participation. The experimental protocol and the informed

consents followed the Declaration of Helsinki.

2.2 Experiments

2.2.1 Experimental protocol
The subjects performed the static contraction of knee

extension in the experiments. Before the experiments, the

maximum voluntary contraction (MVC) of each subject was

measured. The subjects were instructed to exert the maximum

isometric contraction force of the knee extension three times,

with a 1-min rest between each contraction. The average of the

three extension forces was considered as the MVC force. The

experiments involved two sessions. The subjects were instructed

to perform knee extension by following a trapezoid force curve in

each session. The trapezoid curve consisted of three phases. In

session 1, the trapezoid curve lasted for 30 s, which included an

ascending ramp of 10 s, a plateau phase of 10 s, and a descending

ramp of 10 s (Figure 1B). The contraction level of the plateau

phase was set as 30%, 50%, and 70% MVC. The subjects were

instructed to perform one trial for each level. In session 2, the

ascending/descending phase of the trapezoid curve was set as 2 s,

whereas the plateau phase still lasted for 10 s. The other setup in

session 2 was the same as that in session 1.

2.2.2 Force signal recording
A custom-built force recording system was used to measure

the knee kinetics in the experiments (Figure 1A). The force

transducer (SM S-Type Load, Interface, United States) was

mounted on the chair leg and arranged in series with a non-

elastic strap (~3 cm wide) to guarantee stiffness during the

isometric contraction. Participants were comfortably seated

with the hip flexed at ~120° (180° = anatomical position) on a

chair with the dominant knee extended at ~90° (180° =

anatomical position) and the ankle at ~100° (90° = anatomical

position) of plantar flexion. The strap was positioned over the

distal portion of the foot dorsum, which was perpendicular to the

tibia. The force transducer was amplified with a gain of 1015 and

a sampling rate of 1000 Hz. The visual feedback of force signals

was provided for subjects during the experiments.

2.2.3 High-density electromyography
recordings

The HDsEMG signals were recorded by an electrode grid

with 64 channels (13 rows × 5 columns, ELSCH064NM2, OT

Bioelettronica, Italy). The electrode diameter was 3 mm with an

inter-electrode distance of 8 mm in both directions (Figure 1A).

The electrode grids were mounted over the lateralis vastus muscle

FIGURE 1
Experimental setup overview and EMG decomposition. (A), a high-density electrode grid placed over the lateralis vastus muscles. (B), the EMG
signals from a column of the grid (13 channels). The bold black curve illustrates the force signal. The location of the EMG channels is indicated by the
black rectangle. (C), two representative MU spike trains and their multi-channel action potentials. The location of the action potentials is indicated by
the red and blue blocks, respectively.
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TABLE 2 Summary of decomposition results.

Group Session (s) Level (%MVC) Number of MUs PNR (dB) Thresholds (%MVC) PPV (mV) Discharge rate (Hz)

All Common Recruitment Derecruitment Recruitment Stable Derecruitment

Athlete 10 30 12 ± 4 6 ± 4 32.29 ± 2.73 15.49 ± 9.07 12.36 ± 11.19 0.19 ± 0.08 8.52 ± 2.73 7.98 ± 6.91 7.22 ± 2.77

50 7 ± 5 4 ± 4 31.59 ± 3.08 32.47 ± 11.77 25.56 ± 18.72 0.28 ± 0.08 10.13 ± 3.96 10.75 ± 8.43 8.58 ± 4.29

70 6 ± 4 3 ± 2 31.22 ± 3.12 42.36 ± 19.15 35.05 ± 25.67 0.38 ± 0.11 9.68 ± 4.39 10.43 ± 8.77 8.99 ± 3.33

2 30 10 ± 8 4 ± 4 32.50 ± 2.14 20.77 ± 8.83 13.58 ± 11.46 0.20 ± 0.09 11.66 ± 5.65 7.07 ± 5.76 9.79 ± 2.96

50 10 ± 6 5 ± 3 31.43 ± 2.37 32.66 ± 18.30 26.39 ± 17.96 0.29 ± 0.09 12.17 ± 4.56 9.85 ± 7.74 11.87 ± 4.46

70 9 ± 7 4 ± 3 30.72 ± 3.02 49.74 ± 18.25 34.71 ± 26.23 0.38 ± 0.10 14.64 ± 5.39 9.44 ± 7.87 13.21 ± 4.92

