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Electrocardiographic imaging (ECGI) can aid in identifying the driving sources

that cause and sustain atrial fibrillation (AF). Traditional regularization strategies

for addressing the ECGI inverse problem are not currently concerned about the

multi-scale analysis of the inverse problem, and these techniques are not

clinically reliable. We have previously investigated the solution based on

uniform phase mode decomposition (UPEMD-based) to the ECGI inverse

problem. Numerous other methods for the time-frequency analysis derived

from empirical mode decomposition (EMD-based) have not been applied to the

inverse problem in ECGI. By applying many EMD-based solutions to the ECGI

inverse problem and evaluating the performance of these solutions, we hope to

find a more efficient EMD-based solution to the ECGI inverse problem. In this

study, five AF simulation datasets and two real datasets from AF patients derived

from a clinical ablation procedure are employed to evaluate the operating

efficiency of several EMD-based solutions. The Pearson’s correlation coefficient

(CC), the relative difference measurement star (RDMS) of the computed

epicardial dominant frequency (DF) map and driver probability (DP) map, and

the distance (Dis) between the estimated and referenced most probable driving

sources are used to evaluate the application of various EMD-based solutions in

ECGI. The results show that for DF maps on all simulation datasets, the CC of

UPEMD-based and improved UPEMD (IUPEMD)-based techniques are both

greater than 0.95 and the CC of the empirical wavelet transform (EWT)-based

solution is greater than 0.889, and the RDMS of UPEMD-based and IUPEMD-

based approaches is less than 0.3 overall and the RDMS of EWT-based method

is less than 0.48, performing better than other EMD-based solutions; for DP

maps, the CC of UPEMD-based and IUPEMD-based techniques are close to 0.5,

the CC of EWT-based is 0.449, and the CC of the remaining EMD-based

techniques on the SAF and CAF is all below 0.1; the RDMS of UPEMD-based

and IUPEMD-based are 0.06~0.9 less than that of other EMD-based methods

for all the simulation datasets overall. On two authentic AF datasets, the Dis
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between the first 10 real and estimated maximum DF positions of UPEMD-

based and EWT-based methods are 212~1440 less than that of others,

demonstrating these two EMD-based solutions are superior and are

suggested for clinical application in solving the ECGI inverse problem. On all

datasets, EWT-based algorithms deconstruct the signal in the shortest time (no

more than 0.12s), followed by UPEMD-based solutions (less than 0.81s),

showing that these two schemes are more efficient than others.

KEYWORDS

electrocardiography imaging, inverse problem, EMD-based solutions, time-frequency
decomposition, atrial fibrillation

1 Introduction

The recurrence of atrial fibrillation (AF) after ablation,

particularly persistent AF, remains a great challenge (Hussein,

2020). The location of the drivers that triggers and maintains AF

has not been accurately identified (Pellman and Sheikh, 2015). As

a result, improving the efficiency and accuracy of sourcemapping

of AF driving sources is a pressing issue that must be addressed

(Dubois et al., 2015).

Electrocardiographic imaging (ECGI) can non-invasively

reconstruct epicardial potential from body surface

electrocardiographic signals (ECGs) based on geometric

structural data of the heart and torso (Cluitmans et al., 2018).

By further calculating the isochronous map, domain frequency

(DF) map, and driver probability (DP) map on the atria surface,

the location of AF drivers can be more intuitively presented

(Dubois et al., 2015; Figuera et al., 2016; Salinet et al., 2021).

However, due to the limited number of body surface signals,

there is an ill-posed problem in solving the ECGI inverse problem

(Cluitmans et al., 2015).

Numerous regularization solutions have been proposed to

solve this ill-posed problem at present. A pioneering solution for

the ill-posed problem is the Tikhonov regularization, which is

strongly developed as a motivation for the regularization theory

(Wang, 2012; Benning and Burger, 2018). Besides, the truncated

singular value decomposition (TSVD) and its modified version

based on a singular value decomposition process are gradually

popular (Caulier-Cisterna et al., 2018). However, these

techniques have not yet achieved reliable and stable epicardial

potential reconstructions. These techniques do not screen the

different components of the ECGs from the perspective of

multiscale time-frequency decomposition, which could skew

the reconstruction of the epicardial potential. In our previous

study, we performed multi-scale decomposition of body surface

signals using the Uniform Phase Mode Decomposition

(UPEMD) technique (Zhang et al., 2022), which was derived

from Empirical Mode Decomposition (EMD) (Wang et al.,

2018). Then, based on the various time-frequency domain

features of the decomposed signal, alternative regularization

techniques are implemented for the portions comprising

various ECG information. Different weights are then assigned

to the regularization findings of each component, which

substantially increases the accuracy and robustness of the

inverse issue solution. Please reference (Zhang et al., 2022) for

a more thorough explanation of this technique.