Control 10 30 10 ± 8 7 ± 5 30.42 ± 4.00 20.50 ± 8.84 17.40 ± 8.81 0.11 ± 0.05 7.26 ± 3.33 12.13 ± 7.21 6.85 ± 3.97

50 9 ± 7 6 ± 4 30.91 ± 2.95 33.81 ± 10.74 31.51 ± 12.51 0.17 ± 0.06 8.44 ± 4.29 11.42 ± 6.98 6.60 ± 3.42

70 7 ± 6 5 ± 5 31.38 ± 2.31 51.19 ± 13.79 51.16 ± 14.16 0.23 ± 0.07 8.69 ± 3.39 10.76 ± 4.54 7.54 ± 4.08

2 30 11 ± 8 7 ± 6 30.84 ± 2.88 21.21 ± 8.75 17.84 ± 8.68 0.12 ± 0.05 9.02 ± 3.93 10.95 ± 6.78 8.18 ± 3.52

50 10 ± 9 7 ± 6 31.37 ± 3.52 38.24 ± 9.99 32.72 ± 11.79 0.17 ± 0.08 10.79 ± 4.82 11.22 ± 6.49 9.53 ± 3.91

70 11 ± 8 6 ± 5 30.69 ± 3.51 57.34 ± 12.00 47.89 ± 16.09 0.22 ± 0.08 12.62 ± 6.37 12.95 ± 6.47 11.28 ± 6.86
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and connected with a multi-channel amplifier (Sessantaquattro,

OT Bioelettronica, Italy). The HDsEMG signals were recorded in

a monopolar mode with a gain of 1,000 and a sampling rate of

2,000 Hz. The EMG signals were bandpass filtered between 3 Hz

and 900 Hz by hardware and A/D converted on 12 bits. The EMG

data were recorded wirelessly with the OT BioLab (OT

Bioelettronica, Italy) and preserved for offline analysis.

2.3 Data analysis

The flowchart of data analysis and decomposition procedure

is illustrated in Figure 2. First, the EMG signals were

preprocessed and decomposed into MU spike trains (MUSTs).

Then the MU action potentials (MUAPs) were extracted to

identify common MUs. Several neural contractile properties

were extracted from the MUSTs and MUAPs.

2.3.1 Preprocessing
The force signals were up-sampled at 2000 Hz for the

subsequent analysis. Some EMG channels (usually less than 5)

were discarded by visual inspection due to excessive noise caused

by poor contact between the skin and electrodes or

electromagnetic interference. A fourth-order Butterworth

bandpass filter (20–500Hz) was applied to all the remaining

channels. Another comb filter with a cutoff frequency of 50 Hz

was used to remove the power line interference.

2.3.2 Electromyography decomposition
The surface EMG signals were decomposed into MUSTs

using the convolution kernel compensation (CKC) algorithm

(Holobar and Zazula, 2007a). The decomposition algorithm is

described in detail in (Holobar and Zazula, 2007a), and a brief

explanation of the decomposition basis is provided here.

The generation model of multi-channel EMG signals can be

described as a convolutive mixture of a series of impulses

(MUST) and their responses (Holobar and Zazula, 2007a;

Negro et al., 2016). The impulse responses in this mixture

model are the action potentials of the MUs, which have a

finite duration (Holobar and Zazula, 2007a; Holobar and

Zazula, 2007b).

xi(n) � ∑N
j�1

∑L−1
l�0

hij(l)sj(n − l) + ωi(n), i � 1, 2, . . . ,M (1)

where xi(n) is the ith EMG channel, n is the discrete time as

sample point, hij(l) is the action potential of the jth MU

recorded at the channel i, sj(n) is the spike train of the jth

MU (the jth MUST), ωi(n) is the additive noise at channel i, L is

the sample length of the action potentials, N and M is the

number of active MUs and EMG channels, respectively. The Eq.

1 can be converted to matrix form:

x(n) � H�s + ω(n) (2)

where ω(n) � [ω1(n), ...,ωM(n)]T is the addictive noise, �s(n) �
[s1(n), s1(n − 1), ..., s1(n − L + 1), ..., sN(n), sN(n − 1), ..., sN(n−
L + 1)]T is the extended version of vector from N sources

s(n) � [s1(n), ..., sN(n)]T, and the mixing matrix H is:

H �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11(0) / h11(L − 1)
h21(0) / h21(L − 1)

..