Although we have studied the solution to the inverse problem

based on UPEMD in ECGI, various other methods for multi-

scale decomposition of signals developed based on EMD have not

yet been applied to the inverse problem solving, which is worthy

of further exploration.

EMD can decompose ECGs into several parts in the time-

frequency domain, but there will be mode mixing and residual

noise. In order to solve the above problems, many improved

algorithms based on EMD (EMD-based) have been proposed.

Among them, in recent years, multivariate empirical mode

decomposition (MEMD) (Zheng and Xu, 2019), noise-assisted

MEMD (NAMEMD) (Ahrabian et al., 2012), variational mode

decomposition (VMD) (Dragomiretskiy and Zosso, 2014),

successive variational mode decomposition (SVMD) (Nazari

and Sakhaei, 2020), empirical wavelet transform (EWT)

(Gilles, 2013; Hurat, 2020), UPEMD (Wang et al., 2018),

improved UPEMD (IUPEMD) (Hurat, 2020; Ying et al., 2021;

Zheng et al., 2021) have been proposed successively. The

effectiveness of the above methods has been verified in

mechanical fault detection, voice signal, ECG signal, and

seismic signal processing (Lal et al., 2018; Zeng and Yuan,

2021; Liu et al., 2022). In order to study the influence of

different EMD-based solutions on the accuracy and reliability

of ECGI inverse operation, firstly, the ECGs were decomposed

using the various EMD-based solutions mentioned above in this

paper. Secondly, the truly useful components for the inverse

operation were then screened out using the same principle.

Finally, the same post-processing was carried out on the

various parts screened out using the various EMD-based

solutions to obtain the final epicardial potential.

The remaining of the study is organized as follows. Section

2 describes the principle of the inverse problem, the algorithm

principles of various EMD-based technologies, the research

process of this paper, and the solutions to the inverse problem

based on EMD-based solutions. Section 3 focuses on introducing

the data source used in the experiment, the parameter selection of

the algorithm, the evaluation index of the algorithm, and the
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experimental results of various EMD-based technologies. Section

4 is a discussion of the results. The conclusion is presented in

section 5.

2 Methods

2.1 Inverse problem

ECGI can non-invasively reconstruct the electrical signal on

the heart surface based on the high-density ECGs (Borras and

Chamorro-Servent, 2021; Salinet et al., 2021). The mathematical

mechanism of the ECGI inverse problem can be expressed as

follows.

ΦH � A−1*ΦB (1)

Where A is the transfer matrix, indicating the conduction of

electrical signals from the epicardium to the body surface, and

ΦB is the ECGs, ΦH is the epicardial potential (Potyagaylo et al.,

2021). The transfer matrix is determined by geometric models of

the atrium and torso in this study (Zhou et al., 2018).

Even though the measurement error in the inverse problem’s

solution for ΦB is minimal, the inverse problem’s ill-posedness

results in a substantial calculation deviation on ΦH . The Tikhonov

regularization is a typical remedy for this issue, which can be

mathematically represented as follows (Tikhonov, 1963).

ΦH � argmin{‖ΦB − AΦH‖2 + λ‖ΛΦH‖2} (2)

Among them, Λ is the regularization operator, and λ is the

regularization parameter, which is typically determined by the

L-curve method (Orozco Rodríguez, 2011; Aster et al., 2018).

(Chen et al., 2019) presents a novel L-curve technique based on

bilateral accumulative area detector (L-BAA). BAA is a curve

feature point identification operator that offers superior anti-

interference capabilities. Tikhonov regularization can improve

the smoothness and stability of the inverse operation. TSVD

regularization, on the other hand, has a greater ability to suppress

noise. The mathematical principle underlying TSVD is given as

follows (Wu et al., 2013).

ΦH � argmin‖AkΦH − ΦB‖ (3)
k is the truncation parameter, and like Tikhonov, it may be found

using the L-BAA method. In addition to the influence of the

regularization method on the result of the inverse operation, ΦB

has a direct effect on ΦH .

2.2 EMD-based signal decomposition
solutions

To improve the accuracy of ΦH , EMD-based technology can

sieve the different time-frequency components of the ECGs ΦB,

assist in extracting specific components fromΦB to participate in

the inverse operation and suppress the other part that has a little

positive effect on the inverse operation. Currently, developed

EMD-based technologies primarily include the following.

2.2.1 Variational mode decomposition
VMD decomposes the raw signal into narrowband signals

with separate bands squeezed around different center frequencies

in a non-recursive manner (Dragomiretskiy and Zosso, 2014;

Zosso et al., 2017). In VMD, the setting of the optimal number of

modes k, and weight factor α are two key parameters. The larger

k, the heavier the computational burden the method has. The

smaller the k, the more severe the mode aliasing may be. The

smaller α, the larger the bandwidth of each component. VMD

defines intrinsic mode function (IMF) as a limited bandwidth

amplitude-modulation-frequency-modulation (AM-FM) signal,

requiring that the sum of each IMF’s estimated bandwidths is the

smallest, and that the sum of all IMFs is equal to the original

signal (Isham et al., 2019). For more detailed mathematical

principles and implementation steps of the algorithm

(Dragomiretskiy and Zosso, 2014), please refer to the appendix.

2.2.2 Successive variational mode
decomposition

(Nazari and Sakhaei, 2020) presented SVMD to discover the

optimal k with the use of a heuristic method to adaptively select

the best number of modes k and the weighting factor in VMD. In

contrast to VMD, SVMD incorporates a new penalty function to

lessen spectral overlap (Guo et al., 2022).

VMD extracts modes concurrently whereas SVMD extracts

all IMFs sequentially. SVMD has lower computational

complexity than VMD. SVMD operates by constantly

applying VMD to the signal until the decomposition error

reaches a certain threshold; this succession aids in accelerating

convergence and avoiding the extraction of undesired modes. In

SVMD, just an initial and maximum weighting factor is required

to be established in advance (Wang and Zhou, 2021). Please see

the appendix for further information on the algorithm’s

implementation steps and more precise mathematical

foundations.

2.2.3 Multivariate empirical mode
decomposition

When employing an EMD-based technique for multivariate

signal decomposition, the amount of IMFs decomposed from

various channel signals may vary, impeding the subsequent

synchronization analysis of decomposed multichannel signals.

MEMD was suggested by (Rehman and Mandic, 2010) as a

solution to the issue based on EMD. Using a low discrepancy

Hammersley sequence, the raw multivariate signal is first

projected into n-dimensional space in MEMD, and the

projection signal is then decomposed by EMD to generate the

same number of IMFs for multichannel signals. (Rehman and

Mandic, 2010; Bussett, 2021). The appendix has more
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information about the algorithm and how to put them into

practice.

2.2.4 Noise-assistedmultivariate empirical mode
decomposition

Rehman and Mandic (Rehman et al., 2013) also proposed

that NAMEMD can also decompose multi-channel signals into

the same number of modes. Compared with MEMD, NAMEMD

adds independent white noise to the signal to be decomposed to

improve the problems of modal aliasing and residual noise (Zhao

et al., 2022). Appendix contains the algorithm implementation

procedures.

2.2.5 Uniform phase empirical mode
decomposition

In order to get rid of the modal splitting and margin noise

present in noise-assisted EMD, UPEMD adds a sinusoidal signal

with a uniform phase (Wang et al., 2018). There will be some

empirical mistakes introduced since the sinusoidal signal added

to UPEMD’s magnitude and phase are governed by subjective

experience. See appendix for algorithm implementation details.

2.2.6 Improved uniform phase empirical mode
decomposition

To acquire the added sinusoidal signal’s ideal amplitude and

to increase the decomposition’s accuracy, IUPEMD applies an

orthogonality index to choose the optimal amplitude from

numerous decomposition results under various amplitudes.

Moreover, the mean curve is not able to be completely

isolated from the signal unless the iterative residual signal has

been updated, while IUPEMD employs minimum orthogonality

as an ideal weight selection criterion to make the mean curve

separated from the signal to reduce the residual (Ying et al., 2021;

Zheng et al., 2021). Appendix contains algorithm

implementation steps.