.
/ ..

.

h12(0) / h1N(L − 1)
h22(0) / h2N(L − 1)

..

.
/ ..

.

hM1(0) / hM1(L − 1) hM2(0) / hMN(L − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

The CKC method compensates the unknown mixing matrix

H in Eq. 2 and estimates the spike train of the jth MU (Holobar

and Zazula, 2007a):

ŝj(n) � cTsjxC
−1
xxx(n) (4)

where Cxx � E(x(n)xT(n)) is the correlation matrix of EMG

signals, csjx � E(x(n)sTj (n)) is the cross-correlation vector, and

E(·) denotes mathematical expectation.

Suppose wj � C−1
xxĉsjx, where ĉsjx is the estimation of csjx

(Holobar and Zazula, 2007a), the estimation of spike train (Eq. 4)

can be written as:

ŝj(n) � wTx(n) (5)

FIGURE 2
The flowchart of data analysis and EMG decomposition.
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where wj is the estimation of the jth separation vector. The

estimation of the separation vector can be realized through

iteration steps using the natural gradient descent algorithm

(Holobar and Zazula, 2007a). Then the estimation of spike trains

of the jth MU can be calculated depending on Eq. 5. The MU

discharges were extracted using the K-means clusteringmethod from

the estimated spike train. After the jth MUST is extracted, the

repeating procedure of MUST extraction is implemented on the

residue signals until the root mean square value of the residue signal

is lower than the threshold set manually.

A signal-based performance measure called pulse-to-noise ratio

(PNR) (Holobar et al., 2014) was used to evaluate the decomposition

accuracy of MUSTs. There is a strong correlation between this

indicator and the decomposition’s sensitivity and false alarm rate

(Holobar et al., 2014; Negro et al., 2016). Thus, PNR is a reliable and

robust assessment of accuracy in identifying MUSTs by using the

CKC-based algorithm (Holobar et al., 2014). In this study, MUSTs

with PNR < 20 dB were discarded in the subsequent analysis because

of the low confidence of decomposition accuracy. The discharges

separated bymore than 1 s (in both forward and backward direction)

were also excluded and most likely mis-identified.

2.3.3 MU action potential extraction and
matching

The EMG signals were bipolar-filtered along the muscle fiber

direction before MUAP extraction. Subsequently, the multi-channel

FIGURE 3
Thematching results ofMUactionpotentials across tasks. (A,B) shows the results fromAthlete andControl group, respectively. Eachblock gives thematched
rate of MUs between the corresponding task in the vertical and horizontal axis averaged across subjects. The matching rates in the diagonal blocks are 100%.
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MUAP waveforms of each MU were obtained by spike-triggered

averaging (Farina et al., 2010). For each channel, signals from a 25ms

interval, which were triggered by the discharge timings of each MU,

were collected and averaged.

The MUAP waveforms were used to match the same MU

identified across different trials (Kapelner et al., 2017;

Martinez-Valdes et al., 2017). At least 10% of channels

with the maximum peak amplitude of waveforms were

selected. The normalized cross-correlation coefficients

were calculated between MUAP waveforms from paired

channels. Two MUs were matched if the average

correlation coefficient of all paired channels was higher

than 0.7 and the average difference in peak amplitude for

all paired channels was less than 30%. Only the MUs tracked

across two or more trials were preserved for the following

analysis. These common MUs were regarded comparatively

reliable since it is less likely to misidentify an MU more

than once.

2.3.4 Feature extraction
The following MU properties were extracted from MUSTs

and MUAPs for the comparison of subjects and tasks.

• Recruitment threshold refers to the contraction level when

a MU is recruited. It is also defined as the contraction level

that corresponds to the first spike.

• Derecruitment threshold refers to the contraction level

when a MU is derecruited. It is also defined as the

contraction level that corresponds to the last spike.

• Recruitment discharge rate refers to the average discharge

rate at the recruitment phase. It is also defined as the

reciprocal of the average value of the first five inter-spike

intervals (ISI).