2.2.7 Empirical wavelet transform
The wavelet transform approach has a positive impact on

multi-resolution signal analysis. By merging EMD and wavelet

analysis theory, some researchers have developed EWT. EWT

generates an adaptive wavelet to extract AM and FM

components. First, previous knowledge is extracted from

the original signal’s Fourier spectrum, and the signal

spectrum is adaptively subdivided based on the distribution

of extreme points in the frequency domain; next, a wavelet

filter bank is formed. Finally, the empirical wavelet transform,

i.e. band-pass filtering, is implemented in the divided

spectrum range in order to separate individual FM and AM

components, and the spectrum of these components is

supported firmly (Gilles, 2013; Kedadouche et al., 2016; Liu

et al., 2016). Please refer to the appendix for a more

comprehensive description of the algorithm’s

implementation procedure.

The comparative study on EMD-based solutions to the

inverse problem.

In this comparative study, various EMD-based solutions are

first employed to accomplish multi-scale decomposition on N

ECG signals in the EMD-based solution of the inverse issue. The

N decomposed signal groups are represented as S1, S2,. . ., Sn, and

each S comprises m decomposed signals.

Secondly, the decomposed signal will be screened. The m

signals are separated into two parts, the valuable part P1 and the

less valuable signals P2, where the decomposed signals with a

higher variance contribution rate and the correlation coefficient

are treated as valuable parts and the rest of the decomposed

signals are taken as the less valuable signals. Then, the P1 parts of

the N decomposed signals are then combined to form ΦB1, and

the P2 parts are combined to form ΦB2.

Thirdly, utilizing Tikhonov and TSVD regularization for the

two parts ΦB1 and ΦB2 to produce the inverse solutions ΦH1

and ΦH2.

ΦH1 � argmin{‖ΦB1 − AΦH1‖2 + λ‖ΛΦH1‖2} (4)
ΦH2 � argmin‖AkΦH2 −ΦB2‖ (5)
ΦH � α*ΦH1 + (1 − α)*ΦH2 (6)

Finally, weighting and averaging ΦH1 and ΦH2 to obtain the

potential signal on the epicardium, ΦH. The literature (Yadan

et al., 2022) contains more detailed description about these steps.

The entire procedure is depicted in Figure 1.

The EMD-based technologies in ECGI are evaluated based

on the computational efficiency and precision of inverse

solutions.

3 Results

3.1 Datasets

To compare and test several proposed EMD-based solutions

for the inverse problem in ECGI, two simulation datasets

containing a total of five different AF types and two datasets

from real AF patients were used in this study. One of the

simulated datasets is from (Figuera et al., 2016; Pedron-

Torrecilla et al., 2016), including two different AF propagation

patterns, simple AF (SAF) and complex AF (CAF) on the atrial

surface. The other simulated dataset from the EDGAR project1

(Aras et al., 2015) contains realistic mathematical models of the

two atria and the torso with different AF impulse propagation

patterns. AF was simulated by a driving rotor on either the left

atrium (LA) or right atrium (RA) and fibrillatory conduction to

the rest of the atria, and in the case of LA driver, with and without

1 This simulation dataset can be found in the [EDGAR] https://edgar.sci.
utah.edu/human-cardiac-mapping.html.
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fibrotic conduction (LA_normal and LA_fibrotic); The dataset is

called RA_normal where the driver is located in RA without

fibrotic conduction. Torso potentials were computed by solving

the forward problem of electrocardiography (Pedron-Torrecilla

et al., 2016).

The real AF dataset from the EDGAR project consists of the

signals and geometrical meshes from two AF patients (Patient

one# and Patient 2#) derived for an ablation procedure. ECGs

were recorded simultaneously with the endocardial recordings

with high-resolution multipolar catheters. This genuine AF

dataset consists of 62-channel (Patient 1#) and 72-channel

(Patient 2#) intracardiac catheter mapping signals from two

AF patients, 54-lead body surface ECGs, atrial torso geometry,

and transmission matrix A.

3.2 Parameters selection

We determined the initial values of various parameters by

comprehensive tests, together with the sampling frequency

and features of ECGs. The ECGs are decomposed into

10 layers respectively in VMD, i.e. k � 10. In SVMD, the

number of decomposition layers of ECGs totally depends

on the different datasets, ranging from 5 to 19. All ECGs in

MEMD are adaptively decomposed into 11 layers. In

NAMEMD, when the added white noise standard deviation

is 1, the decomposition layers of ECGs are shown in Table 1

for different datasets. Furthermore, the ECGs are split into

10 layers using EWT. The amplitude of the sinusoidal signal

added in UPEMD is set to one for all datasets, and the optimal

number of phases is 18. In general, IUPEMD determines the

number of phases between 4 and 32, and the optimal

amplitude of the sinusoidal signal is set between 0.15 and

0.4. Table 2 shows the optimal signal amplitude and phase

quantity selected adaptively by IUPEMD for various datasets.

After the ECGs have been decomposed using the

aforementioned time-frequency decomposition solutions, the

decomposed signals are divided into two parts based on the

variance contribution rate and the correlation coefficient: one

containing a large amount of irrelevant information and the

FIGURE 1
EMD-based solution to the inverse problem in ECGI.
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other containing more useful information. In all of the inverse

problem solutions shown in this work, the processing that follows

is identical.

3.3 Evaluation index

In this study, Pearson’s correlation coefficient CC (Puth et al.,

2014; Liu et al., 2021; Cui et al., 2022)and relative difference

measurement star (RDMS) (Figuera et al., 2016) are used to

quantify the similarity between the calculated and actual DF and

the DP maps, thereby evaluating several EMD-based solutions to

the inverse problem.

CC � ∑m
i�1(xi − �x)(yi − �y)�����������∑m

i�1(xi − �x)2
√ �����������∑m

i�1(yi − �y)2√ (4a)

RDMS �

����������������∑
j
⎛⎝ xk
‖x2‖ −

x̂k����x̂2����⎞⎠2
√√

(5a)

In addition, to quantify the accuracy of the calculated DF or

DP from many perspectives, the Euclidean distance (denoted by

Dis) has also been employed (Etal, 2021). The calculated and

referenced numbered positions of the n greatest DF or DP points

will be processed as an n-dimensional vector, respectively. Dis

measures the distance between these two vectors, that is, the

similarity between the n biggest estimated DF or DP sites and

their references.

Dis �
������������∑n

i�1(xi − yi)2√
(6a)

n denotes the number of sites. xi and yi are the calculated and

referenced numbered positions of the n greatest DF or DP points,

respectively. If n � 10, the Dis between the estimated and

reference first 10 greatest DP location or the DF position will

be calculated, representing the index distance between the

estimated and the reference driving sources.

3.4 Experimental results

The DF and DPmaps on the epicardium are constructed, and

potential AF drivers are identified using several EMD-based

solutions in this study.

3.4.1 Results on the simulation datasets
Figure 2 shows the DF maps of seven different EMD-based

solutions for five simulation datasets. Among them, the DF maps

generated by the UPEMD-based and IUPEMD-based solutions

are the most comparable to the real maps in all datasets; the DF

under the EWT-based solution also exhibits a good resemblance

to the real one for SAF and CAF. From the perspective of CC, for

the UPEMD-based, IUPEMD-based, and EWT-based methods,

the CC is higher than other methods. The CC of UPEMD-based

and IUPEMD-based techniques are both greater than 0.95 for

five distinct simulation datasets, while the CC of the EWT-based

solution is greater than 0.915 for all simulation datasets excluding

the LA_fibrotic dataset (CC on the LA_fibrotic: 0.889). The

aforementioned three solutions have distinct advantages over

other EMD-based technologies.

On these five simulation datasets, the RDMS of UPEMD-

based and IUPEMD-based approaches is less than 0.3 overall. On

the datasets SAF, CAF, and RA normal, the RDMS of EWT-

based method is less than 0.4; however, on the datasets

LA_normal and LA_fibrotic, the RDMS is 0.413 and 0.471,

respectively. Both the RDMS of VMD-based and SVMD-

based are more than 0.5. There is little difference between the

DF maps for MEMD-based and NAMEMD-based solutions,

whereas CC and RDMS for MEMD-based solutions are

slightly better than those for NAMEMD-based solutions,

indicating that when MEMD is used to decompose ECGs, the

addition of white noise cannot improve the inverse results; the

SVMD-based inverse solution is superior to VMD overall.