• Stable discharge rate refers to the average discharge rate

at the plateau phase. It is also defined as the reciprocal

of the average value of the five middle ISIs (in the

plateau phase).

• Decruitment discharge rate refers to the average discharge

rate at the derecruitment phase. It is also defined as the

reciprocal of the average value of the last five ISIs.

• Peak-to-peak value (PPV) refers to the maximum PPV of

MUAP waveforms among all channels.

The cumulative spike train (CST) was also calculated by

combining all the MUSTs. The correlation analysis was

implemented between the discharge rate of CST and the force

of the knee extension to estimate the neural drive to the muscles.

To avoid the influence caused by the quantity of identified MUs,

the number of MUs used to calculate the CST was fixed to 5. In

each trial, 5 MUs were randomly selected for 100 times. The

correlation in each trial was measured by averaging the Pearson

correlation coefficient (R) across 100 times.

FIGURE 4
Comparison of recruitment threshold, derecruitment threshold, and MUAP amplitudes between Athlete and Control group. (A,B) illustrate the
comparison results from session 1 and session 2, respectively. Only the common MUs were analyzed in this figure. The number of common MUs is
indicated in the left subgraph. The scatters show all the values of each metric, while the box plots show the corresponding statistic distribution. The
significance level of the difference between groups or contraction levels is provided above the box plots.
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All the decompositions and data analysis were implemented

in MATLAB 2021b (Matlab Inc. United States).

2.4 Statistics

The factor (independent variable) corresponds to subject

groups (sprinter athletes and untrained subjects) or protocols

(10s-ramp tasks and 2s-ramp tasks). Dependent variables refer to

the MU properties. Before performing the analysis of variance

(ANOVA), the homogeneity of variance for all the data was

tested first. If satisfied, then the Bonferroni method was

conducted. If not, then the Dunnett’s C method was used

instead. The significance level (p) was set to 0.05. Symbols p,

pp, ppp indicate significant differences with a level of (0.01 < p <
0.05), (0.001 ≤ p ≤ 0.01), (p < 0.001), respectively.

3 Results

The total number of identified MUs was 1097 (636 for the

Athlete group, 461 for the Control group). On average, there were

54 ± 35MUs decoded from each subject and 9 ± 7 from each trial.

The number of common MUs that were matched at least once

was 615 (317 for the Athlete group, 298 for the Control group).

The average PNR in each trial was higher than 30 dB, thereby

suggesting the decomposition sensitivity of approximately >85%
and a false alarm rate of <2% (Holobar et al., 2014). Table 2

shows the summary of decomposition results in each trial.

Figure 3 illustrates the average matching results across subjects.

The comparison results for the MU properties between

subject groups were demonstrated in Figures 4, 5. Figure 4

illustrates the properties related to recruitment and MU size.

A few MUs (usually <1 MU for each trial) were discarded due to

the abnormal discharge properties. No significant difference was

observed in the recruitment or derecruitment thresholds between

the Athlete and Control groups during nearly all conditions.

Meanwhile, the PPV of MUAP from the Athlete group was

dramatically higher than that in the Control group. In addition,

the contraction level affected these three properties in both

groups. Generally, the (de) recruitment threshold and the

PPV increased with the contraction level.

Figure 5 shows the comparison results of discharge rate

properties. In nearly all conditions, except for one (Figure 5B,

middle graph, level 30%), the average discharge rate of the

Athlete group was higher than that in the Control

group. Approximately half of the conditions showed significance.

The difference in discharge rate between subject groups is also

clearly presented in Figure 6. The distributions of interspike intervals

exhibited significant difference when grouping all subjects and levels

in each group. The distribution during each session and level is also

shown in Figure 6.

Figure 7 shows the comparison results for the five MU

properties across sessions. The PPV is not shown here because of

the natural consistency ofMUAP amplitudes forMUmatching. The

average recruitment threshold ofMUs exhibited an increase of about

FIGURE 5
Comparison of MU discharge rate between Athlete and Control group. (A,B) illustrate the comparison results from session 1 and session 2,
respectively. Only the common MUs, which were the same as in Figure 4, were analyzed in this figure. DR: discharge rate. The representation of
symbols are the same as those in Figure 4.
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10%MVC when the tasks changed from 10s-ramp to 2s-ramp (p <
0.05), while there was no significant change in the derecruitment

threshold. As to the discharge rate, the MUs in 2s-ramp sessions

usually dischargedwith a higher rate in all three phases (recruitment,

stable, derecruitment).