This paper calculates the DP maps for each algorithm and

identifies ten drivers with the highest probability as well. The

relevant details are shown in Figure 3. In general, DP maps of

TABLE 1 The decomposition layers of ECGs for different datasets in NAMEMD.

Dataset SAF CAF LA_fibrotic LA_normal RA_normal Patient #1 Patient #2

Decomposition layers 12 11 11 12 11 13 14

TABLE 2 The optimal signal amplitude and phase quantity selected by IUPEMD for different datasets.

Dataset SAF CAF LA_fibrotic LA_normal RA_normal Patient #1 Patient #2

Amplitude 0.17 0.17 0.15 0.15 0.2 0.15 0.25

Phase Quantity 4 4 8 8 4 4 4
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FIGURE 2
The DF maps using various EMD-based methods under the datasets SAF, CAF, LA_normal, LA_fibrotic, and RA_normal are represented by
(A–E), respectively. For each separate dataset, the reference DF map is in the first column, followed by the DF maps for the VMD-based, SVMD-
based, EWT-based, MEMD-based, NAMEMD-based, UPEMD-based, and IUPEMD-based solutions, startingwith the second column. On eachmodel,
a distinct color denotes the DF at that place. The RDMS (G) and CC (F) between the computed EMD-based algorithm and the real DF map for
each EMD-based solution are shown as well.

FIGURE 3
DPmaps (red circles mark the 10 locations with the highest probability of driver location). Among them (A–E) represent the DPmaps generated
by various EMD-based algorithms for SAF, CAF, LA_normal, LA_fibrotic, and RA_normal, which from left to right correspond to the DP maps for
VMD-based, SVMD-based, EWT-based, MEMD-based, NAMEMD-based, UPEMD-based, and IUPEMD-based solutions.
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UPEMD-based and IUPEMD-based solutions are the most

accurate, followed by EWT and other algorithms that have

varying degrees of false detection. Compared to VMD-based

and MEMD-based solutions, the inverse operation of the

upgraded algorithms, SVMD-based and MEMD-based

solutions, are not significantly enhanced. In the VMD-based

scheme for the RA _normal, the VMD-based solution does not

detect the driver, hence no driver position is marked in the

VMD-based inverse solution in (E).

Meanwhile, Figure 4 depicts the CC, RDMS, and the Dis

between the calculated drivers and the reference drivers on the

DP maps. If no driving source is discovered, its CC, RDMS, and

Dis are manually set to negative values. For DP maps, the CC of

UPEMD-based (CC = 0.498) and IUPEMD-based (0.496)

techniques are close to 0.5, the CC of EWT-based is 0.449,

and the CC of the remaining EMD-based techniques on the

SAF and CAF is all below 0.1; the RDMS of UPEMD-based and

IUPEMD-based solutions are lower 0.3 on LA_normal and

LA_fibrotic, while other EMD-based methods’ RDMS is more

than 1.2. On the SAF and CAF datasets, the RDMS of UPEMD-

based, IUPEMD-based, and EWT-based methods is likewise less

than that of other EMD-based methods. These results show that

the UPEMD-based, EWT-based and IUPEMD-based solutions

outperform other algorithms in the CC and RDMS of DP.

As for the Dis between estimated and reference driving

sources, in general, the drivers calculated by EWT-based,

UPEMD-based, and IUPEMD-based solutions are the closest

to the reference drivers; For all the datasets, the Dis for VMD-

based and SVMD-based solutions show no noticeable advantages

or disadvantages, as do MEMD-based and NAMEND-based

solutions, indicating that these algorithms have limited

efficacy in solving ECGI inverse problems.

3.4.2 Results on the real datasets
This paper analyzes the DF maps of the epicardial potential

generated by various EMD-based solutions on two authentic AF

datasets and identified the 10 sites with the maximum DF, as

shown in Figure 5 ((A) for patient one# and (B) for patient 2#).