Figure 8 shows the correlation between the discharge rate of

cumulative spike trains and force. The average correlation

coefficient in each trial was higher than 0.9, and there was no

significant difference in most trials.

4 Discussion

In this study, we characterized the behavior of a relatively

large population of MUs during voluntary isometric

contractions. The increase in discharge rate and action

potential amplitudes was observed at the MU population level.

The results demonstrate the impact of training on the rate coding

and contractile properties of MUs, providing compelling

evidence for the adaptation of neural inputs.

4.1 Decoding neural drive based on
electromyography decomposition

EMG decomposition technique provides a non-invasive way

to decode the neural outputs from the spinal cord. On the one

hand, the MUSTs, which refer to the series of discharge timings

of the motor neuron, directly reflect the neurophysiological

process underlying the muscle contraction (Farina et al.,

2014a). On the other hand, the MUAPs, which correspond to

the sum of muscle fiber potentials, are highly correlated with the

contractile properties of muscles (Heckman and Enoka, 2012). In

the present study, we decomposed the EMG signals into MUSTs

using a blind source separation algorithm and extracted the

MUAPs from interference EMG signals, thus allowing the

direct analysis of neural adaptation for single MUs.

Although the PNR threshold to select MUSTs was set as

20 dB, the average PNR in each trial was higher than 30 dB,

which indicates the high accuracy of the EMG decomposition.

The value of this index is comparable with previous

investigations (Holobar et al., 2014). After decomposition, the

multi-channel action potentials of each MU were obtained

through post-processing and used for MU tracking across

trials. The matching method based on the correlation of

waveforms has been validated and applied in the long-term

tracking of MUs (Martinez-Valdes et al., 2017; Del Vecchio

et al., 2019a). Over half of the MUs were successfully tracked

across trials. These results indicate high decomposition accuracy

because it is very unlikely that two independent decompositions

make the same errors for different trials. On the contrary, the

non-tracked MUs do not necessarily indicate errors. Notably, all

the MU activities in a muscle can impossibly be identified

because of the limitation of the current decomposition

FIGURE 6
Distribution of MU interspike intervals. Histograms of MU interspike intervals are shown for the Athlete and Control group from each level and
session. The interspike intervals were calculated from the entire contractions including ascending, plateau, and descending phases.
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methods (Negro et al., 2016). The number of the identified MUs

is affected by the decomposition parameters (e.g., the number of

iteration and the loop, the preprocessing methods) and the

complexity of EMG signals (the amount of activating MUs

and the power of noise) (Holobar and Farina, 2014; Chen

et al., 2020). Therefore, identifying different populations of

MUs in two trials was normal.

4.2 Neural adaptation during training

The properties of motor neurons (e.g., recruitment

threshold, discharge rate) and contractile apparatus (e.g.,

number of muscle fibers, time to peak force) can be

influenced by training. Among these properties, the

recruitment order is relatively resistant to changes and is

not influenced by interventions, such as aging (Klass et al.,

2008; Fling et al., 2009), or physical training (Van Cutsem

et al., 1998). Significant difference in the (de)recruitment

threshold was not observed between the Athlete and Control

groups in the present study. By using the EMG

decomposition technique, we observed the similar neural

activities of MUs as in previous studies. In addition, the

contraction level dramatically affected the distribution of

(de)recruitment thresholds, which was due to the fact that

only a fraction of MU populations were decoded from EMG

signals.

The discharge rate in each contraction phase was

significantly influenced by training. Previous studies suggest

that the discharge rate appears to decline with age and

contribute to age-associated decreases in muscle strength

(Barry et al., 2007; Knight and Kamen, 2008) but will increase

in response to strength training in young and old humans

(Kamen and Knight, 2004). The discharge rates in the Athlete

group were higher than those in the Control group in nearly all

the conditions, even though no significance was shown in a few

conditions. The difference in discharge rate can be observed

more clearly in the distribution of interspike intervals (Figure 6).

In all the conditions with different contraction speeds and levels,

the center of the ISI distribution from the Athlete group was

much lower than that from the Control group, thereby indicating

the increase in discharge rates with training.