FIGURE 4
Quantitative evaluation of the DP map: (A) CC (B) RDMS (C) Dis (top 10 greatest possible drivers). The horizontal axis displays, from left to right,
the quantitative indications of VMD-based, SVMD-based, EWT-based, MEMD-based, NAMEMD-based, UPEMD-based, and IUPEMD-based solutions
for every dataset.
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Figure 5A demonstrates that UPEMD-based and EWT-based

solutions identified multiple maximumDF sites in the left atrium

of patient 1#. Although these points were slightly dispersed in

regard to the 10 maximum DF spots on the reference left atrium,

the recognition results of UPEMD-based and EWT-based

algorithms are more accurate than those of other EMD-based

algorithms. For patient 2# (Figure 5B), both UPEMD-based and

EWT-based algorithms recognized multiple highest DF spots in

the RA. The maximum DF positions discovered by SVMD-based

and IUPEMD-based approaches are mostly situated in the LA,

which is much more than that of the reference LA, and they are

definitely absent in the RA.

To analyze the aforementioned DF maps’ findings

quantitatively, the Dis between the actual and measured

maximum DF was determined (62 locations for patient

one# and 73 sites for patient 2#). Also given is the

disparity between the projected and actual top

10 maximum DF positions. In general, the Dis between the

first 10 real and estimated maximum DF positions of

UPEMD-based and EWT-based methods are less than

1960 for patient 1#, while that of other EMD-based

techniques are all more than 2300; for patient 2#, the Dis

between the first 10 real and inversely calculated maximum

DF positions of UPEMD-based (Dis = 934) and EWT-based

(Dis = 875) techniques are lower to 935, less than that of

others (more than 1147). The UPEMD-based and EWT-based

are superior to others even for the Dis between the actual and

measured maximum DF (62 locations for patient one# and

73 sites for patient 2#), showing that the estimated epicardial

abnormal area by the UPEMD-based and EWT-based

solutions is closer to the reference one.

3.4.3 The execution efficiency of EMD-based
solutions

We counted the time taken by various EMD-based

approaches for the decomposition of ECGs to assess the

operational efficacy of various EMD-based solutions. The

effect of datasets and methods on decomposition time is

summarized in Figure 6.

On all datasets, EWT-based algorithms deconstruct the

signal in the shortest time (no more than 0.12s), followed by

UPEMD-based solutions (less than 0.81s), showing that these

two schemes are more efficient than others. Due to the adaptive

decomposition layers of the SVMD approach in different data

sets, the SVMD-based method is not consistently more efficient

than the VMD-based method in different simulated data sets. If

the number of decomposition layers is greater than that of the

VMD method, the length of time required will be greater. In

contrast, if the number of adaptive decomposition layers is less

than the predetermined value of the VMD method, the VMD

method will consume less time. Due to the addition of a

particular amount of white noise to the original signal in the

NAMEMD-based solution (Rehman and Mandic, 2011), the

time-frequency components of the signal become more

diverse. Hence, more decomposed layers are required to get

the final monotonic residual signal (Table 1). In comparison

to the UPEMD-based solution, the IUPEMD-based solution

must iteratively decompose the ECGs under various

FIGURE 5
DFmaps of two real patients with AF (red dots mark the 10 locations with the highest DF; both patients’ LA and RA are indicated by grey arrows).
(A)DFmaps for Patient 1#; (B)DFmaps for Patient 2#; (C) TheDis between the computed and actual DFmaps: C1, for Patient 1#, the Dis between the
estimated and actual 62 maximum DF positions for various EMD-based solutions; C2, for Patient 2#, the Dis between the estimated and actual
73 maximum DF positions; C3, for Patient 1#, the Dis between the first 10 real and estimated maximumDF positions; C4, for Patient 2#, the Dis
between the first 10 real and inversely calculated maximum DF positions.
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parameters (amplitude and phase number) using UPEMD and

then determine the current optimal amplitude and the number of

phases based on the principle of minimum orthogonality.

Consequently, this method requires more time.

4 Discussion

This study employed five A F simulation datasets and two

real AF patient datasets to evaluate the effect of various EMD-

based solutions in ECGI. We obtain the Dis between the

calculated and actual maximum DF, and maximum DP sites.

What’s more, the CC and RDMS of the estimated DF and DP

maps for different inverse operation methods are investigated for

simulated AF datasets as well.

UPEMD-based IUPEMD-based and EWT-based solutions

perform better than other EMD-based solutions on simulated

datasets from the CC and RDMS of DF and DP maps, and their

Dis between estimated and actual top 10 most probable driving

sources is shorter.