Apart from the neural adaptations, muscular adaptations,

such as the hypertrophy of muscle fibers, also contribute to the

FIGURE 7
Comparison of recruitment threshold, derecruitment threshold, and discharge rate between 10s-ramp and 2s-ramp tasks. The scatter plots
indicate all the values of eachmetric from the commonMUs (filled circles) tracked between different tasks (solid lines). Each commonMU is indicated
by a different color, and the solid line between two points indicates the variation trend of the sameMU. The bars show the average values in each task.
(A,B) illustrate the comparison results from the Athlete and Control groups, respectively. Data are reported as the mean ± SD. DR: discharge
rate.
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strength increase in physical training and have a different time

course throughout the training process (Cristea et al., 2008;

Duchateau and Baudry, 2010). In this study, we evaluate the

muscular adaptations indirectly by analyzing the MUAP

amplitudes. The MU size, including the number of muscle

fibers innervated by each motor neuron and their average

cross-sectional area, was indirectly estimated by the PPV of

the MUAP waveform. The increase in PPV indicated that the

strength rise after training could result from the hypertrophy

of existing muscle fibers as well as from an increased number

of fibers (Narici et al., 1989). However, it should be noted that

the PPV of MUs may be affected by a couple of factors rather

than training, such as the thickness of the fat layer. The thick

fat layer attenuates the waveform, resulting in a lower PPV.

During an isometric contraction, the ramp increase and

decrease in force to a submaximal target, which involves the

concurrent recruitment and rate modulation of MUs (Del

Vecchio et al., 2019b). On the one hand, it was suggested that

rapid contractions might involve the preferential recruitment

of fast-contracting MUs, which may explain the difference in

recruitment threshold change in the two sessions with

different contraction speeds. Different populations of the

MUs are recruited at first when contracting faster.

Therefore, the recruitment of MUs in the 10 s-ramp

session was postponed. On the other hand, rapid

contractions are also characterized by an increase in

discharge rate (Figure 7), thereby demonstrating the effect

of rate modulation in rapid contraction (Heckman and

Enoka, 2012).

4.3 Neural drive to muscle and the force

Although the current decomposition methods could only

identify a small population of activating MUs, we can obtain

the accurate estimation of neural drive to the muscle by

pooling the MUs (Negro et al., 2009). The CST feature has

been demonstrated to represent the common drive

transferred from the spinal cord into the muscle (Farina

et al., 2014b; Holobar and Glaser, 2019). Therefore, the

CST is highly correlated with the contraction force of a

single muscle. By pooling the MUs together and extracting

the CST feature, we obtained a reliable estimate of the neural

commands transferred to the muscle, which has a great

potential in the muscle activation estimation and kinetics

projection. The muscle synergies can also be evaluated using

the decomposition technique (Tanzarella et al., 2021).

Moreover, the muscle activation estimation based on EMG

decomposition is robust to the contraction speed and training

because no significant difference in the correlation between

CST and muscle was observed in most conditions.

4.4 Future work

In this work, the adaptations in neural inputs were only

characterized based on the identified motor units. Several

techniques, such as the H reflex test, could also be used to

evaluate the changes in spinal reflex dynamics and

amplitudes. Further validation of the neural adaptations are

FIGURE 8
The correlation between force and discharge rate of cumulative spike trains. The correlation analysis was performed using CSTs calculated
based on all MUs (A) and common MUs (B). Data are reported as the mean ± SD.
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needed in the future work. As the MU discharges and their action

potentials could be identified, the EMG decomposition has a

great potential to investigate the nervous control and the

characteristics of this control, such as the vector encoding of

the motor response and the effect of the possible sensory

information’ anticipation generated by the movement itself.

Apart from the neural adaptations, the muscular adaptations

require to be directly analyzed in the future work, aiming to

interpret better the physiological mechanism underlying strength

training.

5 Conclusion

The neural adaptation of training was investigated by

characterizing the properties of MU from sprinters and

nonathletes. The training increased the discharge rates

and action potential amplitudes during the same force

level. The results from the present study demonstrate the

impact of training on the rate coding and contractile

adaptation at the MU population level. These results

provide compelling evidence that the output from the

spinal cord during prescribed actions is augmented after

long-term training.
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