In comparison to the IUPEMD-based solution, the UPEMD-

based solution simply decompose ECGs with the assistance of a

sinusoidal signal whose amplitude and phase are pre-determined

(Wang et al., 2018), hence lowering the number of iterations and

saving calculation time. The IUPEMD-based solution is inferior

to the UPEMD-based solution, indicating that adding sinusoidal

signals with the phases and amplitudes adaptively determined by

the principle of minimum orthogonality to ECGs does not

significantly improve the solution of the ECGI inverse

problem. In real AF datasets, the maximum DF calculated by

the UPEMD-based solution and the EWT-based solution are the

closest to the actual maximum DF, indicating that the detected

drivers are more precise using UPEMD-based and EWT-based

solutions.

VMD-based and SVMD-based solutions are less satisfactory

when compared to UPEMD-based and EWT-based technology.

It demonstrates that the hypothesis that decomposition of the

ECGs is translated into a variational problem is not conducive to

the ECGI inverse problem (Dragomiretskiy and Zosso, 2014;Wei

et al., 2021). In these two decomposition methods, the screened

IMFs cannot distinguish the valuable components for the ECGI

inverse problem well. Although the SVMD-based solution, as an

improved version of the VMD-based solution, adds constraints

when solving variational problems (Liu et al., 2022), it is not

better than the VMD-based solution, in fact, it is marginally

worse. Dependent on the different ECGs, the execution efficiency

of VMD-based and SVMD-based solutions differs.

Similarly, neither the NAMEMD-based solution nor the

MEMD-based solution show any advantages, indicating that

the method of first mapping ECGs to a high-dimensional

space and then performing multi-scale decomposition of their

projected signals may not be appropriate for multi-scale solutions

of ECGI. The Dis calculated by the NAMEMD-based solution is

greater than that of the MEMD-based solution in the SAF,

LA_fibrotic, and genuine AF datasets, demonstrating that

NAMEMD-based, an enhanced MEMD-based solution, does

not solve ECGI inverse problems more effectively. The

execution efficiency of the NAMEMD-based solution is lower

than that of the MEMD-based solution.

5 Limitations

In this paper, only a small amount of data was used to test

these EMD-based approaches, and when these open data sets

were collected, they may have had mistakes because of the limits

of the measurement environment or the simulation

environment.

FIGURE 6
Decomposition time of ECGs by various EMD-based solutions for diverse datasets.
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We did not evaluate the effect of the geometric errors of the

atrium and torso models on the performance of various EMD-

based solutions. When AF occurs, not only does the electrical

activity of the atrium change, but so does the atrial structure to a

certain extent. The reconstructed portion of the structure, such as

fibrosis, must be distinguished from the normal portion during

the construction of the atrial geometric model and mesh division;

moreover, the static atrial model is utilized in this study. Using a

dynamic atrial model that incorporates the natural systolic and

diastolic activities of the atrium may increase the accuracy of

inverse calculations.

How the number of electrodes and electrode placements

affect the outcomes of various EMD-based inverse methods

has not been properly investigated. The two real AF datasets

used have a limited number of surface electrodes. Although

some researchers disagree that more surface electrodes make it

more conducive to study the inverse problem (Bear et al.,

2018; Gharbalchi No et al., 2020; Parreira et al., 2020), the

degree of inaccuracy brought on by 54 electrodes in the study

of the ECGI inverse problem deserves further in-depth

investigation.

In conclusion, this study disregards the influence of the

defects caused by the aforementioned challenges on the

inverse solutions and focuses solely on the application of

various EMD-based solutions to constrained datasets. To

some extent, the findings are useful; however, a large number

of clinical data have not confirmed them.

6 Conclusion

In conclusion, we study the application of different EMD-

based solutions in ECGI, and the results have strong

regularity. Considering the efficiency of algorithm

execution, UPEMD-based and EWT-based solutions have

prominent advantages and are easier to meet the needs of

ECGI in clinical applications. The UPEMD-based solution,

IUPEMD-based solution, and EWT-based solution are

superior to others for distinct datasets. However, the

IUPEMD-based solution’s running time is significantly

longer than that of the UPEMD-based solution and EWT-

based solution, causing the latter two more appropriate for

clinical applications. This paper can serve as a reference for

future researchers addressing relevant ECGI inverse problems

by examining the use of various EMD-based solutions

in ECGI.
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